SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bhatti Harrison John 1979 ) "

Search: WFRF:(Bhatti Harrison John 1979 )

  • Result 1-12 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bhatti, Harrison John, 1979-, et al. (author)
  • A Multidimensional Readiness Index for the Electrification of the Transportation System in China, Norway, and Sweden
  • 2023
  • In: Future Transportation. - Basel : MDPI. - 2673-7590. ; 3:4, s. 1360-1384
  • Journal article (peer-reviewed)abstract
    • The main objective of this paper is to develop a readiness index model that can serve as an analytical tool for exploring the achievements of the electrification of transportation systems. We have applied this readiness index model to evaluate the readiness positioning of China, Norway, and Sweden towards transportation electrification. We have chosen these three countries as they represent diversity among countries adopting electric transportation system solutions. Our developed readiness index model has four key dimensions: technological readiness, political readiness, societal readiness, and economic readiness. The embeddedness of all four dimensions in one model provides a multi-perspective way of analyzing and evaluating the readiness levels of countries moving towards transforming their transportation system. Therefore, we named the model a “multidimensional readiness index”. Our main conclusions are that political processes and decisiveness are the most important factors, followed by societal needs and economic ability, with the current technology as the fourth. Without the participation of dedicated and determined political decision makers, the other three factors are challenging to obtain. Political decision makers need to facilitate economic means to support the transformation in society and affected industries to balance the economic disadvantages of the electrically powered vehicle systems until they pass the cost disadvantage turning point. The development of relevant technology is no longer the significant barrier it was at the beginning of this transformation about 20 years ago. The technology for electrically powered transportation systems and devices is widely available now, although it is continuously evolving and being improved. Associated industries cannot be expected to initiate, finance, take risks, and take the lead in this global societal transformation without clear and strong political support.
  •  
2.
  • Bhatti, Harrison John, 1979-, et al. (author)
  • A System Approach to Electrification of Transportation – An International Comparison
  • 2022
  • Reports (other academic/artistic)abstract
    • Globally, the transportation system is transforming from a fossil-based to an electrification system. Some countries are leading in the transformation process. Some countries are rapidly catching up to become market leaders in developing and introducing new techniques and equipment that support the transformation process in their countries. In contrast, others are still relying on their old fossil-based system or could not have enough understanding of how to deal with this complex transformation of the transportation system.The electrification of the transportation system is not an isolated system that can be handled as a single technological element. It is a group of multiple technologies, political, societal, and economic sub-systems each of these sub-systems is embedded in each other, forming the whole system. Therefore, it is important to see and manage the system from a holistic perspective to transform the transportation electrification system efficiently. We have selected eight countries from three different continents – Asia (China, India), Australia, which is a country and continent, and Europe (Germany, Norway, Slovenia, Sweden, and the UK) to explore the transformational process of transportation electrification based on each countries’ conditions. We have chosen these continents as they are diversified in adopting transportation electrification system solutions.Our main conclusions are that the political processes and political decisiveness are the most important, followed by the societal and economic, with technology as the fourth. The other three are difficult to obtain without dedicated and determined political decision-makers. Political decision-makers need to use economic means to support the transformation in society and industry to balance the economic disadvantage of electric systems until they pass the cost disadvantage turning point. Technology is no longer a significant barrier as it was about 20 years ago. Now, technology is available, although it can be improved. The important part is to understand how to utilize the existing technology efficiently to transform the old fossil-based transportation system into new electrification of the transportation system. Without clear and strong political support, the industry cannot be expected to initiate, finance, take risks, and take the lead in this global societal transformation.Our analysis shows that China is being positioned as the leading country in the world in the electrification of the transportation system because of the strong technological advancements, control of the entire value chain, strong government decisiveness, and execution power in developing and implementing favorable electric vehicle (EV) policies, the willingness of the public sector to take the lead and citizens support to adopt clean technology. Norway has rapidly become one of the newcomers with large numbers of registered electric vehicles according to its population size within a few years, despite lacking manufacturing electric vehicles (EVs) and equipment for transportation electrification. Germany is leading in the technological sector of transportation electrification within Europe with its prestigious top-selling electric vehicle brands in Germany, such as Volkswagen, Mercedes Benz, BMW, Smart, and Audi, and establishing a battery Gigafactory with an annual potential production capacity of 60 GWh. However, Germany is still lagging behind from the societal perspective of not having enough sales of electric vehicles compared to gasoline-based vehicles. Sweden is a rapidly growing country in the electrification of transport, with three vehicle manufacturers introducing EVs in 2021 and developing electric roads system for more than ten years. Sweden is also working on establishing a new 50 GWh battery manufacturing plant in Gothenburg, Sweden. The UK is also catching up with its other European countries in transforming the transportation system with its strong government support. The British government has kept transportation electrification on its national agenda and considering building a Gigafactory to obtain a position as a future battery leader. However, the UK's adoption rate of electric vehicles is still slow compared to fossil-based vehicles. India, Australia, and Slovenia are far behind in the process of transportation transformation than China, Norway, Germany, Sweden, and the UK. One of the common reasons in all these countries is their governments' baby steps even though they have high ambitions. Their governments require a revolutionized and systems approach to enable remarkable change in the transformation process.
  •  
3.
  • Bhatti, Harrison John, 1979-, et al. (author)
  • Business Model Innovation Approach for Commercializing Smart Grid Systems
  • 2018
  • In: American Journal of Industrial and Business Management. - USA : Scientific Research Publishing. - 2164-5167 .- 2164-5175. ; 8:9, s. 2007-2051
  • Journal article (peer-reviewed)abstract
    • To investigate the reasons for shifting from the old to the new energy system, the impact of this disruptive technology on energy providing firms, the demand for the new business model and the approach of the new business model in terms of creating and capturing values published peer-reviewed articles, and international energy agency reports have been reviewed. This paper encourages energy providing firms to redesign business models for commercializing new energy distribution system and to offer new services to the energy consumers for their future survival in the new trends of the energy market. These services include integrating with renewable energy sources, electric vehicle services, and demand response services to create more value for the consumers and in return gains more profit for each actor.The services provided through integration of renewable energy with smart grid and the electric vehicle will empower consumers involvement in the electricity system which will give them more control over electricity. CO2 production will be reduced, helping to create a clean environment and will enable operators to improve grid security and network stability. Finally, demand response services will provide multiple electricity package options to the consumers in which they can select an appropriate package according to their need which will give them more control over their electricity bill. System operators can optimize their grid operations to provide better power quality, and service providers can increase their income by offering additional services.
  •  
4.
  • Bhatti, Harrison John, 1979-, et al. (author)
  • Electric Roads : Energy Supplied by Local Renewable Energy Sources and Microgrid Distribution System
  • 2019
  • Conference paper (other academic/artistic)abstract
    • The electric road system is an emerging concept in this modern era. The advancement of technology has made it possible to give this concept a real shape (electric road system). However, the energy provided to the electric roads is still produced by non-renewable energy sources, which are completely unhealthy and harmful for society. Furthermore, the traditional grid is not suited to integrate with decentralized/localized energy generation and distribution systems. It is an ineffectual and environmentally extravagant system. Therefore, the preliminary contribution of this research is to introduce a decentralized/localized energy generation system based on renewable energy sources and energy distribution to electric roads through the emerging technology of microgrid and smart grid systems, which have the capability to integrate with renewable energy sources easily. Thus, producing electricity with renewable energy sources is environmentally friendly, less expensive, and available without charges. However, each source of energy has some environmental impacts and cost differences. A brief description of the environmental and cost impact of renewable energy sources (wind, solar) is also presented. 
  •  
5.
  • Bhatti, Harrison John, 1979-, et al. (author)
  • Making the World More Sustainable : Enabling Localized Energy Generation and Distribution on Decentralized Smart Grid Systems
  • 2018
  • In: World Journal of Engineering and Technology. - Irvine, CA : Scientific Research Publishing. - 2331-4249 .- 2331-4222. ; 6:2, s. 350-382
  • Journal article (peer-reviewed)abstract
    • The peer-reviewed articles and published government reports have been reviewed, based on the analysis of technical characteristics of power generation systems, eco-friendly sources of power generations, cost reduction, functionality and design of traditional grid versus smart grid. Furthermore, the innovative technologies that enable the grid to integrate with decentralized power generation system efficiently have been considered. This paper claims that in this modern era, it is arduous for traditional grid to fulfill the rising demand of electricity, along with sustainable, eco-friendly and stable power supply, as it cannot be efficiently integrated with decentralized and localized power generation systems and renewable energy sources. The result of this paper shows that decentralized and localized power generation systems are located close to end-users which decrease the transmission and supply cost of electricity. Innovative technologies allow the decentralized and localized power generation systems to be integrated with renewable energy sources which help to reduce the cost of utility services and provide clean energy.
  •  
6.
  • Bhatti, Harrison John, 1979- (author)
  • Sustainable Electromobility : A System Approach to Transformation of Transportation
  • 2023
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis aims to explore, analyze, and develop knowledge that leads to an understanding of identifying the key actors and their symbiotic relationships and dependencies in transforming the energy and transportation system from fossil-based to renewable and fossil fuel-powered vehicles to electric. The research was explorative and categorized into two studies. The Study – I focuses on the technological development that leads toward transforming from the old fossil-based analog electricity generation and distribution system to the new digitalized renewable system. This study further explores the impact of these disruptive technologies on the market and society, and the challenges hindering the implementation and adoption of the new energy system. Study – II focuses on developing new knowledge and understanding by integrating technological, political, societal, and economic aspects into one model and named it a 'multidimensional readiness index model.' This model can serve as an analytical tool and provide a broader perspective for exploring, analyzing, evaluating, and determining the countries' positions in transforming the transformation system. The model has been applied to eight countries, two from Asia (China and India) and Australia and five from Europe (Germany, Norway, Sweden, Slovenia, and the UK). The kappa synthesizes the exploration of the papers. Additionally, the system approach is applied to explore and understand the symbiotic relationship in the new ecosystem among the key actors and stakeholders and their significant role in transforming the transportation system from fossil-based to electric. The main conclusion is that the countries with a higher symbiotic relationship among the key actors achieved a higher level of readiness in transforming the transportation system. In contrast, other countries with a low symbiotic relationship among the key actors are slowly catching up or even far behind in transforming the transportation system towards electrification.
  •  
7.
  • Fu, Jiali, 1973-, et al. (author)
  • Locating charging infrastructure for freight transport using multiday travel data
  • 2024
  • In: Transport Policy. - : Elsevier. - 0967-070X .- 1879-310X. ; 152, s. 21-28
  • Journal article (peer-reviewed)abstract
    • Vehicle electrification has shown the potential to reduce environmental impacts and greenhouse gas emissions from the transport sector. As electric vehicles (EVs) become increasingly prominent, the efficient placement of charging infrastructure poses a complex challenge that demands careful consideration. This paper delves into the investigation of how travel and parking patterns, derived from empirical data on freight vehicles, influence the optimal distribution of charging infrastructure across the freight network. This paper presents a node-based approach to optimize the allocation of charging infrastructure tailored explicitly for freight transport. The study identifies optimal locations for operator-owned charging infrastructure by leveraging GPS-based data collected from a fleet of freight vehicles operating in the greater Gothenburg metropolitan area. This research aims to enhance our understanding of the charging infrastructure requirements inherent in the freight transport system and provide decision support to logistics companies contemplating the shift from conventional fossil fuel vehicles to electric freight vehicles. The proposed model holds the potential for seamless adaptation to diverse freight transport systems, offering valuable insights to expedite the transition toward fossil-free freight transport on a broader scale. 
  •  
8.
  • Fu, Jiali, 1973-, et al. (author)
  • Optimization of Freight Charging Infrastructure Placement Using Multiday Travel Data
  • 2024
  • In: 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC). - : IEEE. - 9798350399462 - 9798350399479 ; , s. 1576-1582
  • Conference paper (other academic/artistic)abstract
    • The electrification of vehicles has the potential to significantly reduce greenhouse gas emissions and environmental impacts on transportation. However, locating charging infrastructure for electric vehicles has become increasingly complex. This research examines the distribution system of a logistics firm located in Gothenburg, Sweden, and the problem of allocating shared or semi-public charging stations for their fleet of vehicles. A real-time database was set up to record trip data for the company's fleet of freight vehicles, and data from over 110,000 trips were collected from November 2021 to May 2022. The study proposes parking locations during daytime as potential sites for shared charging stations, and the problem of allocating shared charging stations is formulated as a Location Set Covering Problem (LSCP). The goal is to provide decision-making support for logistics companies transitioning to electric vehicles. The model proposed in this study can be easily adapted to other freight transport systems, facilitating a swift transition to eco-friendly freight transportation.
  •  
9.
  • Fu, Jiali, 1973-, et al. (author)
  • Optimization of freight charging infrastructure placement using multiday travel data
  • 2024
  • In: Sammanställning av referat från Transportforum 2024. - Linköping : Statens väg- och transportforskningsinstitut. ; , s. 385-386
  • Conference paper (other academic/artistic)abstract
    • The electrification of vehicles has the potential to significantly reduce greenhouse gas emissions and environmental impacts on transportation. However, locating charging infrastructure for electric vehicles has become increasingly complex. This research examines the distribution system of a logistics firm located in the greater Gothenburg area, Sweden, and the problem of allocating shared or semi-public charging stations for their fleet of vehicles. A real-time database was set up to record trip data for the company's fleet of freight vehicles, and data from over 110,000 trips were collected from November 2021 to May 2022. The study proposes parking locations during daytime as potential sites for shared charging stations, and the problem of allocating shared charging stations is formulated as a Location Set Covering Problem (LSCP). The goal is to provide decision.making support for logistics companies transitioning to electric vehicles.  This study suggests using daytime parking locations as potential sites for these stations, and adopts a coverage.based approach to determine where and how many shared/semi-public charging stations should be placed for the freight network. The problem of allocating shared charging stations presented in this study is formulated as a Location Set Covering Problem (LSCP), which is a combinatorial optimization problem that arises in facility location analysis. The problem involves selecting a minimum number of facility locations from a set of candidate locations to ensure that a certain level of demand is covered. In this study, the demand is defined as a maximum service distance, i.e., any location of charging stations is within the defined service distance.  The framework of the charging facility allocation problem is composed of the following three steps:Parking location extractionA k-means clustering method is first developed to group the data points into distinct clusters to simplify and summarize the data for subsequent analysis as well as to mitigate the effect of noise in the GPS position data.Route planningThis step computes the optimal route (shortest route) for the studied freight transport demand.LSCP optimizationThe LSCP is NP-hard and the spopt open-source Python library is used in this study to solve the proposed optimization problem.
  •  
10.
  • Gillström, Henrik, et al. (author)
  • Ett nödvändigt drivmedel i transformationen mot ellastbilar? : en jämförelse av resursdelning mellan två tekniker
  • 2024
  • In: Sammanställning av referat från Transportforum 2024. - Linköping : Statens väg- och transportforskningsinstitut. ; , s. 370-371
  • Conference paper (other academic/artistic)abstract
    • Aktörssamverkan är central för omställning mot en grönare transportsystem, exempelvis vid omställning till eldrift. En organisation i isolering har inte allt det som krävs för en omställning till eldrift, och resurser måste istället delas mellan centrala aktörer såsom fordonstillverkare, infrastrukturhållare och logistikföretag. En aktör har tekniken medan en annan kanske har kunskapen. Beroendet kan vara av olika karaktär och dess omfattning påverkas av exempelvis hur kritisk eller vanlig resursen är. Men på vilket sätt är dessa beroenden centralt vid valet av lösning? Laddning av batterier med sladd är det koncept som vi satsar främst på inom Europa, medan byte av batterier (battery swapping) är den teknik med störst genomslag i exempelvis Kina. Vi har jämfört vilken roll resursdelning har för dessa tekniker.   Studien har jämfört resultat från två forskningsprojekt finansierade av Vinnova och Energimyndigheten. Båda projekten har haft arbetspaket som berör samverkan, samtidigt som de fokuserar olika former av tekniska lösningar. Empirin kommer från en strukturerad intervjustudie med 19 svenska logistikaktörer som testat sladdladdning, djupare intervjuer och workshops med olika aktörer från akademi och näringsliv. Empiriska data har analyserats utifrån Resource dependency theory.  Den mest centrala resursen är fordonet. Här finns flertalet utmaningar då elbilarna är dyrare i inköp och det råder en osäkerhet kring t.ex. andrahandsvärde och servicebehov. Därför kan ägandeskapets utformning bli en nyckelfråga. Olika typer av leasingavtal kan exempelvis möjliggöra nya sätt att dela på risker för fordonen. I battery swapping är det relevant med leasing av fordonet och batteriet, som kan ägas av olika aktörer. I fallet med sladdladdning säljs detta vanligtvis i ett paket. Även tillgång till laddning utgör en central resurs, där tillgången är bristande på grund av underutvecklad laddningsinfrastruktur. Denna resurs framhålls däremot som betydligt mer sårbar i system baserade på sladdladdning jämfört med battery swapping, till följd av att swapping bättre kan utjämna efterfrågetoppar på el. Ett intressant resultat är att flertalet logistikoperatörer visar på ett intresse att äga laddningsinfrastruktur (dvs ny typ av roll). 
  •  
11.
  • Nåbo, Arne, 1958-, et al. (author)
  • Battery-Swapping for Heavy Duty Vehicles : A Feasibility Study on Up-Scaling in Sweden
  • 2024
  • Reports (other academic/artistic)abstract
    • Rapporten fokuserar på den kommersiella genomförbarheten av ett batteribytessystem för tunga lastbilar i Sverige. Genom att studera affärsmodeller, kompatibilitet med svenska regelverk och integration i transportverksamheten har vi utforskat hur disruptiva teknologier, ekosystemeffekter och cirkularitet skulle kunna möjliggöra en snabb introduktion och uppskalning av ett batteribytessystem. Ett särskilt fokus har legat på Kina för att analysera statusen för batteribyten och de processer som har lett till den snabba utvecklingen och uppskalningen där. I Kina krävde batteribyte en ny affärsmodell där aktörer såsom energiproducenter, batteritillverkare och maskinindustri går i spetsen för utvecklingen och spridningen av batteribyten. Batteribyte är nu den dominerande tekniken för eldrivna lastbilar i Kina.Exempel på fördelar med batteribyte som förespråkas är att det bara tar några minuter att byta batteri, minskad investering för lastbilsägare, låg påverkan på det lokala elnätet och att fordons- och batterilivscykler separeras. En simuleringsstudie om batteribyte för tunga lastbilar i hamnverksamhet visar i denna rapport på tydliga fördelar jämfört med kabelladdning. Det finns dock ett par utmaningar med att införa batteribyte i Sverige. För det första finns det inga tydliga förespråkare för batteribyte inom industrin. Till exempel är de svenska och europeiska fordonstillverkarna tveksamma eftersom det utmanar deras nuvarande affärsmodell och att de kan ta rollen som grindvakter. För det andra omfattar inte de nuvarande standarderna och regelverken för fordon och energisystem i Sverige och i EU batteribyte. Rapporten tar också upp behovet av kunskap och utbildning av personer vid batteribytesstationer, samt vikten av social hållbarhet vid elektrifiering av tunga transporter.
  •  
12.
  • Nåbo, Arne, 1958-, et al. (author)
  • Regeringsuppdrag om elektrifieringen av transporter : rekommendationer för att underlätta datadelning och nyttiggörande av data för planering, utveckling och drift av laddinfrastruktur och affärsmodeller
  • 2023
  • Reports (other academic/artistic)abstract
    • Regeringen har uppdragit åt Statens väg- och transportforskningsinstitut (VTI) att ”bidra till kunskapsuppbyggnaden kring en snabb, smart och samhällsekonomiskt effektiv elektrifiering av transportsektorn”. Den här rapporten redovisar den del av uppdraget som handlar om att genomföra pilotprojekt och ta fram modeller för hur data i praktiken på bästa sätt kan tillgängliggöras, delas och nyttiggöras för att optimera planering, utveckling, drift samt affärsmodeller för laddinfrastruktur. I rapporten ges en beskrivning av förekommande tekniker för laddning av elfordon, viktiga användarperspektiv, och hur affärsmodeller och system för laddinfrastruktur kan modelleras. Rapporten fokuserar på datadelning och beskriver hur aktörer idag delar data samt vilka svårigheter de ser med datadelning. Detta omfattar bland annat datatillgänglighet, delning och nyttiggörande, samt hur aktörerna vill att det ska fungera framåt. En stor utmaning handlar om datatillgänglighet, där aktörer dels ser problem med att få tillgång till data och dels är avvaktande till att vilja dela med sig av egna data. Ofta handlar det om integritetsfrågor och reglering enligt GDPR. Betydelsen av en väl fungerande samverkan mellan energi- och transportsektorn har lyfts i tidigare rapporteringar från det här uppdraget. Vikten av en digitalisering och digital infrastruktur som kopplar samman dessa sektorer betonas speciellt i detta arbete. Digitalisering behövs för att effektivisera planering, utveckling och drift av den infrastruktur som ett elektrifierat transportsystem kräver. De modelleringar som gjorts i den här delen av uppdraget handlar om transportmodellering och energimodellering samt utveckling för att få modellerna att samspela.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-12 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view