SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Beichman C.) "

Sökning: WFRF:(Beichman C.)

  • Resultat 1-29 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ade, P. A. R., et al. (författare)
  • Planck 2015 results XXVI. The Second Planck Catalogue of Compact Sources
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second ( PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).
  •  
2.
  • Ryu, Y. -H., et al. (författare)
  • OGLE-2016-BLG-1190Lb : The First Spitzer Bulge Planet Lies Near the Planet/Brown-dwarf Boundary
  • 2018
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 155:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of OGLE-2016-BLG-1190Lb, which is likely to be the first Spitzer microlensing planet in the Galactic bulge/ bar, an assignation that can be confirmed by two epochs of high-resolution imaging of the combined source-lens baseline object. The planet's mass, M-p = 13.4 +/- 0.9 M-J, places it right at the deuteriumburning limit, i. e., the conventional boundary between planets and brown dwarfs. Its existence raises the question of whether such objects are really planets (formed within the disks of their hosts) or failed stars (lowmass objects formed by gas fragmentation). This question may ultimately be addressed by comparing disk and bulge/bar planets, which is a goal of the Spitzer microlens program. The host is a G dwarf, M-host = 0.89. +/- 0.07 M-circle dot, and the planet has a semimajor axis a similar to 2.0 au. We use Kepler K2 Campaign 9 microlensing data to break the lens-mass degeneracy that generically impacts parallax solutions from Earth-Spitzer observations alone, which is the first successful application of this approach. The microlensing data, derived primarily from near-continuous, ultradense survey observations from OGLE, MOA, and three KMTNet telescopes, contain more orbital information than for any previous microlensing planet, but not quite enough to accurately specify the full orbit. However, these data do permit the first rigorous test of microlensing orbital-motion measurements, which are typically derived from data taken over < 1% of an orbital period.
  •  
3.
  • Han, C., et al. (författare)
  • OGLE-2017-BLG-0329L : A Microlensing Binary Characterized with Dramatically Enhanced Precision Using Data from Space-based Observations
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 859:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Mass measurements of gravitational microlenses require one to determine the microlens parallax pE, but precise pE measurement, in many cases, is hampered due to the subtlety of the microlens-parallax signal combined with the difficulty of distinguishing the signal from those induced by other higher-order effects. In this work, we present the analysis of the binary-lens event OGLE-2017-BLG-0329, for which pi(E) is measured with a dramatically improved precision using additional data from space-based Spitzer observations. We find that while the parallax model based on the ground-based data cannot be distinguished from a zero-pi(E) model at the 2 sigma level, the addition of the Spitzer data enables us to identify two classes of solutions, each composed of a pair of solutions according to the well-known ecliptic degeneracy. It is found that the space-based data reduce the measurement uncertainties of the north and east components of the microlens-parallax vector pE by factors similar to 18 and similar to 4, respectively. With the measured microlens parallax combined with the angular Einstein radius measured from the resolved caustic crossings, we find that the lens is composed of a binary with component masses of either (M-1, M-2) similar to (1.1, 0.8) M-circle dot or similar to(0.4, 0.3) M-circle dot according to the two solution classes. The first solution is significantly favored but the second cannot be securely ruled out based on the microlensing data alone. However, the degeneracy can be resolved from adaptive optics observations taken similar to 10 years after the event.
  •  
4.
  • Hirao, Yuki, et al. (författare)
  • OGLE-2017-BLG-0406 : Spitzer Microlens Parallax Reveals Saturn-mass Planet Orbiting M-dwarf Host in the Inner Galactic Disk
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the Spitzer satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of q = 7.0 x 10(-4) from the light-curve modeling. The ground-only and Spitzer-only data each provide very strong one-dimensional (1D) constraints on the 2D microlens parallax vector pi(E). When combined, these yield a precise measurement of pi(E) and of the masses of the host M-host = 0.56 +/- 0.07 M-circle dot and planet M-planet = 0.41 +/- 0.05 M-Jup. The system lies at a distance D-L = 5.2 +/- 0.5 kpc from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is a(perpendicular to) = 3.5 +/- 0.3 au (i.e., just over twice the snow line). The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the Gaia proper-motion measurement of the source suffers from a catastrophic 10 sigma error.
  •  
5.
  • Malbet, F., et al. (författare)
  • High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)
  • 2012
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 34:2, s. 385-413
  • Tidskriftsartikel (refereegranskat)abstract
    • A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d a parts per thousand currency signaEuro parts per thousand 15 pc) with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT-the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements at the 0.05 mu as (1 sigma) accuracy level, sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope (D = 1 m), a detector with a large field of view located 40 m away from the telescope and made of 8 small movable CCDs located around a fixed central CCD, and an interferometric calibration system monitoring dynamical Young's fringes originating from metrology fibers located at the primary mirror. The mission profile is driven by the fact that the two main modules of the payload, the telescope and the focal plane, must be located 40 m away leading to the choice of a formation flying option as the reference mission, and of a deployable boom option as an alternative choice. The proposed mission architecture relies on the use of two satellites, of about 700 kg each, operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations. The two satellites will be launched in a stacked configuration using a Soyuz ST launch vehicle. The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits each distributed over the nominal mission duration. The main survey operation will use approximately 70% of the mission lifetime. The remaining 30% of NEAT observing time might be allocated, for example, to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys, and other programs. With its exquisite, surgical astrometric precision, NEAT holds the promise to provide the first thorough census for Earth-mass planets around stars in the immediate vicinity of our Sun.
  •  
6.
  • Murgas, F., et al. (författare)
  • TOI-674b: An oasis in the desert of exo-Neptunes transiting a nearby M dwarf
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The NASA mission TESS is currently doing an all-sky survey from space to detect transiting planets around bright stars. As part of the validation process, the most promising planet candidates need to be confirmed and characterized using follow-up observations. Aims. In this article, our aim is to confirm the planetary nature of the transiting planet candidate TOI-674b using spectroscopic and photometric observations. Methods. We use TESS, Spitzer, ground-based light curves, and HARPS spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate TOI-674b. We perform a joint fit of the light curves and radial velocity time series to measure the mass, radius, and orbital parameters of the candidate. Results. We confirm and characterize TOI-674b, a low-density super-Neptune transiting a nearby M dwarf. The host star (TIC 158588995, V = 14.2 mag, J = 10.3 mag) is characterized by its M2V spectral type with M = 0.420 ± 0.010 M , R = 0.420 ± 0.013 R , and Teff = 3514 ± 57 K; it is located at a distance d = 46.16 ± 0.03 pc. Combining the available transit light curves plus radial velocity measurements and jointly fitting a circular orbit model, we find an orbital period of 1.977143 ± 3 × 10-6 days, a planetary radius of 5.25 ± 0.17 R , and a mass of 23.6 ± 3.3 M implying a mean density of ρp =0.91 ± 0.15 g cm-3. A non-circular orbit model fit delivers similar planetary mass and radius values within the uncertainties. Given the measured planetary radius and mass, TOI-674b is one of the largest and most massive super-Neptune class planets discovered around an M-type star to date. It is found in the Neptunian desert, and is a promising candidate for atmospheric characterization using the James Webb Space Telescope.
  •  
7.
  • Alibert, Y., et al. (författare)
  • Origin and Formation of Planetary Systems
  • 2010
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 19-32
  • Tidskriftsartikel (refereegranskat)abstract
    • To estimate the occurrence of terrestrial exoplanets and maximize the chance of finding them, it is crucial to understand the formation of planetary systems in general and that of terrestrial planets in particular. We show that a reliable formation theory should not only explain the formation of the Solar System, with small terrestrial planets within a few AU and gas giants farther out, but also the newly discovered exoplanetary systems with close-in giant planets. Regarding the presently known exoplanets, we stress that our current knowledge is strongly biased by the sensitivity limits of current detection techniques (mainly the radial velocity method). With time and improved detection methods, the diversity of planets and orbits in exoplanetary systems will definitely increase and help to constrain the formation theory further. In this work, we review the latest state of planetary formation in relation to the origin and evolution of habitable terrestrial planets.
  •  
8.
  • Bacchus, E., et al. (författare)
  • Project 1640 observations of the white dwarf HD 114174 B
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469:4, s. 4796-4805
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first near infrared spectrum of the faint white dwarf companion HD 114174 B, obtained with Project 1640. Our spectrum, covering the Y, J and H bands, combined with previous TaRgetting bENchmark-objects with Doppler Spectroscopy (TRENDS) photometry measurements, allows us to place further constraints on this companion. We suggest two possible scenarios; either this object is an old, low-mass, cool H atmosphere white dwarf with T-eff similar to 3800 K or a high-mass white dwarf with T-eff > 6000 K, potentially with an associated cool (T-eff similar to 700 K) brown dwarf or debris disc resulting in an infrared excess in the L' band. We also provide an additional astrometry point for 2014 June 12 and use the modelled companion mass combined with the radial velocity and direct imaging data to place constraints on the orbital parameters for this companion.
  •  
9.
  • Cockell, C.S., et al. (författare)
  • Darwin - an experimental astronomy mission to search for extrasolar planets
  • 2009
  • Ingår i: Experimental Astronomy. - 0922-6435 .- 1572-9508. ; 23:1, s. 435-461
  • Tidskriftsartikel (refereegranskat)abstract
    • As a response to ESA call for mission concepts for its Cosmic Vision 2015–2025 plan, we propose a mission called Darwin. Its primary goal is the study of terrestrial extrasolar planets and the search for life on them. In this paper, we describe different characteristics of the instrument.
  •  
10.
  • Fridlund, M., et al. (författare)
  • The Search for Worlds Like Our Own
  • 2010
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 5-17
  • Tidskriftsartikel (refereegranskat)abstract
    • The direct detection of Earth-like exoplanets orbiting nearby stars and the characterization of such planets particularly, their evolution, their atmospheres, and their ability to host life-constitute a significant problem. The quest for other worlds as abodes of life has been one of mankind's great questions for several millennia. For instance, as stated by Epicurus similar to 300 BC: "Other worlds, with plants and other living things, some of them similar and some of them different from ours, must exist.'' Demokritos from Abdera (460-370 BC), the man who invented the concept of indivisible small parts-atoms-also held the belief that other worlds exist around the stars and that some of these worlds may be inhabited by life-forms. The idea of the plurality of worlds and of life on them has since been held by scientists like Johannes Kepler and William Herschel, among many others. Here, one must also mention Giordano Bruno. Born in 1548, Bruno studied in France and came into contact with the teachings of Nicolas Copernicus. He wrote the book De l'Infinito, Universo e Mondi in 1584, in which he claimed that the Universe was infinite, that it contained an infinite amount of worlds like Earth, and that these worlds were inhabited by intelligent beings. At the time, this was extremely controversial, and eventually Bruno was arrested by the church and burned at the stake in Rome in 1600, as a heretic, for promoting this and other equally confrontational issues (though it is unclear exactly which idea was the one that ultimately brought him to his end). In all the aforementioned cases, the opinions and results were arrived at through reasoning-not by experiment. We have only recently acquired the technological capability to observe planets orbiting stars other than our Sun; acquisition of this capability has been a remarkable feat of our time. We show in this introduction to the Habitability Primer that mankind is at the dawning of an age when, by way of the scientific method and 21(st)-century technology, we will be able to answer this fascinating controversial issue that has persisted for at least 2500 years.
  •  
11.
  • Liseau, René, 1949, et al. (författare)
  • Resolving the cold debris disc around a planet-hosting star. PACS photometric imaging observations of q1 Eridani (HD 10647, HR 506)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L132
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. About two dozen exo-solar debris systems have been spatially resolved. These debris discs commonly display a variety of structural features such as clumps, rings, belts, excentric distributions and spiral patterns. In most cases, these features are believed to be formed, shaped and maintained by the dynamical influence of planets orbiting the host stars. In very few cases has the presence of the dynamically important planet(s) been inferred from direct observation. Aims. The solar-type star q(1) Eri is known to be surrounded by debris, extended on scales of less than or similar to 30 ''. The star is also known to host at least one planet, albeit on an orbit far too small to make it responsible for structures at distances of tens to hundreds of AU. The aim of the present investigation is twofold: to determine the optical and material properties of the debris and to infer the spatial distribution of the dust, which may hint at the presence of additional planets. Methods. The Photodetector Array Camera and Spectrometer (PACS) aboard the Herschel Space Observatory allows imaging observations in the far infrared at unprecedented resolution, i.e. at better than 6 '' to 12 '' over the wavelength range of 60 mu m to 210 mu m. Together with the results from ground-based observations, these spatially resolved data can be modelled to determine the nature of the debris and its evolution more reliably than what would be possible from unresolved data alone. Results. For the first time has the q(1) Eri disc been resolved at far infrared wavelengths. The PACS observations at 70 mu m, 100 mu m and 160 mu m reveal an oval image showing a disc-like structure in all bands, the size of which increases with wavelength. Assuming a circular shape yields the inclination of its equatorial plane with respect to that of the sky, i > 53 degrees. The results of image de-convolution indicate that i likely is larger than 63 degrees, where 90 degrees corresponds to an edge-on disc. Conclusions. The observed emission is thermal and optically thin. The resolved data are consistent with debris at temperatures below 30 K at radii larger than 120 AU. From image de-convolution, we find that q(1) Eri is surrounded by an about 40 AU wide ring at the radial distance of similar to 85 AU. This is the first real Edgeworth-Kuiper Belt analogue ever observed.
  •  
12.
  • Brack, A., et al. (författare)
  • Origin and Evolution of Life on Terrestrial Planets
  • 2010
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 69-76
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultimate goal of terrestrial planet-finding missions is not only to discover terrestrial exoplanets inside the habitable zone (HZ) of their host stars but also to address the major question as to whether life may have evolved on a habitable Earth-like exoplanet outside our Solar System. We note that the chemical evolution that finally led to the origin of life on Earth must be studied if we hope to understand the principles of how life might evolve on other terrestrial planets in the Universe. This is not just an anthropocentric point of view: the basic ingredients of terrestrial life, that is, reduced carbon-based molecules and liquid H2O, have very specific properties. We discuss the origin of life from the chemical evolution of its precursors to the earliest life-forms and the biological implications of the stellar radiation and energetic particle environments. Likewise, the study of the biological evolution that has generated the various life-forms on Earth provides clues toward the understanding of the interconnectedness of life with its environment.
  •  
13.
  • Defrere, D., et al. (författare)
  • Space-based infrared interferometry to study exoplanetary atmospheres
  • 2018
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 46:3, s. 543-560
  • Tidskriftsartikel (refereegranskat)abstract
    • The quest for other habitable worlds and the search for life among them are major goals of modern astronomy. One way to make progress towards these goals is to obtain high-quality spectra of a large number of exoplanets over a broad range of wavelengths. While concepts currently investigated in the United States are focused on visible/NIR wavelengths, where the planets are probed in reflected light, a compelling alternative to characterize planetary atmospheres is the mid-infrared waveband (5–20 μm). Indeed, mid-infrared observations provide key information on the presence of an atmosphere, the surface conditions (e.g., temperature, pressure, habitability), and the atmospheric composition in important species such as H2O, CO2, O3, CH4, and N2O. This information is essential to investigate the potential habitability of exoplanets and to make progress towards the search for life in the Universe. Obtaining high-quality mid-infrared spectra of exoplanets from the ground is however extremely challenging due to the overwhelming brightness and turbulence of the Earth’s atmosphere. In this paper, we present a concept of space-based mid-infrared interferometer that can tackle this observing challenge and discuss the main technological developments required to launch such a sophisticated instrument.
  •  
14.
  • Hori, Yasunori, et al. (författare)
  • The Discovery and Follow-up of Four Transiting Short-period Sub-Neptunes Orbiting M Dwarfs
  • 2024
  • Ingår i: Astronomical Journal. - 1538-3881 .- 0004-6256. ; 167:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Sub-Neptunes with radii of 2-3 R ⊕ are intermediate in size between rocky planets and Neptune-sized planets. The orbital properties and bulk compositions of transiting sub-Neptunes provide clues to the formation and evolution of close-in small planets. In this paper, we present the discovery and follow-up of four sub-Neptunes orbiting M dwarfs (TOI-782, TOI-1448, TOI-2120, and TOI-2406), three of which were newly validated by ground-based follow-up observations and statistical analyses. TOI-782 b, TOI-1448 b, TOI-2120 b, and TOI-2406 b have radii of R p = 2.740 − 0.079 + 0.082 R ⊕ , 2.769 − 0.068 + 0.073 R ⊕ , 2.120 ± 0.067 R ⊕, and 2.830 − 0.066 + 0.068 R ⊕ and orbital periods of P = 8.02, 8.11, 5.80, and 3.08 days, respectively. Doppler monitoring with the Subaru/InfraRed Doppler instrument led to 2σ upper limits on the masses of <19.1 M ⊕, <19.5 M ⊕, <6.8 M ⊕, and <15.6 M ⊕ for TOI-782 b, TOI-1448 b, TOI-2120 b, and TOI-2406 b, respectively. The mass-radius relationship of these four sub-Neptunes testifies to the existence of volatile material in their interiors. These four sub-Neptunes, which are located above the so-called “radius valley,” are likely to retain a significant atmosphere and/or an icy mantle on the core, such as a water world. We find that at least three of the four sub-Neptunes (TOI-782 b, TOI-2120 b, and TOI-2406 b), orbiting M dwarfs older than 1 Gyr, are likely to have eccentricities of e ∼ 0.2-0.3. The fact that tidal circularization of their orbits is not achieved over 1 Gyr suggests inefficient tidal dissipation in their interiors.
  •  
15.
  • Nilsson, Ricky, et al. (författare)
  • Project 1640 Observations of Brown Dwarf GJ 758 B : Near-infrared Spectrum and Atmospheric Modeling
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 838:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The nearby Sun-like star GJ 758 hosts a cold substellar companion, GJ 758 B, at a projected separation of l less than or similar to 30 au, previously detected in high-contrast multi-band photometric observations. In order to better constrain the companion's physical characteristics, we acquired the first low-resolution (R similar to 50) near-infrared spectrum of it using the high-contrast hyperspectral imaging instrument Project 1640 on Palomar Observatory's 5 m Hale telescope. We obtained simultaneous images in 32 wavelength channels covering the Y, J, and H bands (similar to 9521770 nm), and used data processing techniques based on principal component analysis to efficiently subtract chromatic background speckle-noise. GJ 758 B was detected in four epochs during 2013 and 2014. Basic astrometric measurements confirm its apparent northwest trajectory relative to the primary star, with no clear signs of orbital curvature. Spectra of SpeX/IRTF observed T dwarfs were compared to the combined spectrum of GJ 758 B, with chi(2) minimization suggesting a best fit for spectral type T7.0 +/- 1.0, but with a shallow minimum over T5T8. Fitting of synthetic spectra from the BT-Settl13 model atmospheres gives an effective temperature T-eff = 741 +/- 25 K and surface gravity log g=4.3 +/- 0.5 dex (cgs). Our derived best-fit spectral type and effective temperature from modeling of the low-resolution spectrum suggest a slightly earlier and hotter companion than previous findings from photometric data, but do not rule out current results, and confirm GJ 758 B as one of the coolest sub-stellar companions to a Sun-like star to date.
  •  
16.
  • Dvorak, R., et al. (författare)
  • Dynamical Habitability of Planetary Systems
  • 2010
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 33-43
  • Tidskriftsartikel (refereegranskat)abstract
    • The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component ( e. g., gamma Cephei) and around both stars (e.g., eclipsing binaries).
  •  
17.
  • Fridlund, M., et al. (författare)
  • A Roadmap for the Detection and Characterization of Other Earths
  • 2010
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 113-119
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Space Agency and other space agencies such as NASA recognize that the question with regard to life beyond Earth in general, and the associated issue of the existence and study of exoplanets in particular, is of paramount importance for the 21(st) century. The new Cosmic Vision science plan, Cosmic Vision 2015-2025, which is built around four major themes, has as its first theme: "What are the conditions for planet formation and the emergence of life?'' This main theme is addressed through further questions: (1) How do gas and dust give rise to stars and planets? (2) How will the search for and study of exoplanets eventually lead to the detection of life outside Earth (biomarkers*)? (3) How did life in the Solar System arise and evolve? Although ESA has busied itself with these issues since the beginning of the Darwin study in 1996, it has become abundantly clear that, as these topics have evolved, only a very large effort, addressed from the ground and from space with the utilization of different instruments and space missions, can provide the empirical results required for a complete understanding. The good news is that the problems can be addressed and solved within a not-too-distant future. In this short essay, we present the present status of a roadmap related to projects that are related to the key long-term goal of understanding and characterizing exoplanets, in particular Earthlike planets.
  •  
18.
  • Grenfell, J. L., et al. (författare)
  • Co-Evolution of Atmospheres, Life, and Climate
  • 2010
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 77-88
  • Tidskriftsartikel (refereegranskat)abstract
    • After Earth's origin, our host star, the Sun, was shining 20-25% less brightly than today. Without greenhouse-like conditions to warm the atmosphere, our early planet would have been an ice ball, and life may never have evolved. But life did evolve, which indicates that greenhouse gases must have been present on early Earth to warm the planet. Evidence from the geological record indicates an abundance of the greenhouse gas CO2. CH4 was probably present as well; and, in this regard, methanogenic bacteria, which belong to a diverse group of anaerobic prokaryotes that ferment CO2 plus H-2 to CH4, may have contributed to modification of the early atmosphere. Molecular oxygen was not present, as is indicated by the study of rocks from that era, which contain iron carbonate rather than iron oxide. Multicellular organisms originated as cells within colonies that became increasingly specialized. The development of photosynthesis allowed the Sun's energy to be harvested directly by life-forms. The resultant oxygen accumulated in the atmosphere and formed the ozone layer in the upper atmosphere. Aided by the absorption of harmful UV radiation in the ozone layer, life colonized Earth's surface. Our own planet is a very good example of how life-forms modified the atmosphere over the planets' lifetime. We show that these facts have to be taken into account when we discover and characterize atmospheres of Earth-like exoplanets. If life has originated and evolved on a planet, then it should be expected that a strong co-evolution occurred between life and the atmosphere, the result of which is the planet's climate.
  •  
19.
  • Kaltenegger, L., et al. (författare)
  • Deciphering Spectral Fingerprints of Habitable Exoplanets
  • 2010
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 89-102
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss how to read a planet's spectrum to assess its habitability and search for the signatures of a biosphere. After a decade rich in giant exoplanet detections, observation techniques have advanced to a level where we now have the capability to find planets of less than 10 Earth masses (M-Earth) (so-called "super Earths''), which may be habitable. How can we characterize those planets and assess whether they are habitable? This new field of exoplanet search has shown an extraordinary capacity to combine research in astrophysics, chemistry, biology, and geophysics into a new and exciting interdisciplinary approach to understanding our place in the Universe. The results of a first-generation mission will most likely generate an amazing scope of diverse planets that will set planet formation, evolution, and our planet into an overall context.
  •  
20.
  • Kaltenegger, L., et al. (författare)
  • Stellar Aspects of Habitability-Characterizing Target Stars for Terrestrial Planet-Finding Missions
  • 2010
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 103-112
  • Tidskriftsartikel (refereegranskat)abstract
    • We present and discuss the criteria for selecting potential target stars suitable for the search for Earth-like planets, with a special emphasis on the stellar aspects of habitability. Missions that search for terrestrial exoplanets will explore the presence and habitability of Earth-like exoplanets around several hundred nearby stars, mainly F, G, K, and M stars. The evaluation of the list of potential target systems is essential in order to develop mission concepts for a search for terrestrial exoplanets. Using the Darwin All Sky Star Catalogue (DASSC), we discuss the selection criteria, configuration-dependent subcatalogues, and the implication of stellar activity for habitability.
  •  
21.
  • Lammer, H., et al. (författare)
  • Geophysical and Atmospheric Evolution of Habitable Planets
  • 2010
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 45-68
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.
  •  
22.
  • Schneider, J., et al. (författare)
  • The Far Future of Exoplanet Direct Characterization
  • 2010
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 121-126
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe future steps in the direct characterization of habitable exoplanets subsequent to medium and large mission projects currently underway and investigate the benefits of spectroscopic and direct imaging approaches. We show that, after third- and fourth-generation missions have been conducted over the course of the next 100 years, a significant amount of time will lapse before we will have the capability to observe directly the morphology of extrasolar organisms.
  •  
23.
  • Shvartzvald, Yossi, et al. (författare)
  • Spitzer Microlensing Parallax for OGLE-2017-BLG-0896 Reveals a Counter-rotating Low-mass Brown Dwarf
  • 2019
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 157:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The kinematics of isolated brown dwarfs in the Galaxy, beyond the solar neighborhood, is virtually unknown. Microlensing has the potential to probe this hidden population, as it can measure both the mass and five of the six phase-space coordinates (all except the radial velocity) even of a dark isolated lens. However, the measurements of both the microlens-parallax and finite-source effects are needed in order to recover the full information. Here, we combine the Spitzer satellite parallax measurement with the ground-based light curve, which exhibits strong finite-source effects, of event OGLE-2017-BLG-0896. We find two degenerate solutions for the lens (due to the known satellite-parallax degeneracy), which are consistent with each other except for their proper motion. The lens is an isolated brown dwarf with a mass of either 18 +/- 1 M-J or 20 +/- 1 M-J. This is the lowest isolated-object mass measurement to date, only similar to 45% more massive than the theoretical deuterium-fusion boundary at solar metallicity, which is the common definition of a free-floating planet. The brown dwarf is located at either 3.9 +/- 0.1 kpc or 4.1 +/- 0.1 kpc toward the Galactic bulge, but with proper motion in the opposite direction of disk stars, with one solution suggesting it is moving within the Galactic plane. While it is possibly a halo brown dwarf, it might also represent a different, unknown population.
  •  
24.
  • Beichman, Annabel C, et al. (författare)
  • Aquatic Adaptation and Depleted Diversity : A Deep Dive into the Genomes of the Sea Otter and Giant Otter.
  • 2019
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 36:12, s. 2631-2655
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite its recent invasion into the marine realm, the sea otter (Enhydra lutris) has evolved a suite of adaptations for life in cold coastal waters, including limb modifications and dense insulating fur. This uniquely dense coat led to the near-extinction of sea otters during the 18th-20th century fur trade and an extreme population bottleneck. We used the de novo genome of the southern sea otter (E. l. nereis) to reconstruct its evolutionary history, identify genes influencing aquatic adaptation, and detect signals of population bottlenecks. We compared the genome of the southern sea otter with the tropical freshwater-living giant otter (Pteronura brasiliensis) to assess common and divergent genomic trends between otter species, and with the closely related northern sea otter (E. l. kenyoni) to uncover population-level trends. We found signals of positive selection in genes related to aquatic adaptations, particularly limb development and polygenic selection on genes related to hair follicle development. We found extensive pseudogenization of olfactory receptor genes in both the sea otter and giant otter lineages, consistent with patterns of sensory gene loss in other aquatic mammals. At the population level, the southern sea otter and the northern sea otter showed extremely low genomic diversity, signals of recent inbreeding, and demographic histories marked by population declines. These declines may predate the fur trade and appear to have resulted in an increase in putatively deleterious variants that could impact the future recovery of the sea otter.
  •  
25.
  • Crepp, Justin R., et al. (författare)
  • DIRECT SPECTRUM OF THE BENCHMARK T DWARF HD 19467 B
  • 2015
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 798:2
  • Tidskriftsartikel (refereegranskat)abstract
    • HD 19467 B is presently the only directly imaged T dwarf companion known to induce a measurable Doppler acceleration around a solar-type star. We present spectroscopy measurements of this important benchmark object taken with the Project 1640 integral field unit at Palomar Observatory. Our high-contrast R approximate to 30 observations obtained simultaneously across the JH bands confirm the cold nature of the companion as reported from the discovery article and determine its spectral type for the first time. Fitting the measured spectral energy distribution to SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models, we find that HD 19467 B is a T5.5 +/- 1 dwarf with effective temperature T-eff = 978(-43)(+20) K. Our observations reveal significant methane absorption affirming its substellar nature. HD 19467 B shows promise to become the first T dwarf that simultaneously reveals its mass, age, and metallicity independent from the spectrum of light that it emits.
  •  
26.
  • Crossfield, Ian J. M., et al. (författare)
  • 197 CANDIDATES AND 104 VALIDATED PLANETS IN K2's FIRST FIVE FIELDS
  • 2016
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 226:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present 197 planet candidates discovered using data from the first year of the NASA K2 mission (Campaigns 0-4), along with the results of an intensive program of photometric analyses, stellar spectroscopy, high-resolution imaging, and statistical validation. We distill these candidates into sets of 104 validated planets (57 in multi-planet systems), 30 false positives, and 63 remaining candidates. Our validated systems span a range of properties, with median values of R-P = 2.3 R-circle plus, P = 8.6 days, T-eff = 5300 K, and Kp = 12.7 mag. Stellar spectroscopy provides precise stellar and planetary parameters for most of these systems. We show that K2 has increased by 30% the number of small planets known to orbit moderately bright stars (1-4 R-circle plus, Kp = 9-13. mag). Of particular interest are 76 planets smaller than 2 R-circle plus, 15 orbiting stars brighter than Kp = 11.5. mag, 5 receiving Earth-like irradiation levels, and several multi-planet systems-including 4 planets orbiting the M dwarf K2-72 near mean-motion resonances. By quantifying the likelihood that each candidate is a planet we demonstrate that our candidate sample has an overall false positive rate of 15%-30%, with rates substantially lower for small candidates (<2 R-circle plus) and larger for candidates with radii >8 R-circle plus and/or with P < 3 days. Extrapolation of the current planetary yield suggests that K2 will discover between 500 and 1000 planets in its planned four-year mission, assuming sufficient follow-up resources are available. Efficient observing and analysis, together with an organized and coherent follow-up strategy, are essential for maximizing the efficacy of planet-validation efforts for K2, TESS, and future large-scale surveys.
  •  
27.
  •  
28.
  • Roberts, Lewis C., et al. (författare)
  • CHARACTERIZATION OF THE COMPANION mu HER
  • 2016
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 151:6
  • Tidskriftsartikel (refereegranskat)abstract
    • mu Her is a nearby quadruple system with a G-subgiant primary and several low-mass companions arranged in a 2+2 architecture. While the BC components have been well characterized, the Ab component has been detected astrometrically and with direct imaging but there has been some confusion over its nature, in particular, whether the companion is stellar or substellar. Using near-infrared spectroscopy, we are able to estimate the spectral type of the companion as an M4 +/- 1V star. In addition, we have measured the astrometry of the system for over a decade. We combined the astrometry with archival radial velocity measurements to compute an orbit of the system. From the combined orbit, we are able to compute the mass sum of the system. Using the estimated mass of the primary, we estimate the mass of the secondary as 0.32 MG, which agrees with the estimated spectral type. Our computed orbit is preliminary due to the incomplete orbital phase coverage, but it should be sufficient to predict ephemerides over the next decade.
  •  
29.
  • Roberts, Lewis C., et al. (författare)
  • KNOW THE STAR, KNOW THE PLANET. V. CHARACTERIZATION OF THE STELLAR COMPANION TO THE EXOPLANET HOST STAR HD 177830
  • 2015
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 150:4
  • Tidskriftsartikel (refereegranskat)abstract
    • HD 177830 is an evolved K0IV star with two known exoplanets. In addition to the planetary companions it has a late-type stellar companion discovered with adaptive optics imagery. We observed the binary star system with the PHARO near-IR camera and the Project 1640 coronagraph. Using the Project 1640 coronagraph and integral field spectrograph we extracted a spectrum of the stellar companion. This allowed us to determine that the spectral type of the stellar companion is a M4 +/- 1 V. We used both instruments to measure the astrometry of the binary system. Combining these data with published data, we determined that the binary star has a likely period of approximately 800 years with a semimajor axis of 100-200 AU. This implies that the stellar companion has had little or no impact on the dynamics of the exoplanets. The astrometry of the system should continue to be monitored, but due to the slow nature of the system, observations can be made once every 5-10 years.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-29 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy