SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Benito Villalvilla C.) "

Sökning: WFRF:(Benito Villalvilla C.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Roth-Walter, F., et al. (författare)
  • Metabolic pathways in immune senescence and inflammaging : Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology
  • 2024
  • Ingår i: Allergy: European Journal of Allergy and Clinical Immunology. - 0105-4538. ; 79:5, s. 1089-1122
  • Tidskriftsartikel (refereegranskat)abstract
    • The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
  •  
2.
  • Roth-Walter, Franziska, et al. (författare)
  • Comparing biologicals and small molecule drug therapies for chronic respiratory diseases : An EAACI Taskforce on Immunopharmacology position paper
  • 2019
  • Ingår i: Allergy: European Journal of Allergy and Clinical Immunology. - : Wiley. - 0105-4538. ; 74:3, s. 432-448
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), together with their comorbidities, bear a significant burden on public health. Increased appreciation of molecular networks underlying inflammatory airway disease needs to be translated into new therapies for distinct phenotypes not controlled by current treatment regimens. On the other hand, development of new safe and effective therapies for such respiratory diseases is an arduous and expensive process. Antibody-based (biological) therapies are successful in treating certain respiratory conditions not controlled by standard therapies such as severe allergic and refractory eosinophilic severe asthma, while in other inflammatory respiratory diseases, such as COPD, biologicals are having a more limited impact. Small molecule drug (SMD)-based therapies represent an active field in pharmaceutical research and development. SMDs expand biologicals’ therapeutic targets by reaching the intracellular compartment by delivery as either an oral or topically based formulation, offering both convenience and lower costs. Aim of this review was to compare and contrast the distinct pharmacological properties and clinical applications of SMDs- and antibody-based treatment strategies, their limitations and challenges, in order to highlight how they should be integrated for their optimal utilization and to fill the critical gaps in current treatment for these chronic inflammatory respiratory diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy