SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Biermann Max 1989) "

Sökning: WFRF:(Biermann Max 1989)

  • Resultat 1-34 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biermann, Maximilian, et al. (författare)
  • Excess heat-driven carbon capture at an integrated steel mill : Considerations for capture cost optimization
  • 2019
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier. - 1750-5836 .- 1878-0148. ; 91
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary steelmaking in blast and basic oxygen furnaces is inherently carbon-intensive. Partial capture, i.e., capturing only a share of the CO2, is discussed as an option to reduce the cost of carbon capture and storage (CCS) and to realize a near-term reduction in emissions from the steel industry. This work presents a techno-economic assessment of partial capture based on amine absorption of CO2. The cost of steam from excess heat is assessed in detail. Using this steam to drive the capture process yields costs of 28–50 €/t CO2-captured. Capture of CO2 from the blast furnace gas outperforms end-of-pipe capture from the combined-heat-and-power plant or hot stove flue gases onsite by 3–5 €/t CO2-captured. The study shows that partial capture driven exclusively by excess heat represents a lower cost for a steel mill owner, estimated in the range of 15–30 €/t CO2-captured, as compared to full capture driven by the combustion of extra fuel. In addition, the full-chain CCS cost (capture, transport and storage) for partial capture is discussed in light of future carbon prices. We conclude that implementation of partial capture in the steel industry in the 2020s is possible and economically viable if policymakers ensure long-term regulation of carbon prices in line with agreed emission reduction targets beyond Year 2030.
  •  
2.
  • Sundqvist, Maria, et al. (författare)
  • Cost Efficient Partial CO2 Capture at an Integrated Iron and Steel Mill
  • 2018
  • Ingår i: GHGT 2018 - 14th International Conference on Greenhouse Gas Control Technologies. - : Elsevier.
  • Konferensbidrag (refereegranskat)abstract
    • Mitigation of anthropogenic CO2 emissions is our time most important challenge. For large emission sources, such as the iron and steel industry, implementation of CO2 capture is often discussed as a mean to achieve low emission targets. However, a major obstacle is the cost associated with large scale capture. This article aims to show how capture cost can be lowered by smart integration of partial CO2 capture powered by excess heat associated into SSAB Europe’s integrated plant in Luleå. Three point sources were investigated; flue gas from hot stoves (HS), blast furnace gas (BFG), and flue gas from CHP plant. Compared to the two end-of-pipe scenarios, capture on BFG will improve the overall energy utilization, leaving room for more available steam to be used for capture which lowers the specific cost of CO2
  •  
3.
  • Sundqvist, Maria, et al. (författare)
  • Evaluation of low and high level integration options for carbon capture at an integrated iron and steel mill
  • 2018
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836 .- 1878-0148. ; 77, s. 27-36
  • Tidskriftsartikel (refereegranskat)abstract
    • To achieve climate goals, the iron and steel industry needs to find energy efficient and cost saving pathways for implementing CO2 capture. This paper evaluates two integration alternatives of excess-heat powered CO2 capture at an integrated iron and steel plant using the concept of partial capture. The two sources of CO2 investigated were the blast furnace gas (BFG) and flue gas from the combined heat and power (CHP) plant, representing a high and low level integration alternative, respectively. An amine capture system was simulated in Aspen Plus, and optimized for low energy requirement. To analyze the effects on the iron and steel system and the level of available excess heat, an in-house model was used containing interlinked energy and mass balances of each process step available. The results show that high level integration of CO2 capture gives a lower specific heat demand and improves the overall energy efficiency of the steel plant, resulting in more available heat. For this reason, it is possible to capture 3% more from BFG without any extensive alterations to the plant to recover excess heat. The total available excess heat at the plant will sustain capture of up to 46% of the steel plants total CO2 emissions, and beyond that point steam has to be imported.
  •  
4.
  • Biermann, Max, 1989, et al. (författare)
  • Capture of CO2 from Steam Reformer Flue Gases Using Monoethanolamine: Pilot Plant Validation and Process Design for Partial Capture
  • 2022
  • Ingår i: Industrial & Engineering Chemistry Research. - : American Chemical Society (ACS). - 1520-5045 .- 0888-5885. ; 61
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon dioxide (CO2) capture from a slipstream of steam reformer flue gas (18–20 vol %wet CO2) using 30 wt % aqueous monoethanolamine was performed for ∼500 h in a mobile test unit (∼120 kg CO2/h). Specific reboiler duties (SRDs) of 3.6–3.8 MJ/kg CO2 were achieved at 90% capture. The pilot data validate the modeling of off-design partial capture, that is, operation at lower CO2 capture rates (at constant gas flow) than the absorption column was designed to achieve. This paper demonstrates that off-design partial capture enables significant energy savings (SRD, cooling) relative to on-design capture. The accrued savings depend on the column design (packing height, flooding approach) and the feed CO2 concentration. Finally, a concept for stepwise deployment of carbon capture and storage in industries with high-CO2 concentration sources (e.g., steel and cement manufacturing and refining) is introduced. Thanks to its inherent full-capture-ready design, the initial energy-efficient, off-design partial capture operation can be extended to full capture over time.
  •  
5.
  • Biermann, Max, 1989, et al. (författare)
  • Carbon Allocation in Multi-Product Steel Mills That Co‐process Biogenic and Fossil Feedstocks and Adopt Carbon Capture Utilization and Storage Technologies
  • 2020
  • Ingår i: Frontiers in Chemical Engineering. - : Frontiers Media SA. - 2673-2718. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • This work investigates the effects of carbon allocation on the emission intensities of low-carbon products cogenerated in facilities that co‐process biogenic and fossil feedstocks and apply the carbon capture utilization and storage technology. Thus, these plants simultaneously sequester CO2 and synthesize fuels or chemicals. We consider an integrated steel mill that injects biomass into the blast furnace, captures CO2 for storage, and ferments CO into ethanol from the blast furnace gas. We examine two schemes to allocate the CO2 emissions avoided [due to the renewable feedstock share (biomass) and CO2 capture and storage (CCS)] to the products of steel, ethanol, and electricity (generated through the combustion of steel mill waste gases): 1) allocation by (carbon) mass, which represents actual carbon flows, and 2) a free-choice attribution that maximizes the renewable content allocated to electricity and ethanol. With respect to the chosen assumptions on process performance and heat integration, we find that allocation by mass favors steel and is unlikely to yield an ethanol product that fulfills the Renewable Energy Directive (RED) biofuel criterion (65% emission reduction relative to a fossil comparator), even when using renewable electricity and applying CCS to the blast furnace gas prior to CO conversion into ethanol and electricity. In contrast, attribution fulfills the criterion and yields bioethanol for electricity grid intensities 2/kWhel without CCS and yields bioethanol for grid intensities up to 800 gCO2/kWhel with CCS. The overall emissions savings are up to 27 and 47% in the near-term and long-term future, respectively. The choice of the allocation scheme greatly affects the emissions intensities of cogenerated products. Thus, the set of valid allocation schemes determines the extent of flexibility that manufacturers have in producing low-carbon products, which is relevant for industries whose product target sectors that value emissions differently. We recommend that policymakers consider the emerging relevance of co‐processing in nonrefining facilities. Provided there is no double-accounting of emissions, policies should contain a reasonable degree of freedom in the allocation of emissions savings to low-carbon products, so as to promote the sale of these savings, thereby making investments in mitigation technologies more attractive to stakeholders.
  •  
6.
  • Biermann, Max, 1989, et al. (författare)
  • Efficient utilization of industrial excess heat for carbon capture and district heating
  • 2020
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Carbon capture and storage (CCS) from fossil and biogenic (BECCS) emission sources is necessary to limit global warming to well below 2°C. The EU as well as Swedish national agencies emphasize the importance of CCS for emission intensive industries. However, the cost of implementing CCS is currently still higher than the cost of emitting CO2 via the EU ETS, for example. To incentivize rapid deployment of CCS, the concept of partial capture has been suggested, i.e. capturing only a fraction of the site emissions to reduce capture cost. Several studies have found that the utilization of excess heat from industrial processes could significantly reduce the capture cost as the heat required (~120°C) may be available in significant quantities. However, available excess heat will not be sufficient to power full capture at most industrial sites. In Sweden, many industries utilize all or part of their excess heat in heat recovery units or in combined heat and power (CHP) plants to produce electricity and deliver heat to municipal district heating (MDH) systems. A broad implementation of CCS will, thus, effect the availability of excess heat for industrial heat and power generation. The future product portfolio of industrial processes with excess heat export and CHP plants can therefore be expected to include not only heat and power production, but also climate services (CCS/BECCS) and grid services (frequency regulation due to intermittent renewables). The aim of this work is to assess partial capture at sites that have access to low-value excess heat to power the capture process, whilst considering competition from using the excess heat for MDH delivery. The work is based on process modelling and cost estimation of CO2 capture processes using amine absorption for two illustrative case studies, a refinery and a steel mill, which both currently use excess heat for MDH. The main focus is on investigating how seasonal variations in the availability of excess heat as well as the demand of district heating impact cost-efficient design and operation of partial capture at industrial sites. A challenge when utilizing excess heat in connection to a process connected to a district heating system is that the heat source which can be used to power part of the capture process will exhibit seasonal availability, and thus may inflict extra cost for the CCS plant not running at full load, and therefore may counteract the economic motivation for partial capture. To prevent this, heat integration between CCS and municipal district heating is investigated, for example by utilizing heat from the CO2 compression so that low-pressure steam is released from MDH to provide heat to capture CO2 whilst maintaining MDH supply. The design of the amine absorption capture process will have to handle significant load changes and still maintain high separation efficiency within hydrodynamic boundaries of the absorber and stripper columns. The cost of such operation will depend on the solvent circulation flows, the number of absorber columns (including packing and liquid collectors/distributors) and capacity of solvent buffer tanks for storing unused solvent during the winter season. Assuming that a constant amount of CO2 is avoided, the avoidance cost of CCS based on excess heat with seasonal heat load variations is compared to the avoidance cost of CCS based on the use of external fuel to achieve a constant heat load to the reboiler.
  •  
7.
  • Biermann, Max, 1989, et al. (författare)
  • Evaluation of Steel Mills as Carbon Sinks
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The iron and steel industry is one of the industries with the largest global contribution to CO2 emissions. Possible mitigation options include use of biomass and carbon capture and storage. Combining these two mitigation options, this study evaluates the potential for BECCS at an integrated steel mill in Sweden. The injection of pulverized biocoal from torrefaction or pyrolysis into a blast furnace and CO2 capture by amine absorption of the blast furnace gas leaving at the top of the furnace can reduce CO2 site emissions by up to 61 %, when accounting for negative emissions (biogenic CO2 being captured). The mitigation cost are estimated to 43 – 100 € per tonne CO2 avoided, depending primarily on biomass prices and the share of biomass used in the process (the study assumes a cost effective capture rate of 84%). Besides a reduction in CO2 emissions, the study highlights the potential for green by-products from injecting biogenic carbon into the blast furnace in the form of renewable electricity and CO2 neutral steel. The study concludes that it is theoretically possible to reach carbon neutrality or even net-negative emissions in an integrated steel mill, but this would require considerable process changes and high demand of biomass. Nonetheless, the implementation of BECCS based on feasible biomass injection volumes in integrated steel mills is interesting as a near-term and possibly cost-effective option for CO2 mitigation.
  •  
8.
  • Biermann, Max, 1989, et al. (författare)
  • Lessons learned from the Preem-CCS project – a pioneering Swedish-Norwegian collaboration showcasing the full CCS chain
  • 2022
  • Ingår i: 16th Greenhouse Gas Control Technologies Conference 2022 (GHGT-16).
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents the key findings of the Preem-CCS project, a co-funded Swedish-Norwegian R&D collaboration that investigated CO2 capture from the Preem refineries in Sweden, and subsequent ship transport of captured CO2 for permanent storage on the Norwegian Continental Shelf. The project was conducted 2019-2022 and accomplished: 1) the on-site pilot scale demonstration of amine-based CO2 absorption using Aker Carbon Capture’s mobile test unit (MTU), 2) an in-depth investigation of energy-efficient heat supply for CO2 capture, 3) a detailed techno-economic evaluation of a feasible carbon capture and storage (CCS) chain (from CO2 capture in Sweden to ship transport to Norway), and 4) an investigation of relevant legal and regulatory aspects of trans-border CO2 transport between Sweden and Norway.
  •  
9.
  • Biermann, Max, 1989, et al. (författare)
  • Partial capture from refineries through utilization of existing site energy systems
  • 2021
  • Ingår i: 15th Greenhouse Gas Control Technologies Conference 2021, GHGT 2021. - : Elsevier BV.
  • Konferensbidrag (refereegranskat)abstract
    • Many studies indicate that carbon capture and storage operations need to be ramped up in the coming decades to limit global warming to well-below 2°C. Partial CO2 capture from carbon-intensive industrial processes is a promising starting point for initial CO2 transport and storage infrastructure projects, such as the Norwegian full-chain CCS project “Northern Lights”, since specific capture cost (€/t CO2) for single-stack capture can be kept low compared to full capture from all, often less suitable stacks. This work highlights the importance of utilizing existing site energy systems to avoid significant increase in marginal abatement cost when moving from partial to full capture. A systematic and comprehensive techno-economic approach is applied that identifies a mix of heat supply sources with minimum cost based on a detailed analysis of available heat and capacity within the existing site energy system. Time-dependent variations are considered via multi-period, linear optimization. For single-stack capture from the hydrogen production unit (~0.5 Mt CO2 p.a.) of a Swedish refinery in the context of the current energy system, we find avoidance cost for the capture plant (liquefaction, ship transport, and storage excluded)of 42 €/t CO2-avoided that is predominantly driven by steam raised from available process heat in existing coolers (~6 €/t steam). For full capture from all major stacks (~1.4 Mt CO2 p.a.), the avoidance cost becomes twice as high (86 €/t CO2-avoided) due to heat supply from available heat and existing boiler capacity (combustion of natural gas) at costs of ~20€/t steam. The analysis shows that very few investments in new steam capacity are required, and thus, that the utilization of existing site energy systems is important for lowering capture cost significantly, and thus the whole-chain cost for early CCS projects.
  •  
10.
  • Biermann, Max, 1989 (författare)
  • Partial carbon capture – an opportunity to decarbonize primary steelmaking
  • 2019
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Climate change requires that all energy-related sectors drastically reduce their greenhouse gas emissions (GHG). To have a high likelihood of limiting global warming to 1.5°C, large-scale mitigation of GHG has to start being implemented and cause emissions to fall well before Year 2030. The process industry, including the iron and steel industry, is inherently carbon-intensive and carbon capture and storage (CCS) is one of the few options available to achieve the required reductions in carbon dioxide (CO2) emissions. Despite its high technological maturity, CCS is not being implemented at the expected rates due inter alia to the low value creation of CCS for process industries, which is often attributed to uncertainties related to carbon pricing and the considerable investments required in CO2 capture. This thesis deals with the concept of partial carbon capture, which is governed by market or site conditions and aims to capture a smaller fraction of the CO2 emissions from an industrial site, thereby lowering the absolute and specific costs (€ per tonne CO2) for CO2 capture, as compared to a conventional full-capture process. Depending on the scale and market conditions these savings hold true especially for a process industry that has large gas flows with concentrations of CO2 ≥20 vol.% and access to low-value heat. Integrated steel mills typically fulfill these conditions. The value of partial capture for the steel industry is assessed in a techno-economic study on the separation of CO2 from the most carbon-intensive steel mill off-gases. The design for partial carbon capture using a 30 wt.% aqueous monoethanolamine (MEA) solvent is optimized for lower cost. Powering the capture process exclusively with excess heat entails a cost of 28–35 (±4) €/tonne CO2-captured and a reduction in CO2 emissions of 19%– 43% onsite, depending on design and CO2 source. In contrast, full capture requires external energy to reduce the CO2 site emissions by 76%, entailing costs in the range of 39–54 (±5) €/tonne CO2-captured. Furthermore, the use of excess heat has impacts on the cost structure of partial carbon capture, i.e., increasing the ratio of capital expenditures to operational expenditures, as well as on the relationship between carbon and energy intensity for primary steel as an industrial product. The present work concludes that near-term implementation of partial carbon capture in the 2020s will be economically sustainable if average carbon prices are in the range of 40–60 €/tonne CO2 over the entire economic life-time of the partial capture unit (ca. 25 years). Once implemented, partial capture could evolve to full capture over time through either co-mitigation (e.g., with biomass utilization or electrification) or efficiency improvements. Alternatively, partial capture could act as a bridging-technology for new, carbon-free production. In summary, partial carbon capture is found to be readily available and potentially economically viable to initiate large-scale mitigation before Year 2030. Partial capture may represent a starting point for the transition to the carbon-constrained economies of the future in line with the 1.5°C target.
  •  
11.
  • Biermann, Max, 1989, et al. (författare)
  • Partial Carbon Capture by Absorption Cycle for Reduced Specific Capture Cost
  • 2018
  • Ingår i: Industrial & Engineering Chemistry Research. - : American Chemical Society (ACS). - 1520-5045 .- 0888-5885. ; 57:45, s. 15411-15422
  • Tidskriftsartikel (refereegranskat)abstract
    • For a sustainable-energy system, the industrial carbon emission should be zero or close to it. The partial capture of CO2, i.e., capturing only a share of the CO2, is discussed as an option for initiating the transition toward the decarbonization of industry by reducing the CO2 mitigation cost at industrial sites. This work models two approaches to achieving partial capture based on amine absorption: (1) capturing 90% CO2 from a split stream of the flue gas or (2) capturing less CO2 (≪90%) from the total flue-gas flow. A techno-economic analysis is carried out that considers scale, CO2 concentration, and process configurations (absorber intercooling and rich solvent splitting) when comparing the cost of partial capture to full capture, i.e., capturing close to all CO2 from the entire gas. Besides lowering absolute costs, the study shows that partial capture from CO2-rich gases may also lower specific cost (€ per tonne of CO2 captured) compared to full capture, despite the economy of scale, during certain market conditions. Operating expenditures, especially the cost of steam, are found to be dominating cost factors for partial capture, even for capture down to 200 000 tonnes per year.
  •  
12.
  • Biermann, Max, 1989, et al. (författare)
  • Partial CO2 capture in process industry – a review of aspects to consider for a cost-effective and timely CCS implementation
  • 2022
  • Ingår i: 16th Greenhouse Gas Control Technologies Conference 2022 (GHGT-16).
  • Konferensbidrag (refereegranskat)abstract
    • Carbon capture and storage (CCS) activities need to be ramped up significantly to address the climate crises. This paper reviews relevant techno-economic and policy-related aspects for a cost-effective, near-term implementation of CCS via partial CO2 capture in the process industry which have been explored in a doctoral thesis from a site-level perspective. These aspects include: 1) the energy- and cost-effective design of solvent-based processes for partial capture, entailing cost savings of up to 10% for CO2-rich gases (>17 vol.%wet); 2) the efficient use of available heat on-site to power partial which can confer cost savings along the entire CCS chain of up to ~25%; 3) the incorporation of site realities, such as temporal variations in heat availability, into techno-economic assessments; 4) the adaption of policies that address the allocation of carbon emissions reductions to low-carbon products, so that investments in mitigation technologies are incentivized with respect to the ambition level; and 5), the recognition of the rather narrow window of opportunity for partial capture with regard to the climate targets of the Paris Agreement and to the lifetime of the existing infrastructure, alternative production and (co-)mitigation technologies, as well as the regional energy and CO2 transport and storage systems.
  •  
13.
  • Biermann, Max, 1989 (författare)
  • Partial CO2 capture to facilitate cost-efficient deployment of carbon capture and storage in process industries - Deliberations on process design, heat integration, and carbon allocation
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Climate change requires that all energy-related sectors reduce drastically their greenhouse gas (GHG) emissions, at a global rate of 1–2 GtCO2 per year, starting now. Process industries, such as the iron and steel, cement, petrochemical, and oil-refining industries, are inherently carbon-intensive, and carbon capture and storage (CCS) is one of the few options available to achieve the required deep reductions in carbon dioxide (CO2) emissions. Despite being technologically mature, CCS has so far not been implemented at the required rates. This is due inter alia to the low value created by CCS for process industries, which is attributed to uncertainties related to carbon pricing and the considerable investments required for CO2 capture installations. This thesis explores the concept of partial carbon capture as an opportunity for the process industry, as part of its transition, to operate in a net-zero emissions framework by the middle of this century. Partial capture is governed by market and site conditions, and aims to capture a designated share of the CO2 emissions from an industrial site, thereby lowering the absolute and specific costs (in€/tCO2) for CO2 capture, as compared to a conventional full-capture system. The thesis elaborates the relevant technical, economic, and policy-related aspects related to facilitating the near-term implementation of carbon capture at industrial sites. These aspects include: 1) the energy- and cost-effective design of solvent-based processes for partial capture, which can lead to capture cost savings of up to 10% for gases with a high CO2 content (>17 vol.%wet); 2) the efficient use of residual heat and existing capacities on-site to power partial capture, which in case studies of an oil refinery and an integrated steel mill, are shown to confer cost savings along the entire CCS chain of 17%–24%; 3) the incorporation of site realities, such as temporal variations in heat availability, into techno-economic assessments; 4) the adaption of policies that address the allocation of carbon emissions reductions to low-carbon products, so that investments in mitigation technologies are incentivized with respect to the ambition level; and 5), the recognition of the rather narrow window of opportunity for partial capture with regard to the lifetime of the existing infrastructure, alternative production and (co-)mitigation technologies, as well as the regional energy and CO2 transport and storage systems. As the title image indicates, the share of carbon extracted from the earth that is sequestered needs to reach 100% by mid-century, in order to limit global warming in line with the targets of the Paris Agreement (i.e., 1.5°C or well below 2°C). Thus, partial capture is only a short-term solution for kick-starting CCS, and it will eventually have to lead to full capture, alternatively full mitigation (e.g., via carbon-free production), or be combined with renewable feedstocks if used in the longer term. Therefore, it is timely for the process industry to apply partial capture and, thereby, ramp up widespread adoption of CCS, so to build up the infrastructure for direct removal of carbon from the atmosphere, which will be required on the gigatonne scale in the second half of the 21st Century.
  •  
14.
  • Biermann, Max, 1989, et al. (författare)
  • Preem CCS - Synthesis of main project findings and insights
  • 2022
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The Preem-CCS project was a Swedish-Norwegian collaboration that investigated CO2 capture from the Preem refineries in Sweden, and subsequent ship transport of captured CO2 for permanent storage on the Norwegian Continental Shelf. The project was conducted from early 2019 to beginning of 2022 and funding was provided by the Norwegian CLIMIT-Demo program via Gassnova, by the Swedish Energy Agency and by the participating industry and research partners (Preem, Aker Carbon Capture, SINTEF Energy Research, Chalmers University of Technology, and Equinor). This report summarizes the key findings of the project activities listed below:   - Pilot-scale testing of CO2 capture at the hydrogen production unit (HPU) at the Lysekil refinery using the Aker Carbon Capture (ACC) mobile test unit (MTU)   - In-depth investigation of energy efficiency opportunities along the CCS chain, including the use of residual heat at the Lysekil refinery site to satisfy the energy requirements for solvent regeneration   - Evaluation of the technical feasibility and cost evaluation of the CCS chain including CO2 capture and transportation by ship to storage facilities off the Norwegian west coast   - Investigation of relevant legal and regulatory aspects related to trans-border CO2 transport and storage and national emissions reduction commitments in Norway and Sweden The report also discusses the next steps towards implementation of CCS at Preem refineries in Lysekil and Gothenburg.
  •  
15.
  • Biermann, Max, 1989, et al. (författare)
  • Scenario for near-term implementation of partial capture from blast furnace gases in Swedish steel industry
  • 2019
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Iron-and-steel making is a carbon-intensive industry and responsible for about 8% of global CO2 emissions. Meeting CO2 reduction targets is challenging, since carbon is inherent in the dominating production route in blast furnaces. Long-term plans to phase out carbon and change production technique are under way, such as iron ore reduction with hydrogen[1][2] won from renewable energies or electro winning[3], however unlikely to be implemented at scale before 2040 [4]. Until a transition to such technologies is completed, carbon leakage will remain to be a threat to steel industry inside EU ETS system. CCS remains an option for steel industry to comply with reduction targets and meet rising allowance (EUA) prices, currently above 20 €/t. Most studies on CCS propose a capture rate of ≥ 90 %[5–7], however, CCS could be considered as a part of a series of measures (e.g. fuel change, energy efficiency measures) that together achieve a significant reduction in CO2 emissions until a carbon-neutral production is in place. This line of thought motivates the concept of partial capture, where only the most cost effective part of the CO2 emissions are separated for storage [8]. In steel industry, high CO2 concentrations at large flows and the availability of excess heat make partial capture attractive. Previous work on the steel mill in Luleå, Sweden, emits around 3.1 Mt CO2 per year, has found that 40-45 % of site emissions can be captured fueled by excess heat alone[9]. Therein, five heat recovery technologies were assessed, ranging from back pressure operation of CHP turbine to dry slag granulation. Promising CO2 sources on site include flue gases from hot stoves and the combined-heat and power plant, and the process gas originating from the blast furnace – blast furnace gas (BFG). BFG is a pressurized, low value fuel used for heating on site. CO2 separation from BFG requires less reboiler heat for MEA regeneration, and the enhanced heating value of the CO2 lean BFG increases energy efficiency of the steel mill [9]. This work discusses the near-term (the 2020s) implementation of partial capture at a Swedish steel mill and the economic viability of such implementation dependent on the energy price, carbon price, and required reductions in CO2 emissions. Based on previous work [9][10,11] on partial capture in steel industry a cost estimation of a capture system for the BFG is conducted including CAPEX and OPEX of the MEA capture unit, gas piping, and recovering heat from the steel mill. The costs are summarized as equivalent annualized capture cost (EAC) and set into relation to transport and storage costs as well as carbon emission costs to form the net abatement cost (NAC) according to Eq. (1) ???=???+ ?????????&??????? ???? −?????? ????? [€/???2] (1) Figure 1 shows how EAC for BFG varies with the capture rate and the cost of steam for different heat recovery technologies represented by the steps in the curve ( see explanation in [9]). Note that partial capture from BFG is more economical than the full capture benchmark. The most cost-efficient case of 28 €/t CO2 captured is achieved for BFG capture fueled by steam from back-pressure operation (at the expense of electricity production), flue gas heat recovery and flare gas combustion. The transport and storage cost applied in Eq (1) represent ship transport from the Bothnian Bay to a storage site in the Baltic Sea , according to Kjärstad et el.[12]. Transport and storage cost range within 17 – 27 €/t CO2 depending on scale. These installation and operation cost for capture, transport and storage are set into relation with various scenarios on future carbon and energy (electricity) prices in Europe and Sweden. For example, Figure 2 illustrates a scenario in line with IEA’s sustainable development scenario to restrict global warming to 2°C. The carbon prices are adapted from WEO 2018 [13] and increase from 20 € to 120 € per tonne CO2 by 2040 and the electricity prices of 42-52 €/MWh (increasing with time) are based on latest results from the NEPP project [14]. In this scenario, partial capture from BFG could become economic viable in 2029, construction in 2020 with operation from 2022/23 onwards is likely to pay off within a lifetime of 20 years only. This work demonstrates the viability of partial capture as cost-efficient mitigation measure for the steel industry and illustrates conditions for an early implementation in the 2020s. This work is part of the CO2stCap project (Cutting Cost of CO2 Capture in Process Industry) and funded by Gassnova (CLIMIT programme), the Swedish Energy Agency, and industry partners.
  •  
16.
  • Biermann, Max, 1989, et al. (författare)
  • The role of energy supply in abatement cost curves for CO2 capture from process industry – a case study of a Swedish refinery
  • 2022
  • Ingår i: Applied Energy. - : Elsevier BV. - 1872-9118 .- 0306-2619. ; 319
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon capture and storage (CCS) activities need to be ramped up to meet the climate crisis. Abatement cost curves help identify low-cost starting points and formulate roadmaps for the implementation of CCS at industrial sites. In this work, we introduce the concept of energy supply cost curves to enhance the usefulness and accuracy of abatement cost curves. We use a multi-period mixed-integer linear program (MILP) to find an optimal mix of heat sources considering the existing site energy system. For a Swedish refinery, we found that residual heat and existing boiler capacities can provide the heat necessary for CCS that avoids more than 75% of the site emissions. Disregarding the existing site energy system and relying on new capacities instead, would lead to capture costs that are 40-57% higher per tonne of CO2-avoided (excl. CO2 liquefaction, transport, and storage). Furthermore, we quantified the impact of temporal variations of heat sources (intermittent residual heat) on the cost and emissions of heat supply to 7-26% and 9-66%, respectively. The conducted optimization of the energy supply mix under consideration of temporal variations leads to detailed estimates of energy supply costs ranging from partial to full CO2 capture, and thus, improve abatement cost curves.
  •  
17.
  • Eliasson, Åsa, 1993, et al. (författare)
  • Efficient heat integration of industrial CO2 capture and district heating supply
  • 2022
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836. ; 118
  • Tidskriftsartikel (refereegranskat)abstract
    • Excess heat from industrial processes can be used for carbon capture and storage (CCS) as well as providing heat to a district heating network, leading to increased energy efficiency and reduction of on-site and/or off-site CO2 emissions. In this work, both options are assessed with respect to economic performance and potential reduction of CO2 emissions. The work includes a generic study based on five heat load curves for each of which three CO2 capture plant configurations were evaluated. The economic assessment indicates that the specific cost of capture ranges from 47-134 €/t CO2 depending on heat profile and capture plant configuration. Having excess heat available during a long period of the year, or having a high peak amount of heat, were shown to lead to low specific capture costs. The paper also includes results of a case study in which the methodology was applied to actual seasonal variations of excess heat for an integrated steel mill located in northern Sweden. Specific capture costs were estimated to 27-44 €/t CO2, and a 36% reduction of direct plant emissions can be achieved if the CO2 capture plant is prioritized for usage of the available excess heat
  •  
18.
  • Eliasson, Åsa, 1993, et al. (författare)
  • Integration of Industrial CO2 Capture with Industrial District Heating Networks: A Refinery Case Study
  • 2021
  • Ingår i: Short Papers from the 11th International Trondheim CCS Conference. - 2387-4295. - 9788253617145 ; , s. 197-201
  • Konferensbidrag (refereegranskat)abstract
    • Industrial carbon capture and storage is recognized as an important technology to reach net zero emissions and mitigate global warming in accordance with the Paris agreement. Absorption-based carbon capture requires considerable amounts of low-grade heat, and a high degree of integration with the plant’s energy system is thus of high importance in order to achieve low operating costs for the capture plant. In this context, it is important to redefine what is commonly referred to as process “excess heat”. This work evaluates the impact of heat integration of a carbon capture plant with an existing refinery and two excess heat-powered district heating networks. The results show that a capture rate of ~60% of direct emissions at the refinery will consume all of the plant’s available residual heat. However, the results also indicate that a significant amount of heat can be recovered from the capture plant and exported for district heating supply purposes. Subsequent to capture plant integration, the potential district heating supply is 87 MW, compared to 100 MW in the reference case.
  •  
19.
  • Garðarsdóttir, Stefanía, et al. (författare)
  • Preem CCS – A Pioneering Swedish-Norwegian Collaboration Showcasing the Full CCS Chain
  • 2021
  • Ingår i: 15th Greenhouse Gas Control Technologies Conference 2021, GHGT 2021. - : Elsevier BV.
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents an overview of the Preem CCS project, a co-funded Swedish-Norwegian R&D initiative. The project aims to demonstrate CO2 capture at Preem's refinery in Lysekil, Sweden and investigating the techno-economic and regulatory aspects of capturing CO2 at the refinery in Sweden and transporting the CO2 cross borders to Norway for final storage with the Northern Lights infrastructure. The Preem CCS project started in 2019 and is due to finish by the end of 2021.
  •  
20.
  • Linderholm, Carl Johan, 1976, et al. (författare)
  • Chemical-looping combustion of solid fuel in a 100 kW unit using sintered manganese ore as oxygen carrier
  • 2017
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836. ; 65, s. 170-181
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon capture and storage (CCS) offers the opportunity to avoid CO2 emissions from for example power plants and cement factories. Chemical-looping combustion (CLC) is one of the most promising capture technologies with potentially very low cost of CO2 capture. In this study we present findings from a solid-fuel 100 kW chemical-looping combustor. A new oxygen carrier - a sintered manganese ore called Sinaus - has been studied in the Chalmers 100 kW unit. The material has been investigated for an operational time of 51.5 h using five fuels: two bituminous coals, two types of wood char, and petcoke. The operational results clearly demonstrate the viability of the CLC process. In comparison to previously used iron-based oxygen carriers, the Sinaus material showed higher gas conversion - up to 88% - and lower loss of char to the air reactor, with carbon capture reaching as high as 100%. Furthermore, the solid-fuel conversion was higher, which is mainly an effect of the choice of fuel size. It was found that the choice of fuel has a crucial impact on performance. Previous experience has shown that the use of large fuel particles gives low carbon capture, whereas pulverized fuel leads to low solid-fuel conversion. By choosing the appropriate - intermediate - size of fuel, it is possible to combine high carbon capture with high solid-fuel conversion. Previous studies indicate that the drawback of many manganese ores is the mechanical stability. Hence, a lot of emphasis was put on an in-depth study of the lifetime of the Sinaus material. Analyzing the production rate of fines, it was found the expected lifetime of the Sinaus particles was 100-400 h. This is lower than what has been found for iron-based material, but most likely sufficient for operation in full-scale chemical-looping applications. Whilst the production of fines was highest during operation with fuel, a lot of fines were produced also during operation without fuel. Seven experiments without fuel, i.e when the observed mechanical degradation was only due to high-velocity impacts and not chemical stress caused by phase transformations, gave a lifetime in the interval 220-1230 h. In conclusion, this first-of-its-kind investigation shows that the lifetime of the oxygen carrier is related to both the change in oxygen-carrier conversion and high-velocity impacts.
  •  
21.
  • Lyngfelt, Anders, 1955, et al. (författare)
  • Operational experiences of chemical-looping combustion with 18 manganese ores in a 300W unit
  • 2023
  • Ingår i: International Journal of Greenhouse Gas Control. - 1750-5836. ; 127
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical-looping combustion is a novel combustion technology with inherent CO2 capture. The process uses oxygen carriers in the form of metal oxide particles to transfer oxygen from air to fuel. The particles make up the bed material in two fluidized-bed reactors, the air reactor and the fuel reactor, and circulate between the two reactors. Natural minerals of low cost are attractive as oxygen carriers in chemical-looping combustion (CLC), in particular when used for combustion of solid fuels. The presence of ash can restrict the effective lifetime of the oxygen carrier either by loss of bed material associated with the ash removal or by direct reactions between ash and oxygen carrier that impair its reactivity. Independent of the presence of ash, the oxygen carrier lifetime can be limited by attrition leading to loss of fines. Ores considered and used in chemical-looping combustion include ilmenite, iron ore and manganese ore. Manganese ore is the least tested of these, although several studies suggest manganese ores often have higher reactivity as compared to the other two. The present study compares data from operation of 18 different manganese ores in a 300 W chemical-looping combustor, involving 329 h of operation with fuel. Results for 10 of these, involving 148 h of operation, have previously not been published. Some of these manganese ores have also been used in larger pilots, as well as in a 10 MW circulating fluidized-bed boiler. Operational results indicate significant differences between the ores with respect to performance, with syngas conversion ranging between 80 and 100% and methane conversion ranging between 17 and 59% and attrition rates ranging from very high to as low as 0.05%/h. For a few ores formation of fines led to operational failure after only a short period with fuel and for one of the ores agglomeration led to failure. The correlation between performance data and oxygen-carrier characteristics, including elementary analysis, was assessed. Gas conversion for both syngas and methane were correlated to gas conversion in lab testing. However, neither jet cup attrition data nor crushing strength was correlated to attrition in 300 W. This suggests that the mechanisms causing attrition are different at hot conditions and with reactions taking place, which emphasizes the need for pilot testing in the screening of manganese ore oxygen carriers. Fortunately, the correlation between gas conversion and attrition was weak. Thus, high reactivity is not necessarily associated with low attrition assistance and vice versa and several ores show high reactivity in combination with low or moderate attrition. Consequently, screening of manganese ores is well worth while, in order to find materials that can give both high conversion and long life-time. The best four ores were the Chinese Guizhou, South-African UMK, Elwaleed B, and Sibelco´s Braunite having syngas conversion(%)/attrition rate(%/h) of 98.3/0.05, 100/0.33 100/0.5 and 96.7/0.12, respectively.
  •  
22.
  •  
23.
  • Martinez Castilla, Guillermo, 1993, et al. (författare)
  • Integrating carbon capture into an industrial combined-heat-and-power plant: performance with hourly and seasonal load changes.
  • 2019
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836. ; 82, s. 192-203
  • Tidskriftsartikel (refereegranskat)abstract
    • The present work aims to map the variations in process gas and available excess heat of an integrated steel mill and to investigate the effects of these variations on the performance of a chemical absorption CO2 plant. Two time-scales are considered for the variations: seasonal and hourly changes. Dynamic process simulations are used to investigate the dynamic interactions between the steel mill and the capture unit. This includes the effect that periodic variations in the reboiler heat duty have on the performance of the capture plant and the effect of implementing a control strategy. The mapping of the operation of the steel mill reveals numerous variations on an hourly basis that are important for the design and operation of the capture plant, including decreases in the blast furnace gas (BFG) flow to 0% on approximately 10 occasions per year and variations of ±30 MW in the available heat more than 40 times per year. The simulations show that the capture unit responds very differently depending on the season, with a generally slower response during winter operation due to a lower level of circulation of the solvent. The capture unit shows also non-linearity in its response to changes in heat load - the deviation from the steady-state value is more pronounced when the heat is increased than when it is decreased. Thus, the simulation results indicate that implementing CO2 capture with chemical absorption in an integrated steel mill requires flexible operation of the capture plant. Dynamic simulations over a two-week period with historical (hourly) boundaries demonstrate that the capture process can operate in the presence of the steel mill variations. Implementation of a decentralized control strategy increases the amount of captured CO2 by 1.2%.
  •  
24.
  •  
25.
  • Moldenhauer, Patrick, 1983, et al. (författare)
  • Chemical-Looping Combustion of Kerosene and Gaseous Fuels with a Natural and a Manufactured Mn–Fe-Based Oxygen Carrier
  • 2018
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 1520-5029 .- 0887-0624. ; 32:8, s. 8803-8816
  • Tidskriftsartikel (refereegranskat)abstract
    • Two different oxygen-carrier materials with similar molar ratios of Mn:Fe:Al were tested in continuous chemical-looping combustion operation with different fuels, i.e., syngas (H2/CO), methane, and kerosene. One oxygen carrier was manufactured by spray drying, and the other one was a naturally occurring ore that was crushed. Experiments were conducted in a bench-scale, chemical-looping combustion reactor with continuous fuel addition and continuous circulation of oxygen-carrier particles. In fresh state, i.e., before fuel operation, both materials showed clear CLOU properties. In used state, i.e., after fuel operation, the CLOU properties of the manufactured oxygen carrier were slightly higher than before, whereas those of the natural material decreased significantly. Operation with fuel was conducted for a total of about 47 h between 850 and 950 °C, and clear differences in fuel conversion were observed. At similar oxygen-carrier-to-fuel ratios and temperatures, the manganese ore achieved a clearly higher methane conversion, whereas the manufactured material achieved a higher conversion of H2 and CO. Near-complete conversion of syngas, i.e., >99%, was reached with both materials tested. Particle circulation was indirectly measured and used to estimate solids conversion during continuous operation. The materials were characterized with ICP-SFMS, XRD, and SEM/EDX, and rate indices were calculated based on data obtained in TGA tests with different reactants. Thermodynamic equilibrium calculations were made and used to interpret results from oxygen release and TGA tests. Attrition indices and material porosity were determined for fresh and used samples of the materials used. The manganese ore exhibited a clearly lower structural integrity during redox operation compared to the manufactured material. However, the cost of producing an oxygen carrier from an ore is significantly lower than manufacturing an oxygen carrier by spray drying.
  •  
26.
  • Moldenhauer, Patrick, 1983, et al. (författare)
  • CO2 Capture from Combustion of Biomass Volatiles with a Chemical-Looping Combustion Process
  • 2017
  • Ingår i: EUBCE 2017 - 25th European Biomass Conference and Exhibition, Stockholm, Sweden, June 12-15, 2017.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Chemical-looping combustion (CLC) is a low-cost CO2 capture technology that uses oxygen carriers – metal oxides – for oxygen transfer from air to fuel. This enables fuel oxidation without mixing fuel and combustion air. After condensation of steam, a stream of pure CO2 is obtained without the need for an active gas separation. The capture and storage of CO2 from biomass-based fuels sources make it possible to obtain so-called negative emissions – the atmosphere is cleansed from carbon dioxide. This concept of storing biomass-based CO2 could prove to be highly instrumental for a country such as Sweden, which has substantial point emissions of biomass-based CO2.
  •  
27.
  • Moldenhauer, Patrick, 1983, et al. (författare)
  • Oxygen carrier development of calcium manganite-based materials with perovskite structure for chemical looping combustion of methane
  • 2017
  • Ingår i: Proceedings of the 42nd International Technical Conference on Clean Energy, Clearwater, FL, USA, June 11-15, 2017. ; , s. 12-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Chemical-looping combustion (CLC) of gaseous fuels could be of interest in industrial processes for heat, power or hydrogen production with carbon capture. For instance, production of steam or hydrogen from refinery gas are possible applications. A series of collaborate European projects has been carried out since 2002, which focused on oxygen-carrier development and upscaling of both theCLC process and oxygen-carrier production with methane or natural gas as fuel. Most recently, in the FP7 SUCCESS project (2013-2017), Ca-Mn-based materials with perovskite structure, CaMnO3, were produced at a larger scale and with cheap and commercial raw materials. The main advantage with this type of oxygen carrier is the ability to release oxygen to the gas phase, hence promoting reactivity in the fuel reactor. In the project, a significant number of such materials were produced and tested. It was found that a perovskite structure can be obtained relatively easy with widely different raw materials for Ca, Mn, Ti and Mg. The produced materials generally had high reactivities and high attrition resistances, but were prone to sulfur poisoning.In this paper, selected results are presented from the different stages of material development and upscaling, i.e., from bench-scale reactors with batch and continuous operation, respectively, as well as from a laboratory-scale unit with continuous operation and a nominal fuel input of 10 kWth. In the 10 kW unit, the gas velocities in the riser and in the grid jet zone of the gas distributor come close to gas velocities of industrial-scale units and, therefore, this unit is used to assess particle lifetime. Results from the 10 kW unit show that very high degrees of fuel conversion can be reached while achieving very high lifetimes.
  •  
28.
  • Moldenhauer, Patrick, 1983, et al. (författare)
  • Oxygen-Carrier Development of Calcium Manganite–Based Materials with Perovskite Structure for Chemical-Looping Combustion of Methane
  • 2020
  • Ingår i: Energy Technology. - : Wiley. - 2194-4296 .- 2194-4288. ; 8:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The present work is related to the upscaling of calcium manganite–based oxygen-carrier materials, which have a perovskite structure, both with respect to the use of inexpensive raw materials, i.e., instead of pure chemicals, and the upscaling of production to multitonne batches. Results are presented from the two different stages of material development, i.e., raw material selection and upscaling. The evaluation involves both operation in chemical-looping combustor units of 300 W and 10 kW, and material characterization. In the latter unit, the gas velocities in the riser and in the grid-jet zone of the gas distributor come close to gas velocities of industrial-scale units and, therefore, this unit is also used to assess particle lifetime. Results from the various chemical-looping combustion units and oxygen-carrier materials produced from various raw materials of both high and low purity show that very high degrees of fuel conversion can be reached while achieving very high oxygen-carrier lifetimes. The composition of the oxygen-carrier materials seems robust and flexible with respect to the precursors used in its manufacturing.
  •  
29.
  • Normann, Fredrik, 1982, et al. (författare)
  • CO2stCap - Reducing the Cost of Carbon Capture in Process Industry
  • 2019
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The CO2stCap-Project is a Norwegian-Swedish research initiative that was initiated in Year 2015 to reduce the cost of carbon capture in the process industry by developing concepts for the partial capture of emissions. The project is based on the premises that carbon capture and storage (CCS) is commercially available and can be implemented on a large scale, and that CCS is a required part of the solution to reduce global emissions of CO2 in line with the 1.5°C target. However, the substantial efforts made to develop low-carbon technologies have resulted in little implementation, as the value assigned to mitigating CO2 emissions is still too low relative to the risk associated with the considerable investment required, both from the industry and societal perspectives. The CO2stCap-Project is designed to enable the goals related to the reduction of CO2 emissions that have been established at the national, regional and global levels.
  •  
30.
  • Reyes-Lúa, Adriana, et al. (författare)
  • Potential Impact of the Preem-CCS Project
  • 2021
  • Ingår i: Short Papers from the 11th International Trondheim CCS Conference. - 2387-4295. - 9788253617145 ; , s. 63-68
  • Konferensbidrag (refereegranskat)abstract
    • The ongoing Preem CCS project investigates opportunities for CO2 capture from the Preem refineries in Lysekil and Gothenburg, Sweden, with focus on the Lysekil refinery. The consortium members of this Norwegian-Swedish collaboration are Preem AB, Chalmers University of Technology, SINTEF Energy Research, Equinor Energy and Aker Carbon Capture. In this paper, we present the alternative carbon capture and storage (CCS) value chains that are being studied, together with the potential amounts of direct CO2 emissions from production that can be captured in each case. We also discuss potential cost reduction factors for CO2 capture at the Preem refineries, such as heat integration within the refinery and economies of scale, which may also be of relevance for reduction of capture costs for other Northern Lights partners. The implementation of CO2 capture in the Preem refineries will be an important step not only for Preem but also for Sweden to reach their climate neutrality goals.
  •  
31.
  • Roshan Kumar, Tharun, 1995, et al. (författare)
  • Plant and system-level performance of combined heat and power plants equipped with different carbon capture technologies
  • 2023
  • Ingår i: Applied Energy. - : Elsevier BV. - 1872-9118 .- 0306-2619. ; 338
  • Tidskriftsartikel (refereegranskat)abstract
    • Installing carbon capture and storage (BECCS) capability at existing biomass-fired combined heat and power (bio-CHP) plants with substantial emissions of biogenic CO2 could achieve significant quantities of the negative CO2 emissions required to meet climate targets. However, it is unclear which CO2 capture technology is optimal for extensive BECCS deployment in bio-CHP plants operating in district heating (DH) systems. This is in part due to inconsistent views regarding the perceived value of high-exergy energy carriers at the plant level and the extended energy system to which it belongs. This work evaluates how a bio-CHP plant in a DH system performs when equipped with CO2 capture systems with inherently different exergy requirements per unit of CO2 captured from the flue gases. The analysis is based upon steady-state process models of the steam cycle of an existing biomass-fired CHP plant as well as two chemical absorption-based CO2 capture technologies that use hot potassium carbonate (HPC) and amine-based (monoethanolamine or MEA) solvents. The models were developed to quantify the plant energy and exergy performances, both at the plant and system levels. In addition, heat recovery from the CO2 capture and conditioning units was considered, as well as the possibility of integrating large-scale heat pumps into the plant or using domestic heat pumps within the local DH system. The results show that the HPC process has more recoverable excess heat (∼0.99 MJ/kgCO2,captured) than the MEA process (0.58 MJ/kgCO2,captured) at temperature levels suitable for district heating, which is consistent with values reported in previous similar comparative studies. However, using energy performance within the plant boundary as a figure of merit is biased in favor of the HPC process. Considering heat and power, the energy efficiency of the bio-CHP plant fitted with HPC and MEA are estimated to be 90% and 76%, respectively. Whereas considering exergy performance within the plant boundary, the analysis emphasizes the significant advantage the amine-based capture process has over the HPC process. Higher exergy efficiency for the CHP plant with the MEA capture process (∼35%) compared to the plant with the HPC process (∼26%) implies a relatively superior ability of the plant to adapt its product output, i.e., heat and power production, and negative-CO2 emissions. Furthermore, advanced amine solvents allow the BECCS plant to capture well beyond 90% of its total CO2 emissions with relatively low increased specific heat demand.
  •  
32.
  •  
33.
  • Skagestad, Ragnhild, 1978, et al. (författare)
  • GCCSI Webinar: Cutting Cost of CO2 Capture in Process Industry (CO2stCap) Project overview & first results for partial CO2 capture at integrated steelworks
  • 2017
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • GCCSI Webinar: Cutting Cost of CO2 Capture in Process Industry (CO2stCap) Project overview & first results for partial CO2 capture at integrated steelworks This publication has the format of a webinar: The CO2StCap project is a four year initiative carried out by industry and academic partners with the aim of reducing capture costs from CO2 intensive industries (more information here). The project, led by Tel-Tek, is based on the idea that cost reduction is possible by capturing only a share of the CO2 emissions from a given facility, instead of striving for maximized capture rates. This can be done in multiple ways, for instance by capturing only from the largest CO2 sources at individual multi-stack sites utilising cheap waste heat or adapting the capture volumes to seasonal changes in operations. The main focus of this research is to perform techno-economic analyses for multiple partial CO2 capture concepts in order to identify economic optimums between cost and volumes captured. In total for four different case studies are developed for cement, iron & steel, pulp & paper and ferroalloys industries. The first part of the webinar gave an overview of the project with insights into the cost estimation method used. The second part presented the iron & steel industry case study based on the Lulea site in Sweden, for which waste-heat mapping methodology has been used to assess the potential for partial capture via MEA-absorption. Capture costs for different CO2 sources were discussed, demonstrating the viability of partial capture in an integrated steelworks.
  •  
34.
  • Skagestad, Ragnhild, 1978, et al. (författare)
  • Webinar: The CO2stCap project and overall results
  • 2019
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • [recording at IEAGHG available on youtube - see link: https://www.youtube.com/watch?v=9tLLGKmMT9Y] The webinar will give an overview of the final results of the CO2stCap project. The CO2stCap-Project is a Norwegian-Swedish research initiative initiated in the Year 2015 to reduce the cost of carbon capture in the process industry by developing concepts for partial capture. The project focuses on four industrial processes that have process-related emissions of CO2 - that is, emissions are not only from heat supply but also part of the manufacturing process. Such emissions are likely to require CCS as they are difficult to reduce by measures like fuel-shift, electrification, or energy efficiency improvements. The project has showed that partial capture may reduce the cost for CO2 capture, and can be a first step for moving CCS forwards. Both technical and economical results will be presented at the webinar. Ragnhild Skagestad, SINTEF Industry will present " The CO2stCap project and overall results Max Bierman, Chalmers University will present " Scenario for near-term implementation of partial capture from blast furnace gases in Swedish steel industry" Anette Mathisen, SINTEF Industry will present " CO2 capture opportunities in the Norwegian silicon industry" Jens Wolf at RISE Bioeconomy will present " Partial Capture of CO2 From a Pulp Mill with Focus on Cost Reduction"
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-34 av 34
Typ av publikation
konferensbidrag (15)
tidskriftsartikel (13)
rapport (2)
annan publikation (2)
doktorsavhandling (1)
licentiatavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Biermann, Max, 1989 (34)
Normann, Fredrik, 19 ... (19)
Johnsson, Filip, 196 ... (13)
Harvey, Simon, 1965 (9)
Lyngfelt, Anders, 19 ... (5)
Skagestad, Ragnhild, ... (5)
visa fler...
Moldenhauer, Patrick ... (5)
Mattisson, Tobias, 1 ... (4)
Larsson, Mikael (4)
Lundqvist, Karin (4)
Mocholí Montañés, Ru ... (4)
Eliasson, Åsa, 1993 (4)
Sundqvist, Maria (4)
Ali, Hassan (3)
Mathisen, Anette (3)
Wolf, Jens (3)
Hoballah, Rayane (3)
Fahrman, Elin, 1995 (3)
Reyes-Lúa, Adriana (3)
Roussanaly, Simon (3)
Jordal, Kristin (3)
Seglem, Heidi (3)
Martinez Castilla, G ... (3)
Òsk Gardarsdòttir, S ... (2)
Snijkers, Frans (2)
Beiron, Johanna, 199 ... (2)
Biermann, Maximilian (2)
Kjärstad, Jan, 1956 (2)
Anantharaman, Rahul (2)
Wanderley, Ricardo (2)
Fostås, Berit (2)
Langner, Christian, ... (2)
Gorset, Oddvar (2)
Linderholm, Carl Joh ... (2)
Hallberg, Peter, 198 ... (2)
Albertsen, Knuth (2)
Nilsson, Lars (1)
Alamia, Alberto, 198 ... (1)
Thunman, Henrik, 197 ... (1)
Skagestad, R. (1)
Bellqvist, David (1)
Onarheim, K. (1)
Skagestad, Ragnhild (1)
Fu, Chao (1)
Garðarsdóttir, Stefa ... (1)
Schmitz, Matthias, 1 ... (1)
Hanning, Malin, 1987 (1)
Haugen, H. A. (1)
Johannsen, Kristof (1)
Wimmer, Dominik (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (34)
Luleå tekniska universitet (2)
RISE (1)
Språk
Engelska (34)
Forskningsämne (UKÄ/SCB)
Teknik (34)
Naturvetenskap (7)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy