SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bertino Laurent) "

Search: WFRF:(Bertino Laurent)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mangini, Fabio, et al. (author)
  • Detection and attribution of intra-annual mass component of sea-level variations along the Norwegian coast
  • 2023
  • In: Scientific Reports. - 2045-2322. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Reliable sea-level observations in coastal regions are needed to assess the impact of sea level on coastal communities and ecosystems. This paper evaluates the ability of in-situ and remote sensing instruments to monitor and help explain the mass component of sea level along the coast of Norway. The general agreement between three different GRACE/GRACE-FO mascon solutions and a combination of satellite altimetry and hydrography gives us confidence to explore the mass component of sea level in coastal areas on intra-annual timescales. At first, the estimates reveal a large spatial-scale coherence of the sea-level mass component on the shelf, which agrees with Ekman theory. Then, they suggest a link between the mass component of sea level and the along-slope wind stress integrated along the eastern boundary of the North Atlantic, which agrees with the theory of poleward propagating coastal trapped waves. These results highlight the potential of the sea-level mass component from GRACE and GRACE-FO, satellite altimetry and the hydrographic stations over the Norwegian shelf. Moreover, they indicate that GRACE and GRACE-FO can be used to monitor and understand the intra-annual variability of the mass component of sea level in the coastal ocean, especially where in-situ measurements are sparse or absent.
  •  
2.
  • Mangini, Fabio, et al. (author)
  • The relationship between the eddy-driven jet stream and northern European sea level variability
  • 2021
  • In: Tellus. Series A, Dynamic meteorology and oceanography. - : Stockholm University Press. - 0280-6495 .- 1600-0870. ; 73:1, s. 1-15
  • Journal article (peer-reviewed)abstract
    • Wintertime sea level variability over the northern European continental shelf is largely wind-driven. Using daily gridded sea level anomaly from altimetry, we examine both the spatial and the temporal relationship between northern European sea level variability and large-scale atmospheric circulation patterns as represented by the jet cluster paradigm. The jet clusters represent different configurations of the eddy-driven jet stream and, therefore, provide a physical description of the atmospheric variability in the North Atlantic. We find that each of the four jet clusters is associated with a distinct northern European sea level anomaly pattern whose magnitudes are comparable to those of typical sea level variations on the shelf. In certain locations, such as the German Bight and the east coast of England, sea level anomalies are mainly associated with one single jet cluster. In other locations, such as the interior and the northern part of the North Sea, sea level anomalies are found to be sensitive to at least two jet configurations. Based on these regional sea level variations, we map out the locations on the shelf where each jet cluster or combination of clusters is most active before discussing the role of Ekman transport in inducing the resulting patterns. Through a multiple linear regression model, we also find that the jet clusters reconstruct up to 50% of the monthly mean sea level anomaly variance over the northern European continental shelf. The model best performs in the interior and the western part of the North Sea, suggesting that wind direction rather than wind speed plays a more prominent role over these regions. We conclude that the jet cluster approach gives valuable new insights compared to linear regression techniques for characterising wind-driven sea level variability over the northern European continental shelf.
  •  
3.
  • Smith, Gregory C., et al. (author)
  • Polar ocean observations: A critical gap in the observing system and its effect on environmental predictions from hours to a season
  • 2019
  • In: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Journal article (peer-reviewed)abstract
    • There is a growing need for operational oceanographic predictions in both the Arctic and Antarctic polar regions. In the former, this is driven by a declining ice cover accompanied by an increase in maritime traffic and exploitation of marine resources. Oceanographic predictions in the Antarctic are also important, both to support Antarctic operations and also to help elucidate processes governing sea ice and ice shelf stability. However, a significant gap exists in the ocean observing system in polar regions, compared to most areas of the global ocean, hindering the reliability of ocean and sea ice forecasts. This gap can also be seen from the spread in ocean and sea ice reanalyses for polar regions which provide an estimate of their uncertainty. The reduced reliability of polar predictions may affect the quality of various applications including search and rescue, coupling with numerical weather and seasonal predictions, historical reconstructions (reanalysis), aquaculture and environmental management including environmental emergency response. Here, we outline the status of existing near-real time ocean observational efforts in polar regions, discuss gaps, and explore perspectives for the future. Specific recommendations include a renewed call for open access to data, especially real-time data, as a critical capability for improved sea ice and weather forecasting and other environmental prediction needs. Dedicated efforts are also needed to make use of additional observations made as part of the Year of Polar Prediction (YOPP; 2017-19) to inform optimal observing system design. To provide a polar extension to the Argo network, it is recommended that a network of ice-borne sea ice and upper-ocean observing buoys be deployed and supported operationally in ice-covered areas together with autonomous profiling floats and gliders (potentially with ice detection capability) in seasonally-ice covered seas. Finally, additional efforts to better measure and parameterize surface exchanges in polar regions are much needed to improve coupled environmental prediction.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view