SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Beckers Johannes) "

Sökning: WFRF:(Beckers Johannes)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmad, Nafees, et al. (författare)
  • Pitx3 directly regulates Foxe3 during early lens development.
  • 2013
  • Ingår i: The International journal of developmental biology. - : UPV/EHU Press. - 1696-3547 .- 0214-6282. ; 57, s. 741-751
  • Tidskriftsartikel (refereegranskat)abstract
    • Pitx3 is a bicoid-related homeodomain transcription factor critical for the development of the ocular lens, mesencephalic dopaminergic neurons and skeletal muscle. In humans, mutations in PITX3 are responsible for cataracts and anterior segment abnormalities of varying degree; polymorphisms are associated with Parkinsons disease. In aphakia (ak) mice, two deletions in the promoter region of Pitx3 cause abnormal lens development. Here, we investigated systematically the role of Pitx3 in lens development including its molecular targets responsible for the ak phenotype. We have shown that ak lenses exhibit reduced proliferation and aberrant fiber cell differentiation. This was associated with loss of Foxe3 expression, complete absence of Prox1 expression, reduced expression of epsilon-tubulin and earlier expression of gamma-crystallin during lens development. Using EMSA and ChIP assays, we demonstrated that Pitx3 binds to an evolutionary conserved bicoid-binding site on the 5-upstream region of Foxe3. Finally, Pitx3 binding to 5-upstream region of Foxe3 increased transcriptional activity significantly in a cell-based reporter assay. Identification of Foxe3 as a transcriptional target of Pitx3 explains at least in part some of the phenotypic similarities of the ak and dyl mice (dysgenic lens, a Foxe3 allele). These findings enhance our understanding of the molecular cascades which subserve lens development.
  •  
2.
  • Bader, Erik, et al. (författare)
  • Identification of proliferative and mature beta-cells in the islets of Langerhans
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 535:7612, s. 430-
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of beta-cells. Pancreatic beta-cells differ in size, glucose responsiveness, insulin secretion and precursor cell potential(1-5); understanding the mechanisms that underlie this functional heterogeneity might make it possible to develop new regenerative approaches. Here we show that Fltp (also known as Flattop and Cfap126), a Wnt/planar cell polarity (PCP) effector and reporter gene(6), acts as a marker gene that subdivides endocrine cells into two subpopulations and distinguishes proliferation-competent from mature beta-cells with distinct molecular, physiological and ultrastructural features. Genetic lineage tracing revealed that endocrine subpopulations from Fltp-negative and -positive lineages react differently to physiological and pathological changes. The expression of Fltp increases when endocrine cells cluster together to form polarized and mature 3D islet mini-organs(7-9). We show that 3D architecture and Wnt/PCP ligands are sufficient to trigger beta-cell maturation. By contrast, the Wnt/PCP effector Fltp is not necessary for beta-cell development, proliferation or maturation. We conclude that 3D architecture and Wnt/PCP signalling underlie functional beta-cell heterogeneity and induce beta-cell maturation. The identification of Fltp as a marker for endocrine subpopulations sheds light on the molecular underpinnings of islet cell heterogeneity and plasticity and might enable targeting of endocrine subpopulations for the regeneration of functional beta-cell mass in diabetic patients.
  •  
3.
  • Bosmans, Laura A., et al. (författare)
  • Myeloid CD40 deficiency reduces atherosclerosis by impairing macrophages’ transition into a pro-inflammatory state
  • 2023
  • Ingår i: Cardiovascular Research. - : Oxford University Press (OUP). - 0008-6363 .- 1755-3245. ; 119:5, s. 1146-1160
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims CD40 and its ligand, CD40L, play a critical role in driving atherosclerotic plaque development. Disrupted CD40-signalling reduces experimental atherosclerosis and induces a favourable stable plaque phenotype. We recently showed that small molecule-based inhibition of CD40-tumour necrosis factor receptor associated factor-6 interactions attenuates atherosclerosis in hyperlipidaemic mice via macrophage-driven mechanisms. The present study aims to detail the function of myeloid CD40 in atherosclerosis using myeloid-specific CD40-deficient mice. Method and Cd40flox/flox and LysM-cre Cd40flox/flox mice on an Apoe−/− background were generated (CD40wt and CD40mac−/− , respect-Results ively). Atherosclerotic lesion size, as well as plaque macrophage content, was reduced in CD40mac−/− compared to CD40wt mice, and their plaques displayed a reduction in necrotic core size. Transcriptomics analysis of the CD40mac−/− atherosclerotic aorta revealed downregulated pathways of immune pathways and inflammatory responses. Loss of CD40 in macrophages changed the representation of aortic macrophage subsets. Mass cytometry analysis revealed a higher content of a subset of alternative or resident-like CD206+CD209b− macrophages in the atherosclerotic aorta of CD40mac−/− compared to CD40wt mice. RNA-sequencing of bone marrow-derived macrophages of CD40mac−/− mice demonstrated upregulation of genes associated with alternatively activated macrophages (including Folr2, Thbs1, Sdc1, and Tns1). Conclusions We here show that absence of CD40 signalling in myeloid cells reduces atherosclerosis and limits systemic inflammation by preventing a shift in macrophage polarization towards pro-inflammatory states. Our study confirms the merit of macrophage-targeted inhibition of CD40 as a valuable therapeutic strategy to combat atherosclerosis.
  •  
4.
  • Eisenberg, Tobias, et al. (författare)
  • Cardioprotection and lifespan extension by the natural polyamine spermidine
  • 2016
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 22:12, s. 1428-1438
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging is associated with an increased risk of cardiovascular disease and death. Here we show that oral supplementation of the natural polyamine spermidine extends the lifespan of mice and exerts cardioprotective effects, reducing cardiac hypertrophy and preserving diastolic function in old mice. Spermidine feeding enhanced cardiac autophagy, mitophagy and mitochondrial respiration, and it also improved the mechano-elastical properties of cardiomyocytes in vivo, coinciding with increased titin phosphorylation and suppressed subclinical inflammation. Spermidine feeding failed to provide cardioprotection in mice that lack the autophagy-related protein Atg5 in cardiomyocytes. In Dahl salt-sensitive rats that were fed a high-salt diet, a model for hypertension-induced congestive heart failure, spermidine feeding reduced systemic blood pressure, increased titin phosphorylation and prevented cardiac hypertrophy and a decline in diastolic function, thus delaying the progression to heart failure. In humans, high levels of dietary spermidine, as assessed from food questionnaires, correlated with reduced blood pressure and a lower incidence of cardiovascular disease. Our results suggest a new and feasible strategy for protection against cardiovascular disease.
  •  
5.
  • Gerckens, Michael, et al. (författare)
  • Phenotypic drug screening in a human fibrosis model identified a novel class of antifibrotic therapeutics
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:52, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Fibrogenic processes instigate fatal chronic diseases leading to organ failure and death. Underlying biological processes involve induced massive deposition of extracellular matrix (ECM) by aberrant fibroblasts. We subjected diseased primary human lung fibroblasts to an advanced three-dimensional phenotypic high-content assay and screened a repurposing drug library of small molecules for inhibiting ECM deposition. Fibrotic Pattern Detection by Artificial Intelligence identified tranilast as an effective inhibitor. Structure-activity relationship studies confirmed N-(2-butoxyphenyl)-3-(phenyl)acrylamides (N23Ps) as a novel and highly potent compound class. N23Ps suppressed myofibroblast transdifferentiation, ECM deposition, cellular contractility, and altered cell shapes, thus advocating a unique mode of action. Mechanistically, transcriptomics identified SMURF2 as a potential therapeutic target network. Antifibrotic activity of N23Ps was verified by proteomics in a human ex vivo tissue fibrosis disease model, suppressing profibrotic markers SERPINE1 and CXCL8. Conclusively, N23Ps are a novel class of highly potent compounds inhibiting organ fibrosis in patients.
  •  
6.
  • Hult, Malin, et al. (författare)
  • Short-term glucocorticoid treatment increases insulin secretion in islets derived from lean mice through multiple pathways and mechanisms
  • 2009
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 301:1-2, s. 109-116
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic exposure to elevated levels of glucocorticoids leads to metabolic dysfunctions with hyperglycemia and insulin resistance. Long-term treatment with glucocorticoids induces severe impairment of glucose-stimulated insulin secretion. We analyzed the effects of short-, and medium-term (2-120h) treatment with 50-200nM glucocorticoids on primary pancreatic islet cultures derived from lean C57BL/6J mice. In contrast to animal models of insulin resistance, beta-cells from lean mice respond with an increased glucose-stimulated insulin secretion, with a peak effect around 18-24h of treatment. Analyses of the insulin secretion response reveal that early and late phase responses are dissociated upon glucocorticoid treatment. Whereas late phase responses return to basal levels after long treatment, early phase responses remain increased over several days. Increased insulin secretion is also obtained by incubation with the inactive glucocorticoid dehydrocorticosterone, pointing to an important role of the enzyme 11beta-hydroxysteroid dehydrogenase type 1 in mediating glucocorticoid effects in beta-cells. Transcript profiling revealed differential regulation of genes involved in mediation of signal transduction, insulin secretion, stress and inflammatory responses. The results show that short- to medium-term glucocorticoid treatment of pancreatic islets derived from lean mice leads to an increased insulin release and may constitute an important parameter in changing towards a pro-diabetic phenotype.
  •  
7.
  • Kokot, Hana, et al. (författare)
  • Prediction of Chronic Inflammation for Inhaled Particles : the Impact of Material Cycling and Quarantining in the Lung Epithelium
  • 2020
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 32:47
  • Tidskriftsartikel (refereegranskat)abstract
    • On a daily basis, people are exposed to a multitude of health-hazardous airborne particulate matter with notable deposition in the fragile alveolar region of the lungs. Hence, there is a great need for identification and prediction of material-associated diseases, currently hindered due to the lack of in-depth understanding of causal relationships, in particular between acute exposures and chronic symptoms. By applying advanced microscopies and omics to in vitro and in vivo systems, together with in silico molecular modeling, it is determined herein that the long-lasting response to a single exposure can originate from the interplay between the newly discovered nanomaterial quarantining and nanomaterial cycling between different lung cell types. This new insight finally allows prediction of the spectrum of lung inflammation associated with materials of interest using only in vitro measurements and in silico modeling, potentially relating outcomes to material properties for a large number of materials, and thus boosting safe-by-design-based material development. Because of its profound implications for animal-free predictive toxicology, this work paves the way to a more efficient and hazard-free introduction of numerous new advanced materials into our lives. 
  •  
8.
  • Schriever, Sonja C., et al. (författare)
  • Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity
  • 2020
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; 130:11, s. 6093-6108
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent genome-wide association studies (GWAS) identified DUSP8, encoding a dual-specificity phosphatase targeting mitogen-activated protein kinases, as a type 2 diabetes (T2D) risk gene. Here, we reveal that Dusp8 is a gatekeeper in the hypothalamic control of glucose homeostasis in mice and humans. Male, but not female, Dusp8 loss-of-function mice, either with global or corticotropin-releasing hormone neuron–specific deletion, had impaired systemic glucose tolerance and insulin sensitivity when exposed to high-fat diet (HFD). Mechanistically, we found impaired hypothalamic-pituitary-adrenal axis feedback, blunted sympathetic responsiveness, and chronically elevated corticosterone levels driven by hypothalamic hyperactivation of Jnk signaling. Accordingly, global Jnk1 ablation, AAV-mediated Dusp8 overexpression in the mediobasal hypothalamus, or metyrapone-induced chemical adrenalectomy rescued the impaired glucose homeostasis of obese male Dusp8-KO mice, respectively. The sex-specific role of murine Dusp8 in governing hypothalamic Jnk signaling, insulin sensitivity, and systemic glucose tolerance was consistent with functional MRI data in human volunteers that revealed an association of the DUSP8 rs2334499 risk variant with hypothalamic insulin resistance in men. Further, expression of DUSP8 was increased in the infundibular nucleus of T2D humans. In summary, our findings suggest the GWAS-identified gene Dusp8 as a novel hypothalamic factor that plays a functional role in the etiology of T2D.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy