SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berggren Magnus) "

Sökning: WFRF:(Berggren Magnus)

  • Resultat 1-50 av 597
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abdollahi Sani, Negar, et al. (författare)
  • All-printed diode operating at 1.6 GHz
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 111:33, s. 11943-11948
  • Tidskriftsartikel (refereegranskat)abstract
    • Printed electronics are considered for wireless electronic tags and sensors within the future Internet-of-things (IoT) concept. As a consequence of the low charge carrier mobility of present printable organic and inorganic semiconductors, the operational frequency of printed rectifiers is not high enough to enable direct communication and powering between mobile phones and printed e-tags. Here, we report an all-printed diode operating up to 1.6 GHz. The device, based on two stacked layers of Si and NbSi2 particles, is manufactured on a flexible substrate at low temperature and in ambient atmosphere. The high charge carrier mobility of the Si microparticles allows device operation to occur in the charge injection-limited regime. The asymmetry of the oxide layers in the resulting device stack leads to rectification of tunneling current. Printed diodes were combined with antennas and electrochromic displays to form an all-printed e-tag. The harvested signal from a Global System for Mobile Communications mobile phone was used to update the display. Our findings demonstrate a new communication pathway for printed electronics within IoT applications.
  •  
3.
  • Berggren, Elin, et al. (författare)
  • Charge Transfer in the P(g42T-T) : BBL Organic Polymer Heterojunction Measured with Core-Hole Clock Spectroscopy
  • 2023
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 127:49, s. 23733-23742
  • Tidskriftsartikel (refereegranskat)abstract
    • The conductivity of organic polymer heterojunction devices relies on the electron dynamics occurring along interfaces between the acceptor and donor moieties. To investigate these dynamics with chemical specificity, spectroscopic techniques are employed to obtain localized snapshots of the electron behavior at selected interfaces. In this study, charge transfer in blends (by weight 10, 50, 90, and 100%) of p-type polymer P(g(4)2T-T) (bithiophene-thiophene) and n-type polymer BBL (poly(benzimidazo-benzo-phenanthroline)) was measured by resonant Auger spectroscopy. Electron spectra emanating from the decay of core-excited states created upon X-ray absorption in the donor polymer P(g(4)2T-T) were measured in the sulfur KL2,3L2,3 Auger kinetic energy region as a function of the excitation energy. By tuning the photon energy across the sulfur K-absorption edge, it is possible to differentiate between decay paths in which the core-excited electron remained on the atom with the core-hole and those where it tunneled away. Analyzing the competing decay modes of these localized and delocalized (charge-transfer) processes facilitated the computation of charge-transfer times as a function of excitation energy using the core-hole clock method. The electron delocalization times derived from the measurements were found to be in the as/fs regime for all polymer blends, with the fastest charge transfer occurring in the sample with an equal amount of donor and acceptor polymer. These findings highlight the significance of core-hole clock spectroscopy as a chemically specific tool for examining the local charge tunneling propensity, which is fundamental to understanding macroscopic conductivity. Additionally, the X-ray absorption spectra near the sulfur K-edge in the P(g(4)2T-T) polymer for different polymer blends were analyzed to compare molecular structure, orientation, and ordering in the polymer heterojunctions. The 50% donor sample exhibited the most pronounced angular dependence of absorption, indicating a higher level of ordering compared to the other weight blends. Our studies on the electron dynamics of this type of all-polymer donor-acceptor systems, in which spontaneous ground-state electron transfer occurs, provide us with critical insights to further advance the next generation of organic conductors with mixed electron-hole conduction characteristics suitable for highly stable electrodes of relevance for electronic, electrochemical, and optoelectronic applications.
  •  
4.
  • Berggren, Gustav, et al. (författare)
  • Mechanistic Studies on the Water-Oxidizing Reaction of Homogeneous Manganese-Based Catalysts : Isolation and Characterization of a Suggested Catalytic Intermediate
  • 2011
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 50:8, s. 3425-3430
  • Tidskriftsartikel (refereegranskat)abstract
    • The synthesis, isolation, and characterization of two high-valent manganese dimers with isomeric ligands are reported. The complexes are synthesized and crystallized from solutions of low-valent precursors exposed to tert-butyl hydroperoxide. The crystal structures display centrosymmetric complexesconsisting of Mn2 IV,IV(μ-O)2 cores, with one ligand coordinating to each manganese. The ligands coordinate with the diaminoethane backbone, the carboxylate, and one of the two pyridines, while the second pyridine is noncoordinating. The activity of these complexes, under water oxidation conditions, is discussed in light of a proposed mechanism for water oxidation, in which this type of complexes have been suggested as a key intermediate.
  •  
5.
  • Berggren, Lars, et al. (författare)
  • Förord
  • 2009
  • Ingår i: Arbetarhistoria idag : Rapport från arbetarhistorikermötet i Landskrona i maj 2007 - Rapport från arbetarhistorikermötet i Landskrona i maj 2007. - 1654-2908. - 9789163346385 ; 3, s. 5-11
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
6.
  • Berggren, Magnus, et al. (författare)
  • Controlling inter-chain and intra-chain excitations of a poly(thiophene) derivative in thin films
  • 1999
  • Ingår i: Chemical Physics Letters. - : Elsevier. - 0009-2614 .- 1873-4448. ; 304:1-2, s. 84-90
  • Tidskriftsartikel (refereegranskat)abstract
    • The decay of photoexcitations in polythiophene chains has been studied in solid solutions of the polymer from room temperature to 4 K. A strong blue shift of the emission spectrum is observed in the polymer blend, as compared to the homopolymer. Dispersion of the polythiophene suppresses the non-radiative processes, which are suggested to be correlated to close contacts of polymer chains. Quantum chemistry modeling of the excited state distributed on two chains corroborate this conclusion.
  •  
7.
  • Berggren, Magnus, et al. (författare)
  • Ion Electron-Coupled Functionality in Materials and Devices Based on Conjugated Polymers
  • 2019
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 31:22
  • Forskningsöversikt (refereegranskat)abstract
    • The coupling between charge accumulation in a conjugated polymer and the ionic charge compensation, provided from an electrolyte, defines the mode of operation in a vast array of different organic electrochemical devices. The most explored mixed organic ion-electron conductor, serving as the active electrode in these devices, is poly(3,4-ethyelenedioxythiophene) doped with polystyrelensulfonate (PEDOT:PSS). In this progress report, scientists of the Laboratory of Organic Electronics at Linkoping University review some of the achievements derived over the last two decades in the field of organic electrochemical devices, in particular including PEDOT:PSS as the active material. The recently established understanding of the volumetric capacitance and the mixed ion-electron charge transport properties of PEDOT are described along with examples of various devices and phenomena utilizing this ion-electron coupling, such as the organic electrochemical transistor, ionic-electronic thermodiffusion, electrochromic devices, surface switches, and more. One of the pioneers in this exciting research field is Prof. Olle Inganas and the authors of this progress report wish to celebrate and acknowledge all the fantastic achievements and inspiration accomplished by Prof. Inganas all since 1981.
  •  
8.
  • Berggren, Magnus, et al. (författare)
  • Ultraviolet electroluminescence from an organic light emitting diode
  • 1995
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlag Berlin. - 0935-9648 .- 1521-4095. ; 7:11, s. 900-903
  • Tidskriftsartikel (refereegranskat)abstract
    • The extension of the emission region for organic LEDs into the ultraviolet region is reported. Emission at 394 nm is achieved by modifying the geometry of a device based on poly(octylphenyl)bithiophene (PTOPT) and poly(octylphenyl)oxadiazole (PBD) which had previously been shown to emit white light. Through changing the geometry the red and green emission peaks have been suppressed and the UV band (from the PBD) enhanced.
  •  
9.
  • Bernacka Wojcik, Iwona, et al. (författare)
  • Flexible Organic Electronic Ion Pump for Flow-Free Phytohormone Delivery into Vasculature of Intact Plants
  • 2023
  • Ingår i: Advanced Science. - : WILEY. - 2198-3844. ; 10:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant vasculature transports molecules that play a crucial role in plant signaling including systemic responses and acclimation to diverse environmental conditions. Targeted controlled delivery of molecules to the vascular tissue can be a biomimetic way to induce long distance responses, providing a new tool for the fundamental studies and engineering of stress-tolerant plants. Here, a flexible organic electronic ion pump, an electrophoretic delivery device, for controlled delivery of phytohormones directly in plant vascular tissue is developed. The c-OEIP is based on polyimide-coated glass capillaries that significantly enhance the mechanical robustness of these microscale devices while being minimally disruptive for the plant. The polyelectrolyte channel is based on low-cost and commercially available precursors that can be photocured with blue light, establishing much cheaper and safer system than the state-of-the-art. To trigger OEIP-induced plant response, the phytohormone abscisic acid (ABA) in the petiole of intact Arabidopsis plants is delivered. ABA is one of the main phytohormones involved in plant stress responses and induces stomata closure under drought conditions to reduce water loss and prevent wilting. The OEIP-mediated ABA delivery triggered fast and long-lasting stomata closure far away from the delivery point demonstrating systemic vascular transport of the delivered ABA, verified delivering deuterium-labeled ABA.
  •  
10.
  • Brooke, Robert, 1989-, et al. (författare)
  • Greyscale and paper electrochromic polymer displays by UV patterning
  • 2019
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 11:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochromic devices have important implications as smart windows for energy efficient buildings, internet of things devices, and in low-cost advertising applications. While inorganics have so far dominated the market, organic conductive polymers possess certain advantages such as high throughput and low temperature processing, faster switching, and superior optical memory. Here, we present organic electrochromic devices that can switch between two high-resolution images, based on UV-patterning and vapor phase polymerization of poly(3,4- ethylenedioxythiophene) films. We demonstrate that this technique can provide switchable greyscale images through the spatial control of a UV-light dose. The color space was able to be further altered via optimization of the oxidant concentration. Finally, we utilized a UV-patterning technique to produce functional paper with electrochromic patterns deposited on porous paper, allowing for environmentally friendly electrochromic displays.
  •  
11.
  • Brooke, Robert, et al. (författare)
  • Infrared electrochromic conducting polymer devices
  • 2017
  • Ingår i: Journal of Materials Chemistry C. - : The Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 5:23, s. 5824-5830
  • Tidskriftsartikel (refereegranskat)abstract
    • The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is well known for its electrochromic properties in the visible region. Less focus has been devoted to the infrared (IR) wavelength range, although tunable IR properties could enable a wide range of novel applications. As an example, modern day vehicles have thermal cameras to identify pedestrians and animals in total darkness, but road and speed signs cannot be easily visualized by these imaging systems. IR electrochromism could enable a new generation of dynamic road signs that are compatible with thermal imaging, while simultaneously providing contrast also in the visible region. Here, we present the first metal-free flexible IR electrochromic devices, based on PEDOT:Tosylate as both the electrochromic material and electrodes. Lateral electrochromic devices enabled a detailed investigation of the IR electrochromism of thin PEDOT:Tosylate films, revealing large changes in their thermal signature, with effective temperature changes up to 10 [degree]C between the oxidized (1.5 V) and reduced (-1.5 V) states of the polymer. Larger scale (7 [times] 7 cm) vertical electrochromic devices demonstrate practical suitability and showed effective temperature changes of approximately 7 [degree]C, with good optical memory and fast switching (1.9 s from the oxidized state to the reduced state and 3.3 s for the reversed switching). The results are highly encouraging for using PEDOT:Tosylate for IR electrochromic applications.
  •  
12.
  • Brooke, Robert, 1989-, et al. (författare)
  • Infrared electrochromic conducting polymer devices
  • 2017
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7526 .- 2050-7534. ; 5:23, s. 5824-5830
  • Tidskriftsartikel (refereegranskat)abstract
    • The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is well known for its electrochromic properties in the visible region. Less focus has been devoted to the infrared (IR) wavelength range, although tunable IR properties could enable a wide range of novel applications. As an example, modern day vehicles have thermal cameras to identify pedestrians and animals in total darkness, but road and speed signs cannot be easily visualized by these imaging systems. IR electrochromism could enable a new generation of dynamic road signs that are compatible with thermal imaging, while simultaneously providing contrast also in the visible region. Here, we present the first metal-free flexible IR electrochromic devices, based on PEDOT:Tosylate as both the electrochromic material and electrodes. Lateral electrochromic devices enabled a detailed investigation of the IR electrochromism of thin PEDOT:Tosylate films, revealing large changes in their thermal signature, with effective temperature changes up to 10 °C between the oxidized (1.5 V) and reduced (-1.5 V) states of the polymer. Larger scale (7 × 7 cm) vertical electrochromic devices demonstrate practical suitability and showed effective temperature changes of approximately 7 °C, with good optical memory and fast switching (1.9 s from the oxidized state to the reduced state and 3.3 s for the reversed switching). The results are highly encouraging for using PEDOT:Tosylate for IR electrochromic applications.
  •  
13.
  • Che, Canyan, 1988-, et al. (författare)
  • Twinning Lignosulfonate with a Conducting Polymer via Counter-Ion Exchange for Large-Scale Electrical Storage
  • 2019
  • Ingår i: Advanced Sustainable Systems. - : Wiley-VCH Verlag. - 2366-7486. ; 3:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignosulfonate (LS) is a large-scale surplus product of the forest and paper industries, and has primarily been utilized as a low-cost plasticizer in making concrete for the construction industry. LS is an anionic redox-active polyelectrolyte and is a promising candidate to boost the charge capacity of the positive electrode (positrode) in redox-supercapacitors. Here, the physical-chemical investigation of how this biopolymer incorporates into the conducting polymer PEDOT matrix, of the positrode, by means of counter-ion exchange is reported. Upon successful incorporation, an optimal access to redox moieties is achieved, which provides a 63% increase of the resulting stored electrical charge by reversible redox interconversion. The effects of pH, ionic strength, and concentrations, of included components, on the polymer–polymer interactions are optimized to exploit the biopolymer-associated redox currents. Further, the explored LS-conducting polymer incorporation strategy, via aqueous synthesis, is evaluated in an up-scaling effort toward large-scale electrical energy storage technology. By using an up-scaled production protocol, integration of the biopolymer within the conducting polymer matrix by counter-ion exchange is confirmed and the PEDOT-LS synthesized through optimized strategy reaches an improved charge capacity of 44.6 mAh g−1. 
  •  
14.
  • Chen, Shangzhi, et al. (författare)
  • Redox-tunable structural colour images by UV-patterned conducting polymer nanofilms on metal surfaces
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Precise manipulation of light-matter interaction has enabled a wide variety of approaches to create bright and vivid structural colours. Techniques utilizing photonic crystals, Fabry-Pérot cavities, plasmonics, or high-refractive index dielectric metasurfaces have been studied for applications ranging from optical coatings to reflective displays. However, complicated fabrication procedures for sub-wavelength nanostructures, limited active areas, and inherent absence of tunability of these approaches significantly impede their further development towards flexible, large-scale, and switchable devices compatible with facile and cost-effective production. Herein, we present a simple and efficient method to generate structural colours based on nanoscale conducting polymer films prepared on metallic surfaces via vapour phase polymerization and ultraviolet (UV) light patterning. Varying the UV dose enables synergistic control of both nanoscale film thickness and polymer permittivity, which generates controllable colours from violet to red. Together with greyscale photomasks this enables fabrication of high-resolution colour images using single exposure steps. We further demonstrate spatiotemporal tuning of the structurally coloured surfaces and images via electrochemical modulation of the polymer redox state. The simple structure, facile fabrication, wide colour gamut, and dynamic colour tuning make this concept competitive for future multi-functional and smart displays.
  •  
15.
  • Chen, Shangzhi, et al. (författare)
  • Tunable Structural Color Images by UV-Patterned Conducting Polymer Nanofilms on Metal Surfaces.
  • 2021
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 33:33
  • Tidskriftsartikel (refereegranskat)abstract
    • Precise manipulation of light-matter interactions has enabled a wide variety of approaches to create bright and vivid structural colors. Techniques utilizing photonic crystals, Fabry-Pérot cavities, plasmonics, or high-refractive-index dielectric metasurfaces have been studied for applications ranging from optical coatings to reflective displays. However, complicated fabrication procedures for sub-wavelength nanostructures, limited active areas, and inherent absence of tunability of these approaches impede their further development toward flexible, large-scale, and switchable devices compatible with facile and cost-effective production. Here, a novel method is presented to generate structural color images based on monochromic conducting polymer films prepared on metallic surfaces via vapor phase polymerization and ultraviolet (UV) light patterning. Varying the UV dose enables synergistic control of both nanoscale film thickness and polymer permittivity, which generates controllable structural colors from violet to red. Together with grayscale photomasks this enables facile fabrication of high-resolution structural color images. Dynamic tuning of colored surfaces and images via electrochemical modulation of the polymer redox state is further demonstrated. The simple structure, facile fabrication, wide color gamut, and dynamic color tuning make this concept competitive for applications like multifunctional displays.
  •  
16.
  •  
17.
  • Gamage, Sampath, et al. (författare)
  • Reflective and transparent cellulose-based passive radiative coolers
  • 2021
  • Ingår i: Cellulose. - : Springer. - 0969-0239 .- 1572-882X. ; 28, s. 9383-9393
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiative cooling passively removes heat from objects via emission of thermal radiation to cold space. Suitable radiative cooling materials absorb infrared light while they avoid solar heating by either reflecting or transmitting solar radiation, depending on the application. Here, we demonstrate a reflective radiative cooler and a transparent radiative cooler solely based on cellulose derivatives manufactured via electrospinning and casting, respectively. By modifying the microstructure of cellulose materials, we control the solar light interaction from highly reflective (> 90%, porous structure) to highly transparent (approximate to 90%, homogenous structure). Both cellulose materials show high thermal emissivity and minimal solar absorption, making them suitable for daytime radiative cooling. Used as coatings on silicon samples exposed to sun light at daytime, the reflective and transparent cellulose coolers could passively reduce sample temperatures by up to 15 degrees C and 5 degrees C, respectively.
  •  
18.
  • Gamage, Sampath, et al. (författare)
  • Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling
  • 2020
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 8:34, s. 11687-11694
  • Tidskriftsartikel (refereegranskat)abstract
    • Materials that provide independent control of infrared thermal radiation and haze in the visible could benefit many areas and applications, including clothing, packaging and photovoltaics. Here, we study this possibility for a metamaterial composite paper based on cellulose nanofibrils (CNF) and silicon dioxide (SiO2) microparticles with infrared (IR) Fröhlich phonon resonances. This CNF-SiO2composite shows outstanding transparency in the visible wavelength range, with the option of controlling light diffusion and haze from almost zero to 90% by varying the SiO2microparticle concentration. We further show that the transparent metamaterial paper could maintain high thermal emissivity in the atmospheric IR window, as attributed to strong IR absorption of both the nanocellulose and the resonant SiO2microparticles. The high IR emissivity and low visible absorption make the paper suitable for passive radiative cooling and we demonstrate cooling of the paper to around 3 °C below ambient air temperature by exposing it to the sky. 
  •  
19.
  • Granlund, Thomas, et al. (författare)
  • A polythiophene microcavity laser
  • 1998
  • Ingår i: Chemical Physics Letters. - : Elsevier. - 0009-2614 .- 1873-4448. ; 288:5-6, s. 879-884
  • Tidskriftsartikel (refereegranskat)abstract
    • We report photopumped lasing in a microcavity device with a polythiophene layer as the emitter. These microcavity devices are built by joining two polymer coated dielectric mirrors at elevated temperature. When photopumping the film, a lasing threshold is observed at 120 nJ/cm(2). Comparative studies with fast pump-probe spectroscopy of thin polythiophene films and the same polymer in photopumped lasing studies, indicate that the gain coefficient is 80 +/- 20 cm(-1), and that the exciton concentration is 2 X 10(17) cm(-3) at the lasing transition, well below the exciton-exciton recombination level. (C) 1998 Elsevier Science B.V. All rights reserved.
  •  
20.
  • Granlund, Thomas, et al. (författare)
  • Lasing in substituted polythiophene between dielectric mirrors
  • 1999
  • Ingår i: Synthetic metals. - : Elsevier. - 0379-6779 .- 1879-3290. ; 102:1-3, s. 1038-1041
  • Tidskriftsartikel (refereegranskat)abstract
    • We report photopumped lasing in a microcavity device with a polythiophene layer as emitter. The microcavity is made of a polymer film between two dielectric Bragg reflecting mirrors (DBR). The:microcavity devices is built by joining two polymer coated DBR mirrors at elevated temperature. When photopumping the film,a lasing threshold is observed at 120 nJ/cm(2). Comparative studies with fast pump-probe spectroscopy of thin polythiophene films, and the same polymer in photopumped lasing studies, indicate that the gain coefficient is 80 +/- 20 cm(2) and that the exciton concentration is 2X10(17) cm(2) at the lasing transition, well below the exciton-exciton recombination level.
  •  
21.
  • Granström, Magnus, et al. (författare)
  • Micrometer- and Nanometer-Sized Polymeric Light-Emitting Diodes
  • 1995
  • Ingår i: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 267:5203, s. 1479-1481
  • Tidskriftsartikel (refereegranskat)abstract
    • A method for the fabrication of micrometer- and submicrometer-sized polymeric light-emitting diodes is presented. Such diodes have a variety of applications. Light sources of dimensions around 100 nanometers are required for subwavelength, near-field optical microscopy. Another possible application is patterning on the micrometer and nanometer scale. The diodes have been made in the form of a sandwich structure, with the conductive polymer poly(3,4-ethylene-dioxythiophene) polymerized in the pores of commercially available microfiltration membranes defining the hole-injecting contacts, poly[3-(4-octylphenyl)-2,2-bithiophene] as the light-omitting layer, and a thin film of calcium-aluminum as the electron injector.
  •  
22.
  • Granström, Magnus, et al. (författare)
  • Phase separation of conjugated polymers - Tools for new functions in polymer LEDs
  • 1997
  • Ingår i: Synthetic metals. - : Elsevier. - 0379-6779 .- 1879-3290. ; 85:1-3, s. 1193-1194
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the single family of substituted poly(thiophenes) it is possible to realize such diverse device designs as voltage controlled colours from polymer LEDs, sub-micron size LEDs, and white light emitters. Many of these features become possible by the use of polymer blends in which one or more poly(thiophenes) are mixed with a matrix polymer (PMMA). The phase structure in these blends can be controlled by stoichiometry and mode of formation. That phase structure can be used to prevent exciton transfer, and to define new colours in polymer LEDs. It also allows us to make anisotropic conductors suitable for contacting optical devices.
  •  
23.
  • Granström, Magnus, et al. (författare)
  • Polymeric light-emitting diodes of submicron size - Structures and developments
  • 1996
  • Ingår i: Synthetic metals. - : Elsevier. - 0379-6779 .- 1879-3290. ; 76:1-3, s. 141-143
  • Tidskriftsartikel (refereegranskat)abstract
    • Micron- and submicron-sized light-emitting diodes (LEDs) made using conjugated polymers as electroluminescent layers and contact materials are presented. Two different routes to make arrays of such small light sources have been developed. The benefits and drawbacks of the use of the conjugated polymer poly(2,3-ethylene-dioxythiophene) (PEDOT) as hole injector in polymer LEDs are also discussed.
  •  
24.
  • Granström, Magnus, et al. (författare)
  • Self organizing polymer films - a route to novel electronic devices based on conjugated polymers
  • 1997
  • Ingår i: Supramolecular science. - : ELSEVIER SCI LTD. - 0968-5677 .- 1873-4146. ; 4:1-2, s. 27-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymer blends are often used in polymer light emitting diodes as a tool to increase the efficiency of the devices. In this report, we show the necessity to take the phase separation properties of such blends into account, as the miscibility of the involved polymers drastically affects the resulting film structure. By using phase separated polymer blends involving conjugated poly(thiophenes) and different nonconjugated polymers as matrices, different types of applications, such as light emitting diodes with improved voltage control of emitted colour, sub-micron size LEDs and anisotropic conductors are demonstrated. (C) 1997 Elsevier Science Ltd. All rights reserved.
  •  
25.
  • Inganäs, Olle, et al. (författare)
  • Thiophene polymers in light emitting diodes : Making multicolour devices
  • 1995
  • Ingår i: Synthetic metals. - : Elsevier. - 0379-6779 .- 1879-3290. ; 71:1-3, s. 2121-2124
  • Tidskriftsartikel (refereegranskat)abstract
    • We can control the bandgap of thiophene polymers over 2 eV by choosing the nature, position and regularity of side chain substitutions. Electroluminescence from these polymers cover the full visible spectrum, from the blue into the near infra-red. Blends of these polymer materials allow us to construct voltage controlled variable colour light sources. A newly developed transfer technique allow us to mount thin oriented films of the polymers in polymer LEDs to obtain polarised light sources giving polarisation anisotropys of up to 3. Sub-lambda light sources have been constructed from these polymer materials using nanometer polymer electrodes.
  •  
26.
  • Jiao, Fei, et al. (författare)
  • Nanofibrillated Cellulose-Based Electrolyte and Electrode for Paper-Based Supercapacitors
  • 2018
  • Ingår i: ADVANCED SUSTAINABLE SYSTEMS. - : Wiley. - 2366-7486. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar photovoltaic technologies could fully deploy and impact the energy conversion systems in our society if mass-produced energy-storage solutions exist. A supercapacitor can regulate the fluctuations on the electrical grid on short time scales. Their mass-implementation requires the use of abundant materials, biological and organic synthetic materials are attractive because of atomic element abundancy and low-temperature synthetic processes. Nanofibrillated cellulose (NFC) coming from the forest industry is exploited as a three-dimensional template to control the transport of ions in an electrolyte-separator, with nanochannels filled of aqueous electrolyte. The nanochannels are defined by voids in the nanocomposite made of NFC and the proton transporting polymer polystyrene sulfonic acid PSSH. The ionic conductivity of NFC-PSSH composites (0.2 S cm(-1) at 100% relative humidity) exceeds sea water in a material that is solid, feel dry to the finger, but filled of nanodomains of water. A paper-based supercapacitor made of NFC-PSSH electrolyte-separator sandwiched between two paper-based electrodes is demonstrated. Although modest specific capacitance (81.3 F g(-1)), power density (2040 W kg(-1)) and energy density (1016 Wh kg(-1)), this is the first conceptual demonstration of a supercapacitor based on cellulose in each part of the device; which motivates the search for using paper manufacturing as mass-production of energy-storage devices.
  •  
27.
  • Kim, Nara, 1985-, et al. (författare)
  • Electric transport properties in PEDOT thin films
  • 2019. - 4
  • Ingår i: Conjugated polymers. - Boca Raton : CRC Press. - 9780429190520 ; , s. 45-128
  • Bokkapitel (refereegranskat)abstract
    • In this chapter, the authors summarize their understanding of Poly(3,4-ethylenedioxythiophene) (PEDOT), with respect to its chemical and physical fundamentals. They focus upon the structure of several PEDOT systems, from the angstrom level and up, and the impact on both electronic and ionic transport. The authors discuss the structural properties of PEDOT:X and PEDOT:poly(styrenesulfonate) based on experimental data probed at the scale ranging from angstrom to submicrometer. The morphology of PEDOT is influenced by the nature of counter-ions, especially at high oxidation levels. The doping anions intercalate between PEDOT chains to form a “sandwich” structure to screen the positive charges in PEDOT chains. The authors provide the main transport coefficients such as electrical conductivity s, Seebeck coefficient S, and Peltier coefficient σ, starting from a general thermodynamic consideration. The optical conductivity of PEDOT has also been examined based on the effective medium approximation, which is normally used to describe microscopic permittivity properties of composites made from several different constituents.
  •  
28.
  • Malti, Abdellah, et al. (författare)
  • Freestanding electrochromic paper
  • 2016
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7526 .- 2050-7534. ; 4:41, s. 9680-9686
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochromic displays based on conducting polymers exhibit higher contrasts and are cheaper, faster, more durable, and easier to synthesize as well as to process than their non-polymeric counterparts. However, current devices are typically based on thin electrochromic layers on top of a reflecting surface, which limits the thickness of the polymer layer to a few hundred nanometers. Here, we embed a light-scattering material within the electrochromic material to achieve a freestanding electrochromic paper-like electrode (50 to 500 μm). The device is based on a cellulose composite combining PEDOT:PSS as the electrochromic material and TiO2 nanoparticles as the reflecting material. Owing to the excellent refractive properties of TiO2, this nanocomposite is white in the neutral state and, when reduced, turns blue resulting in a color contrast around 30. The composite has a granular morphology and, as shown by AFM, an intermingling of TiO2 and PEDOT:PSS at the surface. Variation of the amount of TiO2 within the composite material is shown to result in a trade-off in optical and electrical properties. A proof-of-concept freestanding electrochromic device was fabricated by casting all layers successively to maximize the interlayer conformation. This freestanding device was found to be stable for over 100 cycles when ramped between 3 and -3 V.
  •  
29.
  • Mitraka, Evangelia, 1986- (författare)
  • Conducting Polymer Electrodes for Oxygen Reduction Reaction
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Both the pollution level of the environment and the increasing energy demands have stimulated intense research on the development of low-cost environmentally-friendly energy conversion and storage systems with high efficiency, such as metal-air batteries and fuel cells.One of the most essential parts of both fuel cells and metal–air batteries is the air-electrode which is responsible for the reduction of O2. The air-electrode can use O2 from air facilitating the layout of the device; however, the process taking place on it is significantly complex. Currently, platinum (Pt) is the benchmark for air-electrodes in such technologies, although it is expensive and exhibits other important disadvantages which diminish the fuel cell performance. Therefore, extensive research has been devoted to reduce the amount of Pt used in air-electrodes and to develop a noble metal-free version of these electrodes.The area of printed electronics could facilitate the development of low-cost electrodes produced in high volume for such applications. Conducting polymers are attractive materials for this technology because they may combine several desired properties, like electronic conduction, ionic conduction and catalysis of electrochemical reactions.Among other conducting polymers, poly(3,4-ethylenedioxythiophene) (PEDOT) emerged as an alternative cathode catalyst material to Pt, due to its ability to effectively catalyze the oxygen reduction reaction (ORR), while it also exhibits high electrical and ionic conductivity.The focus of this thesis is to study the electrocatalytic activity and mechanism of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) when employed as an airelectrode in energy storage devices, such as fuel cells and metal-air batteries. Although PEDOT is extensively studied during the last decade as an air-electrode for fuel cell and metal-air batteries, vital pieces of the catalytic mechanism that PEDOT follows remain unknown, namely: (i) the sites of PEDOT on which O2 interacts and (ii) the intermediate species which are formed during the ORR. The content of this thesis tackles these topics, both from experimental and theoretical point of view. Moreover, it investigates the use of PEDOT as an active electrocatalyst in a polymer exchange membrane (PEM) fuel cell, by embedding the polymer in a cellulose matrix, aiming to fabricate a gas diffusion electrode for the ORR side of the device. Finally, the goal of the thesis surpasses the limit of the p-doped PEDOT and undertakes the evaluation of a n-type conjugated polymer of high electron affinity as a cathode in reduction processes.  
  •  
30.
  • Mitraka, Evangelia, et al. (författare)
  • Oxygen-induced doping on reduced PEDOT
  • 2017
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 5:9, s. 4404-4412
  • Tidskriftsartikel (refereegranskat)abstract
    • The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) has shown promise as air electrode in renewable energy technologies like metal-air batteries and fuel cells. PEDOT is based on atomic elements of high abundance and is synthesized at low temperature from solution. The mechanism of oxygen reduction reaction (ORR) over chemically polymerized PEDOT: Cl still remains controversial with eventual role of transition metal impurities. However, regardless of the mechanistic route, we here demonstrate yet another key active role of PEDOT in the ORR mechanism. Our study demonstrates the decoupling of conductivity (intrinsic property) from electrocatalysis (as an extrinsic phenomenon) yielding the evidence of doping of the polymer by oxygen during ORR. Hence, the PEDOT electrode is electrochemically reduced (undoped) in the voltage range of ORR regime, but O-2 keeps it conducting; ensuring PEDOT to act as an electrode for the ORR. The interaction of oxygen with the polymer electrode is investigated with a battery of spectroscopic techniques.
  •  
31.
  • Mitraka, Evangelia, et al. (författare)
  • PEDOT-Cellulose Gas Diffusion Electrodes for Disposable Fuel Cells
  • 2019
  • Ingår i: Advanced Sustainable Systems. - : Wiley-VCH Verlag. - 2366-7486. ; 3:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The mass implementation of renewable energy sources is limited by the lack of energy storage solutions operating on various timescales. Electrochemical technologies such as supercapacitors and batteries cannot handle long storage time because of self-discharge issues. The combination of fuel storage technology and fuel cells is an attractive solution for long storage times. In that context, large-scale fuel cell solutions are required for massive energy storage in cities, which leads to possible concepts such as low-cost disposable fully organic membrane assemblies in fuel cells to avoid regeneration of expensive poisoned electrodes. Here, the formation of an organic gas diffusion electrode (GDE) fabricated by paper-making production, combined with in situ polymerization is demonstrated for the first time. Cellulose is used as a 3D scaffold functionalized with poly(3,4-ethylenedioxythiophene) (PEDOT) serving as both an electrical conductor and an electrocatalyst of high efficiency for the oxygen reduction reaction. The PEDOT-cellulose porous GDE is implemented in a membrane assembly and demonstrated in a H2-O2 fuel cell. The demonstration of low-cost material/manufacturing that is environmentally friendly is a paradigm shift in the development of fuel cells for a sustainable society.
  •  
32.
  • Sandberg, Mats, et al. (författare)
  • Photoconductive zinc oxide-composite paper by pilot paper machine manufacturing
  • 2016
  • Ingår i: Flexible and Printed Electronics. - : IOP Publishing. - 2058-8585. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Smartmaterials can be used for awide variety of applications, including sensing and energy harvesting.Implementation of smartmaterials in large area devices requires scalablemanufacturing. The use ofpaper-making techniques would offer an enormous production capacity, allowing for low-cost andlarge-scalemanufacturing. In thisworkwe present a successful pilot scale papermachinemanufacturingof functional composite papers(100mmin−1 with aweb width of 30 cm) based on cellulose fibres andcommercial tetrapodal zinc oxidemicrowhiskers(ZnO-Ts).Carbon electrodes could successfully beprinted on the paper to form complete electronic devices where the paper itself is the active material.Thisenabled development of aZnO-composite paper photosensor,where we characterized its stability,sensitivity and speed. The devices show excellent photosensing properties over awide range of lightirradiances(0.01–1Sun), including short response times (∼10 s) and long-term stability. Under simulatedsunlight and a bias voltage of 1 V, small(0.5 cm2) two-probe interdigitated photosensor devices provided12μAphotocurrent.Under the same conditions, four-probe measurements of the composite papershowed a sheet resistance of 6.9·107Ω/sq. Four-probe measurements also demonstrated that the paperconductivity varies linearlywith light irradiance. To the best of ourknowledge, this is thefirst example ofpilot paper machine production of an optoelectronic paper, demonstrating the potential for large-scalepapermanufacturing of active smart paper from low-cost industrial bulk materials.
  •  
33.
  • Shiran Chaharsoughi, Mina, 1986-, et al. (författare)
  • Hybrid Plasmonic and Pyroelectric Harvesting of Light Fluctuations
  • 2018
  • Ingår i: Advanced Optical Materials. - : Wiley-Blackwell. - 2162-7568 .- 2195-1071.
  • Tidskriftsartikel (refereegranskat)abstract
    • State-of-the-art solar energy harvesting systems based on photovoltaic technology require constant illumination for optimal operation. However, weather conditions and solar illumination tend to fluctuate. Here, a device is presented that extracts electrical energy from such light fluctuations. The concept combines light-induced heating of gold nanodisks (acting as plasmonic optical nanoantennas), and an organic pyroelectric copolymer film (poly(vinylidenefluoride-co-trifluoroethylene)), that converts temperature changes into electrical signals. This hybrid device can repeatedly generate current pulses, not only upon the onset of illumination, but also when illumination is blocked. Detailed characterization highlights the key role of the polarization state of the copolymer, while the copolymer thickness has minor influence on performance. The results are fully consistent with plasmon-assisted pyroelectric effects, as corroborated by combined optical and thermal simulations that match the experimental results. Owing to the tunability of plasmonic resonances, the presented concept is compatible with harvesting near infrared light while concurrently maintaining visible transparency.
  •  
34.
  • Stavrinidou, Eleni, et al. (författare)
  • In vivo polymerization and manufacturing of wires and supercapacitors in plants
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:11, s. 2807-2812
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic plants, e-Plants, are an organic bioelectronic platform that allows electronic interfacing with plants. Recently we have demonstrated plants with augmented electronic functionality. Using the vascular system and organs of a plant, we manufactured organic electronic devices and circuits in vivo, leveraging the internal structure and physiology of the plant as the template, and an integral part of the devices. However, this electronic functionality was only achieved in localized regions, whereas new electronic materials that could be distributed to every part of the plant would provide versatility in device and circuit fabrication and create possibilities for new device concepts. Here we report the synthesis of such a conjugated oligomer that can be distributed and form longer oligomers and polymer in every part of the xylem vascular tissue of a Rosa floribunda cutting, forming long-range conducting wires. The plant’s structure acts as a physical template, whereas the plant’s biochemical response mechanism acts as the catalyst for polymerization. In addition, the oligomer can cross through the veins and enter the apoplastic space in the leaves. Finally, using the plant’s natural architecture we manufacture supercapacitors along the stem. Our results are preludes to autonomous energy systems integrated within plants and distribute interconnected sensor-actuator systems for plant control and optimization
  •  
35.
  • Wadeasa, Amal, et al. (författare)
  • Solution processed ZnO nanowires/polyfluorene heterojunctions for large area lightening
  • 2010
  • Ingår i: Chemical Physics Letters. - : Elsevier Science B.V., Amsterdam.. - 0009-2614 .- 1873-4448. ; 490:4-6, s. 200-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid inorganic-organic semiconductor heterojunctions are nowadays scrutinized for optoelectronic devices, such as solar cells and light emitting diodes. Here, ZnO nanowires/polyfluorene heterojunctions have been entirely fabricated from solution by wet chemistry and low temperature processes. The transparent plastic electrode PEDOT injects holes in the polyfluorene, while the electrons are injected via the ZnO-Au contact, thus avoiding the use of air sensitive low work function metals. The hybrid inorganic-organic light emitting diode emits almost white light. Because of its solution processability, stable cathode, low cost and low temperature process, the ZnO/polymer heterojunction devices are promising for large area lightening applications.
  •  
36.
  • Wang, Hui, et al. (författare)
  • Ionic Thermoelectric Figure of Merit for Charging of Supercapacitors
  • 2017
  • Ingår i: Advanced Electronic Materials. - : WILEY. - 2199-160X. ; 3:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermoelectric materials enable conversion of heat to electrical energy. The performance of electronic thermoelectric materials is typically evaluated using a figure of merit ZT = sigma alpha 2T/lambda, where sigma is the conductivity, alpha is the so-called Seebeck coefficient, and lambda is the thermal conductivity. However, it has been unclear how to best evaluate the performance of ionic thermoelectric materials, like ionic solids and electrolytes. These systems cannot be directly used in a traditional thermoelectric generator, because they are based on ions that cannot pass the interface between the thermoelectric material and external metal electrodes. Instead, energy can be harvested from the ionic thermoelectric effect by charging a supercapacitor. In this study, the authors investigate the ionic thermoelectric properties at varied relative humidity for the polyelectrolyte polystyrene sulfonate sodium and correlate these properties with the charging efficiency when used in an ionic thermoelectric supercapacitor (ITESC). In analogy with electronic thermoelectric generators, the results show that the charging efficiency of the ITESC can be quantitatively related to the figure of merit ZT(i) = sigma i alpha i2T/lambda. This means that the performance of ionic thermoelectric materials can also be compared and predicted based on the ZT, which will be highly valuable in the design of high-performance ITESCs.
  •  
37.
  • Wu, Zhixing, 1990-, et al. (författare)
  • Conducting Polymer‐Based e‐Refinery for Sustainable Hydrogen Peroxide Production
  • 2023
  • Ingår i: Energy & Environmental Materials. - : Wiley-Blackwell. - 2575-0356.
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrocatalysis enables the industrial transition to sustainable production of chemicals using abundant precursors and electricity from renewable sources. De-centralized production of hydrogen peroxide (H2O2) from water and oxygen of air is highly desirable for daily life and industry. We report an effective electrochemical refinery (e-refinery) for H2O2 by means of electrocatalysis-controlled comproportionation reaction (2(H)O + O -> 2(HO)), feeding pure water and oxygen only. Mesoporous nickel (II) oxide (NiO) was used as electrocatalyst for oxygen evolution reaction (OER), producing oxygen at the anode. Conducting polymer poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) drove the oxygen reduction reaction (ORR), forming H2O2 on the cathode. The reactions were evaluated in both half-cell and device configurations. The performance of the H2O2 e-refinery, assembled on anion-exchange solid electrolyte and fed with pure water, was limited by the unbalanced ionic transport. Optimization of the operation conditions allowed a conversion efficiency of 80%.
  •  
38.
  • Xing, K. Z., et al. (författare)
  • The electronic and geometric structures of neutral and potassium-doped poly[3-(4-octylphenyl)thiophene] studied by photoelectron spectroscopy
  • 1996
  • Ingår i: Synthetic metals. - : Elsevier. - 0379-6779 .- 1879-3290. ; 76:1-3, s. 263-267
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic and geometric structures of poly [3-(4-octylphenyl)thiophene] have been studied by X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS, respectively). Thermochromic effects, and new charge induced states generated by potassium doping, have been observed by direct UPS measurements. The experimental results are in very good agreement with the results of theoretical quantum chemical calculations performed with the Austin Model 1 semi-empirical model and the valence-effective Hamiltonian pseudo-potential model.
  •  
39.
  • Xing, K. Z., et al. (författare)
  • The electronic structure of neutral and alkali metal-doped poly[3-(4-octylphenyl)thiophene] studied by photoelectron spectroscopy
  • 1996
  • Ingår i: Synthetic metals. - : Elsevier. - 0379-6779 .- 1879-3290. ; 80:1, s. 59-66
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic structure of poly [3-(4-octylphenyl)thiophene] (POPT) has been studied by ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS), as well as by quantum chemical calculations. Both temperature-dependent effects on the electronic structure of the neutral system, as well as the generation of new electronic states induced by doping with alkaline metals, have been observed. The experimental results are in good agreement with the results of the quantum chemical calculations.
  •  
40.
  • Zhao, Dan, et al. (författare)
  • Ionic thermoelectric supercapacitors
  • 2016
  • Ingår i: Energy & Environmental Science. - : ROYAL SOC CHEMISTRY. - 1754-5692 .- 1754-5706. ; 9:4, s. 1450-1457
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature gradients are generated by the sun and a vast array of technologies and can induce molecular concentration gradients in solutions via thermodiffusion (Soret effect). For ions, this leads to a thermovoltage that is determined by the thermal gradient Delta T across the electrolyte, together with the ionic Seebeck coefficient alpha(i). So far, redox-free electrolytes have been poorly explored in thermoelectric applications due to a lack of strategies to harvest the energy from the Soret effect. Here, we report the conversion of heat into stored charge via a remarkably strong ionic Soret effect in a polymeric electrolyte (Seebeck coefficients as high as alpha(i) = 10 mV K-1). The ionic thermoelectric supercapacitor (ITESC) is charged under a temperature gradient. After the temperature gradient is removed, the stored electrical energy can be delivered to an external circuit. This new means to harvest energy is particularly suitable for intermittent heat sources like the sun. We show that the stored electrical energy of the ITESC is proportional to (Delta T alpha(i))(2). The resulting ITESC can convert and store several thousand times more energy compared with a traditional thermoelectric generator connected in series with a supercapacitor.
  •  
41.
  • Abdel Aziz, Ilaria, et al. (författare)
  • Drug delivery via a 3D electro-swellable conjugated polymer hydrogel
  • 2024
  • Ingår i: Journal of materials chemistry. B. - : ROYAL SOC CHEMISTRY. - 2050-750X .- 2050-7518.
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatiotemporal controlled drug delivery minimizes side-effects and enables therapies that require specific dosing patterns. Conjugated polymers (CP) can be used for electrically controlled drug delivery; however so far, most demonstrations were limited to molecules up to 500 Da. Larger molecules could be incorporated only during the CP polymerization and thus limited to a single delivery. This work harnesses the record volume changes of a glycolated polythiophene p(g3T2) for controlled drug delivery. p(g3T2) undergoes reversible volumetric changes of up to 300% during electrochemical doping, forming pores in the nm-size range, resulting in a conducting hydrogel. p(g3T2)-coated 3D carbon sponges enable controlled loading and release of molecules spanning molecular weights of 800-6000 Da, from simple dyes up to the hormone insulin. Molecules are loaded as a combination of electrostatic interactions with the charged polymer backbone and physical entrapment in the porous matrix. Smaller molecules leak out of the polymer while larger ones could not be loaded effectively. Finally, this work shows the temporally patterned release of molecules with molecular weight of 1300 Da and multiple reloading and release cycles without affecting the on/off ratio.
  •  
42.
  • Abdel Aziz, Ilaria, et al. (författare)
  • Electrochemical modulation of mechanical properties of glycolated polythiophenes
  • 2024
  • Ingår i: Materials Horizons. - : ROYAL SOC CHEMISTRY. - 2051-6347 .- 2051-6355.
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochemical doping of organic mixed ionic-electronic conductors is key for modulating their conductivity, charge storage and volume enabling high performing bioelectronic devices such as recording and stimulating electrodes, transistors-based sensors and actuators. However, electrochemical doping has not been explored to the same extent for modulating the mechanical properties of OMIECs on demand. Here, we report a qualitative and quantitative study on how the mechanical properties of a glycolated polythiophene, p(g3T2), change in situ during electrochemical doping and de-doping. The Young's modulus of p(g3T2) changes from 69 MPa in the dry state to less than 10 MPa in the hydrated state and then further decreases down to 0.4 MPa when electrochemically doped. With electrochemical doping-dedoping the Young's modulus of p(g3T2) changes by more than one order of magnitude reversibly, representing the largest modulation reported for an OMIEC. Furthermore, we show that the electrolyte concentration affects the magnitude of the change, demonstrating that in less concentrated electrolytes more water is driven into the film due to osmosis and therefore the film becomes softer. Finally, we find that the oligo ethylene glycol side chain functionality, specifically the length and asymmetry, affects the extent of modulation. Our findings show that glycolated polythiophenes are promising materials for mechanical actuators with a tunable modulus similar to the range of biological tissues, thus opening a pathway for new mechanostimulation devices. This work investigates the changes in the mechanical properties of glycolated polythiophenes induced by electrochemical addressing and by electrolyte concentration, due to its ability to stabilize water.
  •  
43.
  • Abdollahi Sani, Negar, et al. (författare)
  • A ferroelectric polymer introduces addressability in electrophoretic display cells
  • 2019
  • Ingår i: FLEXIBLE AND PRINTED ELECTRONICS. - : IOP PUBLISHING LTD. - 2058-8585. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last decades, tremendous efforts have been carried out to develop flexible electronics for a vast array of applications. Among all different applications investigated in this area, flexible displays have gained significant attention, being a vital part of large-area devices, portable systems and electronic labels etc electrophoretic (EP) ink displays have outstanding properties such as a superior optical switch contrast and low power consumption, besides being compatible with flexible electronics. However, the EP ink technology requires an active matrix-addressing scheme to enable exclusive addressing of individual pixels. EP ink pixels cannot be incorporated in low cost and easily manufactured passive matrix circuits due to the lack of threshold voltage and nonlinearity, necessities to provide addressability. Here, we suggest a simple method to introduce nonlinearity and threshold voltage in EP ink display cells in order to make them passively addressable. Our method exploits the nonlinearity of an organic ferroelectric capacitor that introduces passive addressability in display cells. The organic ferroelectric material poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) is here chosen because of its simple manufacturing protocol and good polarizability. We demonstrate that a nonlinear EP cell with bistable states can be produced by depositing a P(VDF-TrFE) film on the bottom electrode of the display cell. The P(VDF-TrFE) capacitor and the EP ink cell are separately characterized in order to match the surface charge at their respective interfaces and to achieve and optimize bistable operation of display pixels.
  •  
44.
  • Abdollahi Sani, Negar, et al. (författare)
  • Flexible lamination-fabricated ultra-high frequency diodes based on self-supporting semiconducting composite film of silicon micro-particles and nano-fibrillated cellulose
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future "internet of things" viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-ÎŒPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-ÎŒPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-ÎŒPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm2, a current rectification ratio up to 4 × 103 between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits.
  •  
45.
  • Abelow, Alexis, et al. (författare)
  • Electroresponsive Nanoporous Membranes by Coating Anodized Alumina with Poly(3,4-ethylenedioxythiophone) and Polypyrrole
  • 2014
  • Ingår i: Macromolecular materials and engineering. - : Wiley-VCH Verlagsgesellschaft. - 1438-7492 .- 1439-2054. ; 299:2, s. 190-197
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrically-active nanoporous membranes are prepared by coating the surface of anodized alumina with electroactive polymers using vapor phase polymerization with four combinations of conjugated polymers and doping ions: poly(3,4-ethylenedioxythiophone) and polypyrrole, FeCl3 and FeTs3. The permeability of the polymer-coated membranes is measured as a function of the applied electric potential. A reversible three-fold increase is found in molecular flux of a neutral dye for membranes in oxidized state compared to that in the reduced state. After analyzing various factors that may affect the molecular transport through these membranes, it is concluded that the observed behavior results mostly from swelling/deswelling of the polymers and from the confinement of the polymers inside the nanopores.
  •  
46.
  • Abrahamsson, Kajsa H., 1956, et al. (författare)
  • Phobic avoidance and regular dental care in fearful dental patients: a comparative study.
  • 2001
  • Ingår i: Acta odontologica Scandinavica. - 0001-6357 .- 1502-3850. ; 16, s. 188-196
  • Tidskriftsartikel (refereegranskat)abstract
    • The present investigation was a comparative study of 169 highly fearful dental patients, some of whom received regular dental care (n = 28) and some who never, or only when absolutely necessary, utilized dental care (n = 141). It was hypothesized that phobic avoidance is related to anticipatory stress and anxiety reactions, negative oral health effects, psychological distress, and negative social consequences. Background factors (sex, age, education, and dental attendance pattern), dental anxiety, general fears, general state and trait anxiety, mood states, depression, and quality of life effects were studied. Data were analyzed with descriptive statistics and with exploratory factor and multiple logistic regression analysis. It was shown that dental anxiety is significantly higher among the avoiders and this is in particular evident for anticipatory dental anxiety. Oral health differed between the groups, and it was shown that avoiders had significantly more missing teeth, whereas regular attenders had significantly more filled teeth. The avoiders reported a stronger negative impact on their daily life, whereas there were no significant differences between the groups with regard to general emotions. The logistic regression analysis showed that phobic avoidance was predicted only by anticipated dental anxiety and missing teeth. It was concluded that differences between high dental fear patients with regular dental care and phobic avoidance were mainly related to anticipated fear and anxiety, oral health effects, and concomitant negative life consequences. These results are discussed in terms of subjective stress, negative cognitions, social support, and coping-strategies.
  •  
47.
  • Abrahamsson, Kajsa H., 1956, et al. (författare)
  • The importance of dental beliefs for the outcome of dental-fear treatment.
  • 2003
  • Ingår i: European journal of oral sciences. - : Wiley. - 0909-8836 .- 1600-0722. ; 111:2, s. 99-105
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigated the importance of dental beliefs and the predictive value of the Dental Belief Survey (DBS) in dental-fear treatment. The sample comprised 117 adult patients seeking treatment at a dental-fear clinic. Pretreatment data were collected during a screening procedure, including two visits to the dentist. Outcome measurements were completed after treatment. The dentist rated successful/unsuccessful treatment outcome. Patients unsuccessful in treatment (n = 48) reported more initial negative dental beliefs, while patients successful in treatment (n = 69) showed a larger decrease in negative beliefs between the first and second visit to the dentist. However, these differences were small. There was a significant difference between the groups at visit two. Thus, patients unsuccessful in treatment reported more negative beliefs about how dentists communicate. Regression analyses showed that improved dental beliefs during the first two visits to the dentist predicted dental-fear reduction, while longer avoidance time, female gender, low engagement in treatment, and depressed mood increased the risk of unsuccessful treatment outcome. Our results suggest that the DBS provides valuable information, and that patients' subjective perceptions about how dentists communicate are important for treatment outcome. However, initial dental beliefs were not found to predict clinical treatment outcome.
  •  
48.
  • Abrahamsson, Tobias, et al. (författare)
  • Formation of Monolithic Ion-Selective Transport Media Based on "Click" Cross-Linked Hyperbranched Polyglycerol.
  • 2019
  • Ingår i: Frontiers in chemistry. - : Frontiers Media SA. - 2296-2646. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • In the emerging field of organic bioelectronics, conducting polymers and ion-selective membranes are combined to form resistors, diodes, transistors, and circuits that transport and process both electronic and ionic signals. Such bioelectronics concepts have been explored in delivery devices that translate electronic addressing signals into the transport and dispensing of small charged biomolecules at high specificity and spatiotemporal resolution. Manufacturing such "iontronic" devices generally involves classical thin film processing of polyelectrolyte layers and insulators followed by application of electrolytes. This approach makes miniaturization and integration difficult, simply because the ion selective polyelectrolytes swell after completing the manufacturing. To advance such bioelectronics/iontronics and to enable applications where relatively larger molecules can be delivered, it is important to develop a versatile material system in which the charge/size selectivity can be easily tailormade at the same time enabling easy manufacturing of complex and miniaturized structures. Here, we report a one-pot synthesis approach with minimal amount of organic solvent to achieve cationic hyperbranched polyglycerol films for iontronics applications. The hyperbranched structure allows for tunable pre multi-functionalization, which combines available unsaturated groups used in crosslinking along with ionic groups for electrolytic properties, to achieve a one-step process when applied in devices for monolithic membrane gel formation with selective electrophoretic transport of molecules.
  •  
49.
  • Abrahamsson, Tobias, et al. (författare)
  • Investigating the role of polymer size on ionic conductivity in free-standing hyperbranched polyelectrolyte membranes
  • 2021
  • Ingår i: Polymer. - : Elsevier. - 0032-3861 .- 1873-2291. ; 223
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymer-based ion exchange membranes (IEMs) are utilized for many applications such as in water desalination, energy storage, fuel cells and in electrophoretic drug delivery devices, exemplified by the organic electronic ion pump (OEIP). The bulk of current research is primarily focused on finding highly conductive and stable IEM materials. Even though great progress has been made, a lack of fundamental understanding of how specific polymer properties affect ionic transport capabilities still remains. This leads to uncertainty in how to proceed with synthetic approaches for designing better IEM materials. In this study, an investigation of the structure-property relationship between polymer size and ionic conductivity was performed by comparing a series of membranes, based on ionically charged hyperbranched polyglycerol of different polymer sizes. Observing an increase in ionic conductivity associated with increasing polymer size and greater electrolyte exclusion, indi-cating an ionic transportation phenomenon not exclusively based on membrane electrolyte uptake. These findings further our understanding of ion transport phenomena in semi-permeable membranes and indicate a strong starting point for future design and synthesis of IEM polymers to achieve broader capabilities for a variety of ion transport-based applications.
  •  
50.
  • Abrahamsson, Tobias, 1991- (författare)
  • Synthetic Functionalities for Ion and Electron Conductive Polymers : Applications in Organic Electronics and Biological Interfaces
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the search for understanding and communicating with all biological systems, in humans, animals, plants, and even microorganisms, we find a common language of all communicating via electrons, ions and molecules. Since the discovery of organic electronics, the ability to bridge the gap and communicate be-tween modern technology and biology has emerged. Organic chemistry pro-vides us with tools for understanding and a material platform of polymer electronics for communication. Such insights give us not only the ability to observe fundamental phenomenon but to actively design and construct materials with chemical functionalities towards better interfaces and applications. Organic electronic materials and devices have found their way to be implemented in the field of medicine for diagnostic and therapeutic purposes, but also in water purification and to help tackle the monumental task in creating the next generation of sustainable energy production and storage. Ultimately it’s safe to say that organic electronics are not going to replace our traditional technology based on inorganic materials but rather the two fields can find a way to complement each other for various purposes and applications. Compared to conventional silicon based technology, production of carbon-based organic electronic polymer materials are extremely cheap and devices can even be made flexible and soft with great compatibility towards biology.  The main focus of this thesis has been developing and synthesizing new types of organic electronic and ionic conductive polymeric materials. Rational chemical design and modifications of the materials have been utilized to introduce specific functionalities to the materials. The functionalities serving the purpose to facilitate ion and electron conductive charge transport for organic electronics and with biological interface implementation of the polymer materials. Multi-functional ionic conductive hyperbranched polyglycerol polyelectrolytes (dendrolytes) were developed comprising both ionically charged groups and cross-linkable groups. The hyperbranched polyglycerol core structure of the material possesses a hydrophilic solvating platform for both ions and maintenance of solvent molecules, while being a biocompatible structure. Coupled with the peripheral charged ionic functionalities of the polymer, the dendrolyte materials are highly ionic conductive and selective towards cationic and anionic charged atoms and large molecules when implemented as ion-exchange membranes. Homogenous ion-exchange membrane casting has been achieved by the implementation of cross-linkable functionalities in the dendrolytes, utilizing robust click-chemistry for efficient micro and macro fabrication processing of the ion-ex-change membranes for organic electronic devices. The ion-exchange membrane material was implemented in electrophoretic drug delivery devices (organic electronic ion pumps), which are used for delivery of ions and neurotransmitters with spatiotemporal resolution and are able to communicate and be used for therapeutic drug delivery purposes in biological interfaces. The dendrolyte materials were also able to form free-standing membranes, making it possible for implementation in fuel cell and desalination purposes. Trimeric conjugated thiophene pre-polymer structures were also developed in the thesis and synthesized for the purpose of implementation of the material in vivo to form electrically conductive polymer structures, and in such manner to be able to create electrodes and ultimately to connect with the central nervous system. The conjugated pre-polymers being both water soluble and enzymatically polymerizable serve as a platform to realize such a concept. Also, modifying the trimeric structure with cross-linkable functionality created the capability to form better interfaces and stability towards biological environments.   
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 597
Typ av publikation
tidskriftsartikel (452)
doktorsavhandling (48)
konferensbidrag (35)
annan publikation (21)
forskningsöversikt (15)
bokkapitel (12)
visa fler...
rapport (6)
licentiatavhandling (6)
samlingsverk (redaktörskap) (1)
bok (1)
visa färre...
Typ av innehåll
refereegranskat (477)
övrigt vetenskapligt/konstnärligt (116)
populärvet., debatt m.m. (4)
Författare/redaktör
Berggren, Magnus (367)
Crispin, Xavier (121)
Berggren, Magnus, 19 ... (68)
Simon, Daniel (54)
Engquist, Isak (49)
Fabiano, Simone (48)
visa fler...
Berggren, Magnus, Pr ... (41)
Fahlman, Mats (37)
Tybrandt, Klas (36)
Nilsson, David (34)
Inganäs, Olle (31)
Berggren, Ulf, 1948 (28)
Stavrinidou, Eleni (26)
Hakeberg, Magnus, 19 ... (24)
Gueskine, Viktor (22)
Andersson Ersman, Pe ... (21)
Liu, Xianjie (21)
Zozoulenko, Igor (21)
Richter-Dahlfors, Ag ... (21)
Gustafsson, Göran (19)
Gabrielsson, Erik (17)
Granberg, Hjalmar (16)
Simon, Daniel T, 197 ... (16)
Vagin, Mikhail (16)
Forchheimer, Robert (16)
Robinson, Nathaniel ... (16)
Zhao, Dan (15)
Tu, Deyu (15)
Gabrielsson, Roger (14)
Andersson, Mats R (14)
Kugler, Thomas (14)
Robinson, Nathaniel ... (14)
Carlsson, Sven G., 1 ... (13)
Nilsson, David, 1972 ... (13)
Braun, Slawomir (12)
Abrahamsson, Tobias (12)
Wang, Suhao (12)
Berggren, Gustav (12)
Kergoat, Loig (12)
Sandberg, Mats (11)
Glowacki, Eric (10)
Jager, Edwin (10)
Hakeberg, Magnus (10)
Vagin, Mikhail, 1976 ... (10)
Crispin, Xavier, Pro ... (10)
Ail, Ujwala (10)
Brooke, Robert, 1989 ... (10)
Jonsson, Magnus (10)
Hjertberg, T. (10)
Chen, Miaoxiang, 196 ... (10)
visa färre...
Lärosäte
Linköpings universitet (489)
RISE (77)
Göteborgs universitet (42)
Jönköping University (32)
Karolinska Institutet (30)
Kungliga Tekniska Högskolan (29)
visa fler...
Lunds universitet (29)
Uppsala universitet (28)
Chalmers tekniska högskola (17)
Umeå universitet (12)
Sveriges Lantbruksuniversitet (10)
Stockholms universitet (9)
Mälardalens universitet (7)
Blekinge Tekniska Högskola (5)
Luleå tekniska universitet (2)
Malmö universitet (2)
Nationalmuseum (1)
Högskolan i Halmstad (1)
Högskolan i Gävle (1)
Örebro universitet (1)
Mittuniversitetet (1)
Linnéuniversitetet (1)
Karlstads universitet (1)
Försvarshögskolan (1)
Naturhistoriska riksmuseet (1)
Röda Korsets Högskola (1)
visa färre...
Språk
Engelska (583)
Svenska (13)
Latin (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (240)
Teknik (169)
Medicin och hälsovetenskap (53)
Samhällsvetenskap (24)
Lantbruksvetenskap (11)
Humaniora (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy