SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Belczynski K.) "

Search: WFRF:(Belczynski K.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Belczynski, K., et al. (author)
  • Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 636:A&A
  • Journal article (peer-reviewed)abstract
    • All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported following the O1/O2 runs have near-zero effective spins. There are only three potential explanations for this. If the BH spin magnitudes are large, then: (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Then there is also the possibility that (iii) the BH spin magnitudes are small. We consider the third hypothesis within the framework of the classical isolated binary evolution scenario of the BH-BH merger formation. We test three models of angular momentum transport in massive stars: A mildly efficient transport by meridional currents (as employed in the Geneva code), an efficient transport by the Tayler-Spruit magnetic dynamo (as implemented in the MESA code), and a very-efficient transport (as proposed by Fuller et al.) to calculate natal BH spins. We allow for binary evolution to increase the BH spins through accretion and account for the potential spin-up of stars through tidal interactions. Additionally, we update the calculations of the stellar-origin BH masses, including revisions to the history of star formation and to the chemical evolution across cosmic time. We find that we can simultaneously match the observed BH-BH merger rate density and BH masses and BH-BH effective spins. Models with efficient angular momentum transport are favored. The updated stellar-mass weighted gas-phase metallicity evolution now used in our models appears to be key for obtaining an improved reproduction of the LIGO/Virgo merger rate estimate. Mass losses during the pair-instability pulsation supernova phase are likely to be overestimated if the merger GW170729 hosts a BH more massive than 50âMâŠ. We also estimate rates of black hole-neutron star (BH-NS) mergers from recent LIGO/Virgo observations. If, in fact. angular momentum transport in massive stars is efficient, then any (electromagnetic or gravitational wave) observation of a rapidly spinning BH would indicate either a very effective tidal spin up of the progenitor star (homogeneous evolution, high-mass X-ray binary formation through case A mass transfer, or a spin-up of a Wolf-Rayet star in a close binary by a close companion), significant mass accretion by the hole, or a BH formation through the merger of two or more BHs (in a dense stellar cluster).
  •  
2.
  • Barack, Leor, et al. (author)
  • Black holes, gravitational waves and fundamental physics : a roadmap
  • 2019
  • In: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 36:14
  • Research review (peer-reviewed)abstract
    • The grand challenges of contemporary fundamental physics dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'.
  •  
3.
  • Kalogera, V., et al. (author)
  • The Galactic formation rate of eccentric neutron star-white dwarf binaries
  • 2005
  • In: Astronomical Society of the Pacific Conference Series. ; 328, s. 261-267
  • Conference paper (peer-reviewed)abstract
    • Abstract in Undetermined n this paper we consider the population of eccentric binaries with a neutron star and a white dwarf that has been revealed in our galaxy in recent years through binary pulsar observations. We apply our statistical analysis method (Kim, Kalogera, & Lorimer 2003)and calculate the Galactic formation rate of these binaries empirically. We then compare our results with rate predictions based on binary population synthesis from various research groups and for various ranges of model input parameters. For our reference moel, we find the Galactic formation rate of these eccentric systems to be ~7 per Myr, about an order of magnitude smaller than results from binary evolution estimations. However, the empirical estimates are calculated with no correction for pulsar beaming, and therefore they should be taken as lower limits. Despite uncertainties that exceed an order of magnitude, there is significant overlap of the various rate calculations. This consistency lends confidence that our current understanding of the formation of these eccentric NS-WD binaries is reasonable.
  •  
4.
  • Morawski, Jakub, et al. (author)
  • MOCCA-SURVEY Database I: Assessing GW kick retention fractions for BH-BH mergers in globular clusters
  • 2018
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 481:2, s. 2168-2179
  • Journal article (peer-reviewed)abstract
    • Anisotropy of gravitational wave (GW) emission results in a net momentum gained by the black hole (BH) merger product, leading to a recoil velocity up to ∼103 km s−1, which may kick it out of a globular cluster (GC). We estimate GW kick retention fractions of merger products assuming different models for BH spin magnitude and orientation. We check how they depend on BH–BH merger time and properties of the cluster. We analyse the implications of GW kick retention fractions on intermediate massive BH formation by repeated mergers in a GC. We also calculate final spin of the merger product, and investigate how it correlates with other parameters: effective spin of the binary and gravitational kick velocity. We used data from MOCCA (MOnte Carlo Cluster simulAtor) GC simulations to get a realistic sample of BH–BH mergers, assigned each BH spin value according to a studied model, and calculated recoil velocity and final spin based on most recent theoretical formulas. We discovered that for physically motivated models, GW kick retention fractions are about 30 per cent 30 per cent and display small dependence on assumptions about spin, but are much more prone to cluster properties. In particular, we discovered a strong dependence of GW kick retention fractions on cluster density. We also show that GW kick retention fractions are high in final life stages of the cluster, but low at the beginning. Finally, we derive formulas connecting final spin with effective spin for primordial binaries, and with maximal effective spin for dynamical binaries.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view