SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bindler Richard 1963 ) "

Sökning: WFRF:(Bindler Richard 1963 )

  • Resultat 1-44 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kylander, Malin E., et al. (författare)
  • It's in your glass : a history of sea level and storminess from the Laphroaig bog, Islay (southwestern Scotland)
  • 2020
  • Ingår i: Boreas. - : Wiley. - 0300-9483 .- 1502-3885. ; 49:1, s. 152-167
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe winter windstorms have become an increasingly common occurrence over recent decades in northwestern Europe. Although there exists considerable uncertainty, storminess is projected to increase in the future. On centennial to millennial time scales in particular, the mechanisms forcing storminess remain unsettled. We contribute to available palaeostorm records by reconstructing changes over the last 6670 years using a coastal peat sequence retrieved from the ombrotrophic Laphroaig bog on Islay, southwestern Scotland. We use a combination of ash content, grain size and elemental chemistry to identify periods of greater storminess, which are dated to 6605, 6290-6225, 5315-5085, 4505, 3900-3635, 3310-3130, 2920-2380, 2275-2190, 2005-1860, 1305-1090, 805-435 and 275 cal. a BP. Storm signals in the first half of the record up to similar to 3000 cal. a BP are mainly apparent in the grain-size changes. Samples from this time period also have a different elemental signature than those later in the record. We speculate that this is due to receding sea levels and the consequent establishment of a new sand source in the form of dunes, which are still present today. The most significant events and strongest winds are found during the Iron Ages Cold Epoch (2645 cal. a BP), the transition into, and in the middle of, the Roman Ages Warm Period (2235 and 1965 cal. a BP) and early in the Little Ice Age (545 cal. a BP). The Laphroaig record generally agrees with regionally relevant peat palaeostorm records from Wales and the Outer Hebrides, although the relative importance of the different storm periods is not the same. In general, stormier periods are coeval with cold periods in the region as evidenced by parallels with increased ice-rafted debris in the North Atlantic, highlighting that sea-ice conditions could impact future storminess and storm track position.
  •  
2.
  • Kylander, Malin E., 1977-, et al. (författare)
  • Storm chasing : Tracking Holocene storminess in southern Sweden using mineral proxies from inland and coastal peat bogs
  • 2023
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 299, s. 107854-
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe extratropical winter storms are a recurrent feature of the European climate and cause widespread socioeconomic losses. Due to insufficient long-term data, it remains unclear whether storminess has shown a notable response to changes in external forcing over the past millennia, which impacts our ability to project future storminess in a changing climate. Reconstructing past storm variability is essential to improving our understanding of storms on these longer, missing timescales. Peat sequences from coastal ombrotrophic bogs are increasingly used for this purpose, where greater quantities of coarser grained beach sand are deposited by strong winds during storm events. Moving inland however, storm intensity decreases, as does sand availability, muting potential paleostorm signals in bogs. We circumvent these issues by taking the innovative approach of using mid-infrared (MIR) spectral data, supported by elemental information, from the inorganic fraction of Store Mosse Dune South (SMDS), a 5000-year-old sequence from a large peatland located in southern Sweden. We infer past changes in mineral composition and thereby, the grain size of the deposited material. The record is dominated by quartz, whose coarse nature was confirmed through analyses of potential local source sediments. This was supported by further mineralogical and elemental proxies of atmospheric input. Comparison of SMDS with within-bog and regionally relevant records showed that there is a difference in proxy and site response to what should be similar timing in shifts in storminess over the-100 km transect considered. We suggest the construction of regional storm stacks, built here by applying changepoint modelling to four transect sites jointly. This modelling approach has the effect of reinforcing signals in common while reducing the influence of random noise. The resulting Southern Sweden-Storm Stack dates stormier periods to 4495-4290, 3880-3790, 2885-2855, 2300-2005, 1175-1065 and 715-425 cal yr BP. By comparing with a newly constructed Western Scotland-Storm Stack and proximal dune records, we argue that regional storm stacks allow us to better compare past storminess over wider areas, gauge storm track movements and by extension, increase our understanding of the drivers of storminess on centennial to millennial timescales.
  •  
3.
  • Anderson, N.J., et al. (författare)
  • Landscape-Scale Variability of Organic Carbon Burial by SW Greenland Lakes
  • 2019
  • Ingår i: Ecosystems (New York. Print). - : Springer. - 1432-9840 .- 1435-0629. ; 22:8, s. 1706-1720
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes are a key feature of arctic landscapes and can be an important component of regional organic carbon (OC) budgets, but C burial rates are not well estimated. 210Pb-dated sediment cores and carbon and organic matter (as loss-on-ignition) content were used to estimate OC burial for 16 lakes in SW Greenland. Burial rates were corrected for sediment focusing using the 210Pb flux method. The study lakes span a range of water chemistries (conductivity range 25–3400 µS cm−1), areas (< 4–100 ha) and maximum depths (~ 10–50 m). The regional average focusing-corrected OC accumulation rate was ~ 2 g C m−2 y−1 prior to ~ 1950 and 3.6 g C m−2 y−1 after 1950. Among-lake variability in post-1950 OC AR was correlated with in-lake dissolved organic carbon concentration, conductivity, altitude and location along the fjord. Twelve lakes showed an increase in mean OC AR over the analyzed time period, ~ 1880–2000; as the study area was cooling until recently, this increase is probably attributable to other global change processes, for example, altered inputs of N or P. There are ~ 20,000 lakes in the study area ranging from ~ 1 ha to more than 130 km2, although over 83% of lakes are less than 10 ha. Extrapolating the mean post-1950 OC AR (3.6 g C m−2 y−1) to all lakes larger than 1000 ha and applying a lower rate of ~ 2 g C m−2 y−1 to large lakes (> 1000 ha) suggests a regional annual lake OC burial rate of ~ 10.14 × 109 g C y−1 post 1950. Given the low C content of soils in this area, lakes represent a substantial regional C store.
  •  
4.
  • Bertrand, Sebastien, et al. (författare)
  • Inorganic geochemistry of lake sediments : a review of analytical techniques and guidelines for data interpretation
  • 2024
  • Ingår i: Earth-Science Reviews. - : Elsevier. - 0012-8252 .- 1872-6828. ; 249
  • Forskningsöversikt (refereegranskat)abstract
    • Inorganic geochemistry is a powerful tool in paleolimnology. It has become one of the most commonly used techniques to analyze lake sediments, particularly due to the development and increasing availability of XRF core scanners during the last two decades. It allows for the reconstruction of the continuous processes that occur in lakes and their watersheds, and it is ideally suited to identify event deposits. How earth surface processes and limnological conditions are recorded in the inorganic geochemical composition of lake sediments is, however, relatively complex. Here, we review the main techniques used for the inorganic geochemical analysis of lake sediments and we offer guidance on sample preparation and instrument selection. We then summarize the best practices to process and interpret bulk inorganic geochemical data. In particular, we emphasize that log-ratio transformation is critical for the rigorous statistical analysis of geochemical datasets, whether they are obtained by XRF core scanning or more traditional techniques. In addition, we show that accurately interpreting inorganic geochemical data requires a sound understanding of the main components of the sediment (organic matter, biogenic silica, carbonates, lithogenic particles) and mineral assemblages. Finally, we provide a series of examples illustrating the potential and limits of inorganic geochemistry in paleolimnology. Although the examples presented in this paper focus on lake and fjord sediments, the principles presented here also apply to other sedimentary environments.
  •  
5.
  • Bindler, Richard, 1963-, et al. (författare)
  • Reshaping the landscape: mining, metallurgy and a millennium of environmental changes in south-central Sweden
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Before the recognition of emerging environmental issues during the 20th century such as acid rain, mercury pollution, climate change and biodiversity loss, human activities had already significantly altered landscapes around the globe. As elsewhere in Europe, the introduction of agriculture into Sweden during the Bronze and Iron Ages led to changes in forest cover, especially in southern areas, but also more limited impacts in central and northern Sweden along river valleys and coastal areas. In central Sweden the rise and rapid spread of ore mining and metallurgy from the 12th and especially 13th century initiated a widespread reshaping of the landscape named after its mining heritage –Bergslagen (mining laws). This mineral rich 89,000 km2 region encompasses ~5000 metallurgical sites (furnaces, smelters, foundries, forges) and ~10000 mines registered in the Swedish National Antiquities Board’s database.Analyses of >30 lake-sediment records using a combination of geochemical, diatom and pollen analyses, in combination with archaeological and historical records and toponyms, add important details to the early, poorly documented history of mining/metallurgy as well as provide insights into some of the environmental impacts across this large landscape. These impacts included damming of lakes and regulation of watercourses for waterpower, increase in erosion, emission of metals to surface waters and the atmosphere (and leaching from slag piles), decrease in forest cover and changes in water quality. The discontinuous appearance of pollen from cultivated plants (cereals) indicates some limited settlement before the 12th century, but the regular occurrence thereafter of cereal pollen together with a sharp increase in charcoal particles and geochemical evidence of mining/metallurgical activities, indicates mining/metallurgy was a driving force for settlement. Decline in forest cover was gradual from the 13th century, but was more significant from the late 16th century when iron and copper production increased exponentially. The increased demand for charcoal and increased agriculture, including an expansion of summer forest farms, contributed to a reduction in inferred forest cover to 40–80% – as compared to pre-anthropogenic (≤2000 BP) values of 84–95%. From the 16th century charcoal became the limiting resource within Bergslagen and metallurgy expanded to regions adjoining Bergslagen, contributing to a more widespread decline in forest cover also beyond the Bergslagen landscape.In association with the increase in land-use activities and resulting changes in vegetation cover, there was a decline (20–50%) in spectrally inferred lake-water total organic carbon, which we hypothesize resulted from a decreased pool of labile soil carbon. In some lakes closely connected with blast furnaces, where the peasant-miners also lived and farmed, there was an increase in diatom-inferred lake-water pH – as observed previously in SW Sweden in association with Iron Age land use. Only in a suite of lakes in close proximity to the smelting of copper sulfide ores in the surroundings of Falun was there evidence for pre-20th century acidification.While current rates of environmental change may be unprecedented, they build on an already modified landscape. Because pre-industrial conditions, i.e., pre-19th century, are often used as a reference level the scale of current changes may underestimate the full extent of ecosystem and environmental impacts.
  •  
6.
  • Capo, Eric, et al. (författare)
  • How Does Environmental Inter-annual Variability Shape Aquatic Microbial Communities? : A 40-Year Annual Record of Sedimentary DNA From a Boreal Lake (Nylandssjon, Sweden)
  • 2019
  • Ingår i: Frontiers in Ecology and Evolution. - : Frontiers Media S.A.. - 2296-701X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • To assess the sensitivity of lakes to anthropogenically-driven environmental changes (e.g., nutrient supply, climate change), it is necessary to first isolate the effects of between-year variability in weather conditions. This variability can strongly impact a lake's biological community especially in boreal and arctic areas where snow phenology play an important role in controlling the input of terrestrial matter to the lake. Identifying the importance of this inherent variability is difficult without time series that span at least several decades. Here, we applied a molecular approach (metabarcoding on eukaryotic 18S rRNA genes and qPCR on cyanobacterial 16S rRNA genes) to sedimentary DNA (sed-DNA) to unravel the annual variability of microbial community in 40 years' sediment record from the boreal lake Nylandssjon which preserve annually-laminated sediments. Our comparison between seasonal meteorological data, sediment inorganic geochemistry (X-ray fluorescence analyses) and organic biomarkers (pyrolysis-gas chromatography/mass spectrometry analyses), demonstrated that inter-annual variability strongly influence the sediment composition in Nylandssjon. Spring temperature, snow and ice phenology (e.g., the percentage of snow loss in spring, the timing of lake ice-off) were identified as important drivers for the inputs of terrestrial material to the lake, and were therefore also important for shaping the aquatic biological community. Main changes were detected in the late-80s/mid-90s and mid-2000s associated with increases in algal productivity, in total richness of the protistan community and in relative abundances of Chlorophyta, Dinophyceae as well as Cyanobacteria abundance. These changes could be linked to a decline in terrestrial inputs to the lake during the snow melt and run-off period, which in turn was driven by warmer winter temperatures. Even if our data shows that meteorological factors do affect the sediment composition and microbial communities, they only explain part of the variability. This is most likely a consequence of the high inter-annual variability in abiotic and biotic parameters highlighting the difficulty to draw firm conclusions concerning drivers of biological changes at an annual or sub-annual resolution even with the 40-year varved sediment record from Nylandssjon. Hence, it is necessary to have an even longer time perspective in order to reveal the full implications of climate change.
  •  
7.
  • Capo, Eric, et al. (författare)
  • Lake sedimentary dna research on past terrestrial and aquatic biodiversity: Overview and recommendations
  • 2021
  • Ingår i: Quaternary. - : MDPI. - 2571-550X. ; 4:1
  • Forskningsöversikt (refereegranskat)abstract
    • The use of lake sedimentary DNA to track the long-term changes in both terrestrial and aquatic biota is a rapidly advancing field in paleoecological research. Although largely applied nowadays, knowledge gaps remain in this field and there is therefore still research to be conducted to ensure the reliability of the sedimentary DNA signal. Building on the most recent literature and seven original case studies, we synthesize the state-of-the-art analytical procedures for effective sampling, extraction, amplification, quantification and/or generation of DNA inventories from sedimentary ancient DNA (sedaDNA) via high-throughput sequencing technologies. We provide recommendations based on current knowledge and best practises.
  •  
8.
  • Capo, Eric, et al. (författare)
  • Landscape setting drives the microbial eukaryotic community structure in four Swedish mountain lakes over the holocene
  • 2021
  • Ingår i: Microorganisms. - : MDPI. - 2076-2607. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • On the annual and interannual scales, lake microbial communities are known to be heavily influenced by environmental conditions both in the lake and in its terrestrial surroundings. How-ever, the influence of landscape setting and environmental change on shaping these communities over a longer (millennial) timescale is rarely studied. Here, we applied an 18S metabarcoding approach to DNA preserved in Holocene sediment records from two pairs of co‐located Swedish mountain lakes. Our data revealed that the microbial eukaryotic communities were strongly influenced by catchment characteristics rather than location. More precisely, the microbial communities from the two bedrock lakes were largely dominated by unclassified Alveolata, while the peatland lakes showed a more diverse microbial community, with Ciliophora, Chlorophyta and Chytrids among the more predominant groups. Furthermore, for the two bedrock‐dominated lakes—where the oldest DNA samples are dated to only a few hundred years after the lake formation—certain Alveolata, Chlorophytes, Stramenopiles and Rhizaria taxa were found prevalent throughout all the sediment profiles. Our work highlights the importance of species sorting due to landscape setting and the persistence of microbial eukaryotic diversity over millennial timescales in shaping modern lake microbial communities.
  •  
9.
  • Cooke, Colin A., et al. (författare)
  • Environmental archives of atmospheric Hg deposition : a review
  • 2020
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 709
  • Forskningsöversikt (refereegranskat)abstract
    • Environmental archives offer an opportunity to reconstruct temporal trends in atmospheric Hg deposition at various timescales. Lake sediment and peat have been the most widely used archives; however, new records from ice, tree rings, and the measurement of Hg stable isotopes, are offering new insights into past Hg cycling. Preindustrial Hg deposition has been studied over decadal to millennial timescales extending as far back as the late Pleistocene. Exploitation of mercury deposits (mainly cinnabar) first began during the mid to late Holocene in South America, Europe, and Asia, but increased dramatically during the Colonial era (1532-1900) for silver production. However, evidence for preindustrial Hg pollution is restricted to regions directly downwind or downstream of cinnabar or precious metal mining centers. Excluding these areas, there has been an approximately four-fold increase in atmospheric deposition globally over the industrial era (i.e., since 1800-1850), though regional differences exist, especially during the early 20th Century. Lake sediments, peat, ice, and tree rings are all influenced by (and integrate) a range of processes. For example, lake sediments are influenced by atmospheric deposition, sediment focusing, and the input of allochthonous material from the watershed, peat records reflect atmospheric deposition and biotic uptake, ice cores are a record of Hg scrubbed during precipitation, and tree rings record atmospheric concentrations. No archive represents an absolute record of past Hg deposition or concentrations, and post-depositional transformation of Hg profiles remains an important topic of research. However, natural archives continue to provide important insight into atmospheric Hg cycling over various timescales.
  •  
10.
  • Guedron, S., et al. (författare)
  • Late Holocene volcanic and anthropogenic mercury deposition in the western Central Andes (Lake Chungará, Chile)
  • 2019
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 662, s. 903-914
  • Tidskriftsartikel (refereegranskat)abstract
    • Volcanismis one of the major natural processes emitting mercury (Hg) to the atmosphere, representing a significant component of the global Hg budget. The importance of volcanic eruptions for local-scale Hg deposition was investigated using analyses of Hg, inorganic elemental tracers, and organic biomarkers in a sediment sequence from Lake Chungara (4520 m a.s.l.). Environmental change and Hg deposition in the immediate vicinity of the Parinacota volcano were reconstructed over the last 2700 years, encompassing the pre-anthropogenic and anthropogenic periods. Twenty eruptions delivering large amounts of Hg (1 to 457 mu g Hg m(-2) yr(-1) deposited at the timescale of the event) were locally recorded. Peaks of Hg concentration recorded after most of the eruptions were attributed to a decrease in sedimentation rate together with the rapid re-oxidation of gaseous elemental Hg and deposition with fine particles and incorporation into lake primary producers. Over the study period, the contribution of volcanic emissions has been estimated as 32% of the total Hg input to the lake. Sharp depletions in primary production occurred at each eruption, likely resulting from massive volcaniclastic inputs and changes in the lake-water physico-chemistry. Excluding the volcanic deposition periods, Hg accumulation rates rose from natural background values (1.9 +/- 0.5 mu g m(-2) yr(-1)) by a factor of 2.3 during the pre-colonial mining period (1400-900 yr cal. BP), and by a factor of 6 and 7.6, respectively, during the Hispanic colonial epoch (400-150 yr cal. BP) and the industrial era (similar to 140 yr cal. BP to present). Altogether, the dataset indicates that lake primary production has been the main, but not limiting, carrier for Hg to the sediment. Volcanic activity and climate change are only secondary drivers of local Hg deposition relative to the magnitude of regional and global anthropogenic emissions.
  •  
11.
  • Guédron, S., et al. (författare)
  • Reconstructing two millennia of copper and silver metallurgy in the Lake Titicaca region (Bolivia/Peru) using trace metals and lead isotopic composition
  • 2021
  • Ingår i: Anthropocene. - : Elsevier. - 2213-3054. ; 34
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper, silver, and gold exploitation has been a foundation of economic and socio-cultural development of Andean societies, at least for the last three millennia. The main centers of pre-colonial metallurgy are well-known from archeological artifacts, but temporal gaps inherent in this record handicap a finer understanding of the modalities of ore exploitation by succeeding civilizations. A continuous record over time of trace metals emitted during ore smelting operations make lake sediments excellent candidates to fill those gaps. Two millennia of metallurgy were reconstructed from atmospherically derived metals together with lead (Pb) isotope ratios in two dated sediment cores from Lake Titicaca. The first evidence for metallurgy is found during the apogee of the Tiwanaku state (AD 800–1150), with a higher copper (Cu) accumulation that can be attributed to the smelting of local Cu ores, based on Pb isotopic fingerprinting. During the Late Intermediate Period (AD 1150–1450), recorded peaks in metal deposition that persisted for ∼ twenty years show that mining activities were intensive but discontinuous. Pb isotope ratios suggest diversified extractive activities, mainly located in the southern part of the central Altiplano. Finally, the most intense mining epoch began during the Inca Empire (ca. AD 1500) and lasted until the end of the Colonial Period (AD 1830), with unprecedented metal deposition over this interval. Pb isotope fingerprinting shows that mining operations occurred mainly in the Lake Titicaca and Potosi areas and were responsible for metal emissions recorded in the entire Altiplano, as evidenced by other studies.
  •  
12.
  •  
13.
  • Gälman, Veronika, 1969-, et al. (författare)
  • The role of iron and sulfur in the visual appearance of lake sediment varves
  • 2009
  • Ingår i: Journal of Paleolimnology. - : Springer Netherlands. - 0921-2728 .- 1573-0417. ; 42:1, s. 141-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Easily discernible sediment varves (annual laminations) may be formed in temperate zone lakes, and reflect seasonal changes in the composition of the accumulating material derived from the lake and its catchment (minerogenic and organic material). The appearance of varves may also be influenced by chemical processes. We assessed the role of iron (Fe) and sulfur (S) in the appearance of varves in sediments from Lake Nylandssjön in northern Sweden. We surveyed Fe in the lake water and established whether there is internal transport of Fe within the sediment. We used a unique collection of seven stored freeze cores of varved sediment from the lake, collected from 1979 to 2004. This suite of cores made it possible to follow long-term changes in Fe and S in the sediment caused by processes that occur in the lake bottom when the sediment is ageing. We compared Fe and S concentrations using X-ray fluorescence spectroscopy (XRF) in specific years in the different cores. No diagenetic front was found in the sediment and the data do not suggest that there is substantial vertical transport of Fe and S in the sediment. We also modeled Fe and S based on thermodynamic, limnological, and sediment data from the lake. The model was limited to the five components H+, e-, Fe3+, SO42-, H2CO3 and included the formation of solid phases such as Fe(OH)3 (amorphous), FeOOH (aged, microcrystalline), FeS and FeCO3. Modeling showed that there are pe (redox) ranges within which either FeS or Fe(OH)3/FeOOH is the only solid phase present and there are pe ranges within which the two solid phases co-exist, which supports the hypothesis that blackish and grey-brownish layers that occur in the varves were formed at the time of deposition. This creates new possibilities for deciphering high-temporal-resolution environmental information from varves.
  •  
14.
  • Hansson, Sophia, 1981-, et al. (författare)
  • Downwash of atmospherically deposited trace metals in peat and the influence of rainfall intensity : an experimental test
  • 2015
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 506-507, s. 95-101
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulation records of pollutant metals in peat have been frequently used to reconstruct past atmospheric deposition rates. While there is good support for peat as a record of relative changes in metal deposition over time, questions remain whether peat archives represent a quantitative or a qualitative record. Several processes can potentially influence the quantitative record of which downwashing is particularly pertinent as it would have a direct influence on how and where atmospherically deposited metals are accumulated in peat. The aim of our study was two-fold: first, to compare and contrast the retention of dissolved Pb, Cu, Zn and Ni in peat cores; and second, to test the influence of different precipitation intensities on the potential downwashing of metals. We applied four 'rainfall' treatments to 13 peat cores over a 3-week period, including both daily (2 or 5.3 mm day(-1)) and event-based additions (37 mm day(-1), added over 1 h or over a 10 h rain event). Two main trends were apparent: 1) there was a difference in retention of the added dissolved metals in the surface layer (0-2 cm): 21-85% for Pb, 18-63% for Cu, 10-25% for Zn and 10-20% for Ni. 2) For all metals and both peat types (sphagnum lawn and fen), the addition treatments resulted in different downwashing depths, i.e., as the precipitation-addition increased so did the depth at which added metals could be detected. Although the largest fraction of Pb and Cu was retained in the surface layer and the remainder effectively immobilized in the upper peat (<= 10 cm), there was a smearing effect on the overall retention, where precipitation intensity exerts an influence on the vertical distribution of added trace metals. These results indicate that the relative position of a deposition signal in peat records would be preserved, but it would be quantitatively attenuated. 
  •  
15.
  •  
16.
  • Karlsson, Jon, 1984-, et al. (författare)
  • Tracing modern environmental conditions to their roots in early mining, metallurgy, and settlement in Gladhammar, southeast Sweden : Vegetation and pollution history outside the traditional Bergslagen mining region
  • 2015
  • Ingår i: The Holocene. - : Sage Publications. - 0959-6836 .- 1477-0911. ; 25:6, s. 944-955
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from a multidisciplinary project using lake sediment as a natural archive in combination with archaeology to investigate the earliest history of the Gladhammar mining area, southeastern Sweden. The aim was to identify and trace human impacts on the landscape, specifically in connection with settlement and metal production. Sediment records from two lakes linked to different processes in metal production were analyzed; Tjursbosjon down-slope of the mining area and Hyttegol situated downstream of an excavated blast furnace, 1.8km from the mines. The sediment analyses included multi-element geochemistry (WD-XRF), stable lead isotopes, pollen, and charcoal. Although historical documents record activities beginning in AD 1526, the archaeological study found indications that mining and metal production likely predated this period. The known historical period is well reflected in the sediment records, such as a 500-fold increase in copper, stream erosion, loss of forest cover and an expansion in agriculture. More importantly, already in the 12th-13th centuries, there was a 2- to 10-fold increase in lead, copper, and charcoal particles and evidence of erosion linked to the establishment of a blast furnace. Lead isotopes reveal a change from natural conditions to an input of lead from regional ores as early as the 9th-10th centuries. Settlement in the form of agriculture can be seen from 2000 BP. This sediment evidence of early mining or metallurgy during the 9th-15th centuries is supported by a few radiocarbon dates from the excavated mining fields, which on their own were considered as vague or improbable outliers by archaeologists.
  •  
17.
  • King, Connor, et al. (författare)
  • Diatoms and other siliceous indicators track the ontogeny of a “bofedal” (Wetland) ecosystem in the peruvian andes
  • 2021
  • Ingår i: Botany. - : Canadian Science Publishing. - 1916-2790 .- 1916-2804. ; 99:8, s. 491-505
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent warming in the Andes is affecting the region’s water resources including glaciers and lakes, which supply water to tens of millions of people downstream. High-elevation wetlands, known locally as “bofedales”, are an understudied Andean ecosystem despite their key role in carbon sequestration, maintenance of biodiversity, and regulation of water flow. Here, we analyze subfossil diatom assemblages and other siliceous bioindicators preserved in a peat core collected from a bofedal in Peru’s Cordillera Vilcanota. Basal radiocarbon ages show the bofedal likely formed during a wet period of the Little Ice Age (1520–1680 CE), as inferred from nearby ice core data. The subfossil diatom record is marked by several dynamic assemblage shifts documenting a hydrosere succession from an open-water system to mature peatland. The diatoms appear to be responding largely to changes in hydrology that occur within the natural development of the bofedal, but also to pH and possibly nutrient enrichment from grazing animals. The rapid peat accretion recorded post-1950 at this site is consistent with recent peat growth rates elsewhere in the Andes. Given the many threats to Peruvian bofedales including climate change, overgrazing, peat extraction, and mining, these baseline data will be critical to assessing future change in these important ecosystems.
  •  
18.
  • Kylander, Malin E., et al. (författare)
  • Late glacial (17,060-13,400 cal yr BP) sedimentary and paleoenvironmental evolution of the Sekhokong Range (Drakensberg), southern Africa
  • 2021
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 16:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Southern Africa sits at the junction of tropical and temperate systems, leading to the formation of seasonal precipitation zones. Understanding late Quaternary paleoclimatic change in this vulnerable region is hampered by a lack of available, reliably-dated records. Here we present a sequence from a well-stratified sedimentary infill occupying a lower slope basin which covers 17,060 to 13,400 cal yr BP with the aim to reconstruct paleoclimatic variability in the high Drakensberg during the Late Glacial. We use a combination of pollen, total organic carbon and nitrogen, delta C-13, Fourier transform infrared spectroscopy attenuated total reflectance (FTIR-ATR) spectral and elemental data on contiguous samples with high temporal resolution (10 to 80 years per sample). Our data support a relatively humid environment with considerable cold season precipitation during what might have been the final stage of niche-glaciation on the adjoining southern aspects around 17,000 cal yr BP. Then, after an initial warmer and drier period starting similar to 15,600 cal yr BP, we identify a return to colder and drier conditions with more winter precipitation starting similar to 14,380 cal yr BP, which represents the first local evidence for the Antarctic Cold Reversal (ACR) in this region. On decadal to centennial timescales, the Late Glacial period was one marked by considerable climatic fluctuation and bi-directional environmental change, which has not been identified in previous studies for this region. Our study shows complex changes in both moisture and thermal conditions providing a more nuanced picture of the Late Glacial for the high Drakensburg.
  •  
19.
  • Lin, Qi, et al. (författare)
  • Organic carbon burial in a large, deep alpine lake (southwest China) in response to changes in climate, land use and nutrient supply over the past ~100 years
  • 2021
  • Ingår i: Catena (Cremlingen. Print). - : Elsevier. - 0341-8162 .- 1872-6887. ; 202
  • Tidskriftsartikel (refereegranskat)abstract
    • Inland waterbodies play an important role in the global carbon cycle, acting both as carbon sources with organic carbon (OC) mineralization and as sinks with OC burial in sediments. Under recent impacts of global warming, anthropogenic land-use change and nutrient supply, however, there is a limited knowledge regarding OC dynamics in sediments of large, deep lakes especially in subtropical alpine regions. Here, we studied the patterns of OC burial and the potential regulating factors using multiple sedimentary proxies and observational records in Lugu Lake (southwest China) over the past ~100 years. Comparisons of 15 sediment cores in different areas of the lake reveal similar temporal trends in OC content and other sediment parameters, indicating coherent patterns of whole-lake sedimentary environmental change dominated by watershed human perturbation. Based on C/N ratios and δ13Corg analyses, the sediment OC has primarily been autochthonous in source. OC accumulation rates (OCAR) increased during 1880–1980, from ~14 to 43 g C m−2 yr−1 in a central core (LGS), mainly resulting from elevated primary production under increased phosphorus input and soil erosion. Subsequently, OCAR decreased considerably to ~15 g C m−2 yr−1, although the phosphorus supply and lake primary productivity remained high. We infer the OCAR decline likely resulted from increased organic matter decomposition and OC mineralization in the water column because of climate warming and lake-water thermal stratification. This phenomenon might mask the positive contribution of primary production to OC burial. Our findings suggest that the commonly observed synergistically positive effects of warming and eutrophication on sediment OC burial may be impaired in deep lakes, which needs further investigations across ecological, climatic and land-use gradients.
  •  
20.
  • Lin, Qi, et al. (författare)
  • Spatial variation of organic carbon sequestration in large lakes and implications for carbon stock quantification
  • 2022
  • Ingår i: Catena (Cremlingen. Print). - : Elsevier. - 0341-8162 .- 1872-6887. ; 208
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes are recognized as critical zones for carbon transformation and storage, and lacustrine sediments sequestrate considerable amounts of organic carbon (OC). Understanding sedimentation processes and OC burial patterns is crucial to clarifying lakes’ role in global carbon cycling. However, OC sedimentation may be quite spatially heterogeneous within an aquatic system, owing to the differences in OC production and sources, hydrodynamic conditions and underwater topography. The uncertainties in estimating OC sequestration in the world’s large lakes remain poorly constrained. This study takes the test case of two large lakes (50 and 249 km2) with different water depth and trophic status, using a multi-core paleolimnological technique, to identify the spatial variation in OC accumulation and its main influencing factors over the past century. Results of multi-core comparisons revealed similar temporal trends in major organic and nutrient parameters, suggesting coherent processes of whole-lake sedimentary environment changes for each lake. The OC preserved in sediments was primarily of autochthonous origin. However, OC standing stocks varied ∼3-fold spatially, and average OC accumulation rates ranged between 9.5–27.4 g m−2 yr−1 (post–1963 in oligo-mesotrophic deep-lake Lugu) and between 17.4–43.5 g m−2 yr−1 (post–1980 in eutrophic shallow-lake Erhai), respectively. These variations were primarily attributable to the spatial differences in aquatic primary production and terrestrial detritus supply relating to anthropogenic land-use change and phosphorus loading, rather than intra-lake sediment focusing-related transport and redistribution. The single central-core approach from Lugu Lake would overestimate whole-lake OC stock by 32% or underestimate the value by 48%, indicating spatial variability is an important source of uncertainty for OC stock quantification in similar large and/or morphometrically complex waterbodies. Therefore, spatial heterogeneity of OC accumulation in inland waters requires considerable research with well-placed multi-cores to provide a deeper understanding of carbon sequestration patterns and mechanisms.
  •  
21.
  • Lopez-Costas, Olalla, et al. (författare)
  • Human bones tell the story of atmospheric mercury and lead exposure at the edge of Roman World
  • 2020
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 710
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric metal pollution is a major health concern whose roots pre-date industrialization. This study pertains the analyses of ancient human skeletons and compares them with natural archives to trace historical environmental exposure at the edge of the Roman Empire in NW Iberia The novelty of our approach relies on the combination of mercury, lead and lead isotopes. We found over a 700-year period that rural Romans incorporated two times more mercury and lead into their bones than post-Romans inhabiting the same site, independent of sex or age. Atmospheric pollution sources contributed on average 57% (peaking at 85%) of the total lead incorporated into the bones in Roman times, which decreased to 24% after the decline of Rome. These values and accompanying changes in lead isotopic composition mirror changes in atmospheric Pb deposition recorded in local peatlands. Thus, skeletons are a time-transgressive archive reflecting contaminant exposure.
  •  
22.
  • Martínez Cortizas, Antonio, et al. (författare)
  • 9000 years of changes in peat organic matter composition in Store Mosse (Sweden) traced using FTIR-ATR
  • 2021
  • Ingår i: Boreas. - : Wiley. - 0300-9483 .- 1502-3885. ; 50:4, s. 1161-1178
  • Tidskriftsartikel (refereegranskat)abstract
    • Store Mosse (the ‘Great Bog’ in Swedish) is one of the most extensive bog complexes in southern Sweden (~77 km2), where pioneering palaeoenvironmental research has been carried out since the early 20th century. This includes, for example, vegetation changes, carbon and nitrogen dynamics, peat decomposition, atmospheric metal pollution, mineral dust deposition, dendrochronology, and tephrochronology. Even though organic matter (OM) represents the bulk of the peat mass and its compositional change has the potential to provide crucial ecological information on bog responses to environmental factors, peat OM molecular composition has not been addressed in detail. Here, a 568-cm-deep peat sequence was studied at high resolution, by attenuated reflectance Fourier-transform infrared spectroscopy (FTIR-ATR) in the mid-infrared region (4000–400 cm–1). Principal components analysis was performed on selected absorbances and change-point modelling was applied to the records to determine the timing of changes. Four components accounted for peat composition: (i) depletion/accumulation of labile (i.e. carbohydrates) and recalcitrant (i.e. lignin and other aromatics, aliphatics, organic acids and some N compounds) compounds, due to peat decomposition; (ii) variations in N compounds and carbohydrates; (iii) residual variation of lignin and organic acids; and (iv) residual variation of aliphatic structures. Peat decomposition showed two main patterns: a long-term trend highly correlated to peat age (r = 0.87), and a short-term trend, which showed five main phases of increased decomposition (at ~8.4–8.1, ~7.0–5.6, ~3.5–3.1, ~2.7–2.1 and ~1.6–1.3 ka) – mostly corresponding to drier climate and its effect on bog hydrology. The high peat accumulation event (~5.6–3.9 ka), described in earlier studies, is characterized by the lowest degree of peat decomposition of the whole record. Given that FTIR-ATR is a quick, non-destructive, cost-effective technique, our results indicate that it can be applied in a systematic way (including multicore studies) to peat research and provide relevant information on the evolution of peatlands.
  •  
23.
  • Martínez Cortizas, Antonio, et al. (författare)
  • Holocene atmospheric dust deposition in NW Spain
  • 2020
  • Ingår i: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 30:4, s. 507-518
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric dust plays an important role in terrestrial and marine ecosystems, particularly those that are nutrient limited. Despite that most dust originates from arid and semi-arid regions, recent research has shown that past dust events may have been involved in boosting productivity in nutrient-poor peatlands. We investigated dust deposition in a mid-latitude, raised bog, which is surrounded by a complex geology (paragneiss/schist, granite, quartzite and granodiorite). As proxies for dust fluxes, we used accumulation rates of trace (Ti, Zr, Rb, Sr and Y) as well as major (K and Ca) lithogenic elements. The oldest, largest dust deposition event occurred between similar to 8.6 and similar to 7.4 ka BP, peaking at similar to 8.1 ka BP (most probably the 8.2 ka BP event). The event had a large impact on the evolution of the mire, which subsequently transitioned from a fen into a raised bog in similar to 1500 years. From similar to 6.7 to similar to 4.0 ka BP, fluxes were very low, coeval with mid-Holocene forest stability and maximum extent. In the late Holocene, after similar to 4.0 ka BP, dust events became more prevalent with relatively major deposition at similar to 3.2-2.5, similar to 1.4 ka BP and similar to 0.35-0.05 ka BP, and minor peaks at similar to 4.0-3.7, similar to 1.7, similar to 1.10-0.95 ka BP and similar to 0.74-0.58 ka BP. Strontium fluxes display a similar pattern between similar to 11 and similar to 6.7 ka BP but then became decoupled from the other elements from the mid Holocene onwards. This seems to be a specific signal of the granodiorite batholith, which has an Sr anomaly. The reconstructed variations in dust fluxes bear a strong climatic imprint, probably related to storminess controlled by North Atlantic Oscillation conditions. Complex interactions also arise because of increased pressure from human activities.
  •  
24.
  • Martínez Cortizas, Antonio, et al. (författare)
  • Structural equation modeling of long-term controls on mercury and bromine accumulation in Pinheiro mire (Minas Gerais, Brazil)
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 757
  • Tidskriftsartikel (refereegranskat)abstract
    • The application of statistical modeling is still infrequent in mercury research in peat, despite the ongoing debate on the weight of the diverse factors (climate, peat decomposition, vegetation changes, etc.) that may affect mercury accumulation. One of the few exceptions is the Hg record of Pinheiro mire (souheast Brazil). Previous studies on this mire modeled mercury using principal components regression and partial least squares. These methods assume independence between factors, which is seldom the case in natural systems, thus hampering the identification of mediating effects and interactions. To overcome these limitations, in this reserach we use structural equation modeling (PLS-SEM) to model mercury and bromine peat records - bromine has been used in some investigations to normalize mercury accumuation. The mercury model explained 83% of the variance and suggested a complex control: increased peat decomposition, dust deposition and humid dimates enhanced mercury accumulation, while increased mineral fluxes resulted in a decrease in mercury accumulation. The bromine model explained 90% of the variation in concentrations: increased dust deposition and peat decomposition promoted bromine accumulation, while time (i.e. peat age) promoted bromine depletion. Thus, although mercury and bromine are both organically bound elements with relevant atmospheric cycles the weights of the factors involved in their accumulation differed significantly. Our results suggest caution when using bromine to normalize mercury accumulation. PLS-SEM results indicate a large time dependence of peat decomposition, catchment mineral fluxes, long-term climate change, and atmospheric deposition: while atmospheric dust, mineral fluxes and peat decomposition showed high to moderate climate dependency. In particular, they also point to a relevant role of autogenic processes (i.e. the build up and expansion of the mire within the catchment), which controlled local mineral fluxes; an aspect that has seldom been considered.
  •  
25.
  • Meyer-Jacob, Carsten, 1984-, et al. (författare)
  • Early land use and centennial scale changes in lake-water organic carbon prior to contemporary monitoring
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:21, s. 6579-6584
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic carbon concentrations have increased in surface waters across parts of Europe and North America during the past decades, but the main drivers causing this phenomenon are still debated. A lack of observations beyond the last few decades inhibits a better mechanistic understanding of this process and thus a reliable prediction of future changes. Here we present past lake-water organic carbon trends inferred from sediment records across central Sweden that allow us to assess the observed increase on a centennial to millennial time scale. Our data show the recent increase in lake-water carbon but also that this increase was preceded by a landscape-wide, long-term decrease beginning already A. D. 1450-1600. Geochemical and biological proxies reveal that these dynamics coincided with an intensification of human catchment disturbance that decreased over the past century. Catchment disturbance was driven by the expansion and later cessation of widespread summer forest grazing and farming across central Scandinavia. Our findings demonstrate that early land use strongly affected past organic carbon dynamics and suggest that the influence of historical landscape utilization on contemporary changes in lake-water carbon levels has thus far been underestimated. We propose that past changes in land use are also a strong contributing factor in ongoing organic carbon trends in other regions that underwent similar comprehensive changes due to early cultivation and grazing over centuries to millennia.
  •  
26.
  • Meyer-Jacob, Carsten, 1984-, et al. (författare)
  • Independent measurement of biogenic silica in sediments by FTIR spectroscopy and PLS regression
  • 2014
  • Ingår i: Journal of Paleolimnology. - : Springer Netherlands. - 0921-2728 .- 1573-0417. ; 52:3, s. 245-255
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an independent calibration model for the determination of biogenic silica (BSi) in sediments, developed from analysis of synthetic sediment mixtures and application of Fourier transform infrared spectroscopy (FTIRS) and partial least squares regression (PLSR) modeling. In contrast to current FTIRS applications for quantifying BSi, this new calibration is independent from conventional wet-chemical techniques and their associated measurement uncertainties. This approach also removes the need for developing internal calibrations between the two methods for individual sediments records. For the independent calibration, we produced six series of different synthetic sediment mixtures using two purified diatom extracts, with one extract mixed with quartz sand, calcite, 60/40 quartz/calcite and two different natural sediments, and a second extract mixed with one of the natural sediments. A total of 306 samples-51 samples per series-yielded BSi contents ranging from 0 to 100 %. The resulting PLSR calibration model between the FTIR spectral information and the defined BSi concentration of the synthetic sediment mixtures exhibits a strong cross-validated correlation ( = 0.97) and a low root-mean square error of cross-validation (RMSECV = 4.7 %). Application of the independent calibration to natural lacustrine and marine sediments yields robust BSi reconstructions. At present, the synthetic mixtures do not include the variation in organic matter that occurs in natural samples, which may explain the somewhat lower prediction accuracy of the calibration model for organic-rich samples.
  •  
27.
  • Meyer-Jacob, Carsten, 1984-, et al. (författare)
  • Regional Holocene climate and landscape changes recorded in the large subarctic lake Torneträsk, N Fennoscandia
  • 2017
  • Ingår i: Palaeogeography, Palaeoclimatology, Palaeoecology. - : Elsevier. - 0031-0182 .- 1872-616X. ; 487, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the response of sensitive Arctic and subarctic landscapes to climate change is essential to determine the risks of ongoing and projected climate warming. However, these responses will not be uniform in terms of timing and magnitude across the landscape because of site-specific differences in ecosystem susceptibility to climate forcing. Here we present a multi-proxy analysis of a sediment record from the 330-km2 lake Torneträsk to assess the sensitivity of the Fennoscandian subarctic landscape to climate change over the past ~ 9500 years. By comparing responses of this large-lake system to past climatic and environmental changes with those in small lakes in its catchment, we assessed when the magnitude of change was sufficient to affect an entire region rather than only specific sub-catchments that may be more sensitive to localized environmental changes such as, e.g., tree-line dynamics. Our results show three periods of regional landscape alteration with distinct change in sediment composition: i) landscape development following deglaciation and through the Holocene Thermal Maximum, ~ 9500–3400 cal yr BP; ii) increased soil erosion during the Little Ice Age (LIA); and iii) rapid change during the past century coincident with ongoing climate change. The gradual landscape development led to successive changes in the lake sediment composition over several millennia, whereas climate cooling during the late Holocene caused a rather abrupt shift occurring within ~ 100 years. However, this shift at the onset of the LIA (~ 750 cal yr BP) occurred > 2000 years later than the first indications for climate cooling recorded in small lakes in the Torneträsk catchment, suggesting that a critical ecosystem threshold was not crossed until the LIA. In contrast, the ongoing response to recent climate change was immediate, emphasizing the unprecedented scale of ongoing climate changes in subarctic Fennoscandia.
  •  
28.
  • Milan, Manuela, et al. (författare)
  • Combining sediment Cladocera remains and geochemistry to reveal the role of a large catchment in driving changes in a small subalpine lake (Lake Ledro, N-Italy)
  • 2016
  • Ingår i: Advances in Oceanography and Limnology. - : PAGEPress Publications. - 1947-5721 .- 1947-573X. ; 7:2, s. 220-234
  • Tidskriftsartikel (refereegranskat)abstract
    • Sediment Cladocera remains and geochemistry were analyzed at Lake Ledro, a small subalpine lake with a large catchment area located in northern Italy. The aim of the study was to investigate human, climate and hydrological impacts on the Cladocera community and on the geochemical components during the last few centuries. A sediment core was collected from the deepest point of Lake Ledro and radiometrically dated. Cladocera remains were analyzed to track the trophic lake evolution. The core bottom section revealed the dominance of Bosminidae in concomitance with nutrient pulses entering into the lake during major flood events. The abundance of species preferring cold water temperatures confirmed the deposition of this core section during the Little Ice Age. The flood event occurred in the first half of the 19th century produced a drastic increase in littoral species, due to the development of new habitats. The decrease in Cladocera densities during the following lake stage was followed by a rapid increase in planktonic species during the nutrient enrichment after the 1960s. Statistical analyses revealed a clear response of Cladocera community to climate variability during oligotrophic periods, while no relation to temperature changes was recorded during high nutrient levels. A preliminary study on Bosminidae and Daphnidae body size and appendages length was carried out to reconstruct major changes in the lake food web. Only Bosmina spp. revealed clear body size changes: minor shifts were recorded before the 1930s in relation to the low nutrient concentrations, while the major changes occurred during the 1980s were interpreted as related to the appearance of Cladocera invertebrate predators. Geochemical components were studied using X-ray fluorescence spectroscopy (XRF) analysis in order to recognize the impact of the large catchment area and from the lake-level regulations on the lake hydrology. Moreover the Si:Al ratios profile confirmed the increase in lake productivity after the 1960s. Although both Cladocera and geochemical analysis indicate major changes since the 1960s, they also revealed diverse responses to common external and local forcing, thus confirming the value of a multi-proxy approach for disentangling the lake responses to different environmental stressors. Moreover, it outlined the importance of larger catchment areas on small lakes as they are to a larger extent influenced by the modifications occurring in the drainage basin.
  •  
29.
  • Myrstener, Erik, et al. (författare)
  • Environmental footprint of small-scale, historical mining and metallurgy in the Swedish boreal forest landscape : The Moshyttan blast furnace as microcosm
  • 2019
  • Ingår i: The Holocene. - : Sage Publications. - 0959-6836 .- 1477-0911. ; 29:4, s. 578-591
  • Tidskriftsartikel (refereegranskat)abstract
    • The history of mining and smelting and the associated pollution have been documented using lake sediments for decades, but the broader ecological implications are not well studied. We analyzed sediment profiles covering the past similar to 10,000 years from three lakes associated with an iron blast furnace in central Sweden, as an example of the many small-scale furnaces with historical roots in the medieval period. With a focus on long-term lake-water quality, we analyzed multiple proxies including geochemistry, pollen and charcoal, diatom composition and inferred pH, biogenic silica (bSi), visible near-infrared spectroscopy (VNIRS)-inferred lake-water total organic carbon (LW-TOC), and VNIRS-inferred sediment chlorophyll (sed-Chl). All three lakes had stable conditions during the middle Holocene (similar to 5000 BCE to 1110 CE) typical of oligo-dystrophic lakes: pH 5.4-5.6, LW-TOC 15-18 mg L-1. The most important diatom taxa include, for example, Aulacoseira scalaris, Brachysira neoexilis, and Frustulia saxonica. From similar to 1150 CE, decreases in LW-TOC, bSi, and sed-Chl in all three lakes coincide with a suite of proxies indicating disturbance associated with local, small-scale agriculture, and the more widespread use of the landscape in the past (e.g. forest grazing, charcoal production). Most important was a decline in LW-TOC by 30-50% in the three lakes prior to the 20th century. In addition, the one lake (Fickeln) downstream of the smelter and main areas of cultivation experienced a shift in diatom composition (mainly increasing Asterionella formosa) and a 0.6 pH increase coinciding with increasing cereal pollen and signs of blast furnace activity. The pH did not change in the other two lakes in response to disturbance; however, these lakes show a slight increase (0.3-0.5 pH units) because of modern liming. LW-TOC has returned to background levels in the downstream lake and remains lower in the other two.
  •  
30.
  • Myrstener, Erik, 1986- (författare)
  • Lake sedimentary archives of medieval mining and smelting in Sweden : tracking environmental changes from site to landscape
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • While the environmental impact of the industrial age is massive, including climate change, pollution, microplastics and habitat loss, our influence reaches further back than many recognize. In Sweden, an early and important activity with large potential impact was the mining and smelting of iron, copper and silver ores over the last ~800 years. This occurred in a mineral rich region called Bergslagen, where thousands of smelters and forges and tens of thousands of mines produced the metal riches central to the growth of both local and national economies.In this thesis, I and collaborators present data from >30 lakes in Bergslagen and its surroundings with the aim to identify and track both the metallurgical activities themselves and the environmental impacts associated with this early agricultural-metallurgical society. The results indicate that the metallurgical activities can be traced using multiproxy sediment analyses including charcoal particles from the blast furnace and other metallurgical activities at the sites, metals from the ores (Pb, Zn, Cu, Hg) and indicators of erosion associated with activity at the site or damming and rechanneling of streams. We show a widespread pattern of a spread of mining and smelting throughout Bergslagen from ~1250 CE, including activities at Moshyttan close to Nora, Gammalkroppa close to Filipstad, a hitherto unknown blast furnace close to Norberg, the copper mines in Falun and the mine and smelters at Gladhammar. A notable exception to this medieval pattern is evidence from Garpenberg of copper mining already from the 4thcentury BCE. This widespread, medieval expansion of metallurgy occurred during a time of few written sources, and indicates that this was a period of technological proliferation in Sweden.The environmental effects of these activities were wide-ranging. Pollen-inferred vegetation reconstructions (using REVEALS) indicate a minor decline in forest cover (~10–15%) starting in the 12th and 13th centuries when the first metallurgical activities were established. The loss of forest accelerated from the 16th century, likely driven by the greatly increasing metal production at this time which required substantial amounts of charcoal. No site was totally deforested, however, and inferred forest cover is between 40 and 60% at all sites associated with metallurgy, indicating that the documented efforts to produce a sustainable yield of charcoal were largely successful. The remaining forests were likely substantially changed as historical documents and maps indicate an intensive short-rotation (~60 years) forestry was common in the region, and cadastral maps from the late 17th century indicate extensiveforest areas were ‘young’. The area of cultivated land and open land plants benefitted by grazing (e.g. Poaceae) also increased indicating an expanded agriculture from the 12th century and especially from the 16th century.The expanded land use and forestry coincided with a decreasing spectrally-inferred lake-water total organic carbon (LW-TOC) in all studied lakes, in line with other studies, contributing to the notion that the current increase in LW-TOC observed in contemporary environmental monitoring has an underlying historical component. The decrease in LW-TOC indicated for the lakes was generally ~25% during the early land use and metallurgy but lowest values (~50% of background concentrations) were generally reached in the early–mid 20th century concurrent with increasing industrial acid deposition, which is an important driver of terrestrial carbon export. Many lakes also experienced an increase in pH (0.3–0.5 units) associated with the land use and metallurgy, but the effects are similar to the ‘cultural alkalization’ commonly observed in lakes outside of Bergslagen. One important exception is the lakes surrounding Falun where previous research had shown that the massive mining and smelting of sulfide ores contributed to a decrease in pH of ~0.5 in many near-by lakes prior to modern industrial acid deposition.Taken together, the most important environmental effects of the medieval and early modern mining and metallurgy were driven by the host of supporting activities that produced charcoal and food for the mines, smelters and workers at the sites. The changes in forest composition and water quality have implications for our understanding of reference conditions and the long history of human impacts even in this small corner of Europe.
  •  
31.
  • Myrstener, Erik, et al. (författare)
  • Long-term development and trajectories of inferred lake-water organic carbon and pH in naturally acidic boreal lakes
  • 2021
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:6, s. 2408-2422
  • Tidskriftsartikel (refereegranskat)abstract
    • Monitoring of surface waters in the boreal region over the last decades shows that waters are becoming browner. This timeframe may not, however, be sufficient to capture underlying trajectories and driving mechanisms of lake-water quality, important for prediction of future trajectories. Here we synthesize data from seven lakes in the Swedish boreal landscape, with contemporary lake-water total organic carbon (TOC) concentrations of 1.4–14.4 mg L−1, to conceptualize how natural and particularly human-driven processes at the landscape scale have regulated lake-water TOC levels over the Holocene. Sediment-inferred trends in TOC are supported by several proxies, including diatom-inferred pH. Before ~ 700 ce, all lakes were naturally acidic (pH 4.7–5.4) and the concentrations of inferred lake-water TOC were high (10–23 mg L−1). The introduction of traditional human land use from ~ 700 ce led to a decrease in lake-water TOC in all lakes (to 5–14 mg L−1), and in four poorly buffered lakes, also to an increase in pH by > 1 unit. During the 20th century, industrial acid deposition was superimposed on centuries of land use, which resulted in unprecedentedly low lake-water TOC in all lakes (3–11 mg L−1) and severely reduced pH in the four poorly buffered lakes. The other lakes resisted pH changes, likely due to close connections to peatlands. Our results indicate that an important part of the recent browning of boreal lakes is a recovery from human impacts. Furthermore, on a conceptual level we stress that contemporary environmental changes occur within the context of past, long-term disturbances.
  •  
32.
  • Myrstener, Erik, et al. (författare)
  • Long-term development of clear- and brown-water acidic lakes in the Swedish boreal landscape : implications for contemporary lake-water quality
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The recent browning of surface waters and its effects on water quality across northern latitudes continue to raise questions about the driving mechanisms and future trajectories. However, even when based on multi-decadal environmental monitoring data, assessments of contemporary trends and drivers often overlook potential underlying long-term changes in lake-water quality. Here we synthesize data from seven clear- and brown-water acidic lakes in the Swedish boreal landscape to conceptualize how natural and human-driven processes have regulated lake-water quality, measured as spectrally inferred lake-water total organic carbon (TOC) and diatom-inferred pH. From 10,000 BCE to ~500 CE, all studied lakes were browner (lake-water TOC 10–24 mg L-1) and underwent natural acidification, decreasing from pH ~7 to 4.7–5.4. From ~500 to 1850 CE, historical human land use caused lake-water TOC to decline by ~50% in all lakes and in the poorly buffered, clear-water lakes, pH to increase by >1 unit. During the 20th century, the interaction between centuries of land use and more recent industrial acid deposition resulted in unprecedentedly low lake-water TOC (3–8 mg L-1) in all lakes and severely re-duced pH in the poorly buffered lakes, whereas those surrounded by peatlands resisted these pH changes. These extreme values coincided with the onset of environmental monitoring, meaning that contempo-rary increases in lake-water TOC and pH occur within the context of past, long-term disturbances, which are therefore crucial to consider for the purposes of lake management and prediction of lake responses to future environmental disturbances, especially climate change.
  •  
33.
  • Ninnes, Sofia, 1984-, et al. (författare)
  • Application of mid-infrared spectroscopy for the quantitative and qualitative analysis of organic matter in Holocene sediment records
  • 2024
  • Ingår i: The Holocene. - : Sage Publications. - 0959-6836 .- 1477-0911. ; 34:3, s. 259-273
  • Tidskriftsartikel (refereegranskat)abstract
    • The organic matter composition of lake sediments influences important in-lake biogeochemical processes and stores information on environmental changes. Extracting this information is notoriously difficult because of the complexity of the organic matter matrix, which routinely imposes trade-offs between high temporal and analytical detail in the selection of methods of analysis. Here, we demonstrate the potential of diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) for achieving both of these objectives using untreated bulk samples from two Holocene lake-sediment cores from central Sweden. We develop quantitative models for sediment total organic carbon (TOC) with the same predictive abilities as models based on samples diluted with KBr and qualitatively characterize the organic matter using a spectra processing-pipeline combined with principal component analysis. In the qualitative analysis we identified four organic matter sub-fractions and the interpretation of these is supported and further advanced with molecular data from pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Within these organic fractions, compound groups such as aromatics, lignin, aliphatics, proteins and polysaccharides were identified by means of DRIFTS and the analyses and processes outlined here enables rapid and detailed quantitative and qualitative analysis of sediment organic matter. The DRIFTS approach can be used as stand-alone method for OM characterization with high temporal resolution in Holocene sediment records. It may also function as a screening process for more specific analyses of sample subsets, such as when coupled with pyrolysis-GC/MS to further tease apart the OM composition, identify sources and determine degradation status.
  •  
34.
  • Ninnes, Sofia, 1984- (författare)
  • Molecular analysis of lake-sediment organic matter : long-term dynamics and environmental implications in boreal lakes
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lake sediment organic matter is material composed of residues from plants, algae, animals, fungi and bacteria. Its molecular composition is dependent on the sources as well as secondary biotic and abiotic transformations, which combined generates a highly complex matrix. Considering that organic matter plays a key role in carbon and nitrogen cycle, and its composition affects many different biogeochemical reactions, paleolimnologic studies have payed proportionately little attention to the organic matter composition compared with the other sediment fractions, even though organic matter makes up 20–60 % of the dry sediment mass in boreal and subarctic lakes. This thesis therefore primarily aims to explore and evaluate two methods; pyrolysis-gas chromatography/mass spectrometry (Pyrolysis-GC/MS) and diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS) for characterisation of bulk organic matter at the molecular level, both which have been extensively used for soils and peat and which balances the need for cost and time-effective analysis and for analytical detail.With pyrolysis-GC/MS the organic matter composition and long-term dynamics in two neighbouring boreal lakes is explored and compared with the conventional bulk carbon and nitrogen contents and their stable isotopes. Both pyrolysis data and conventional data capture the timing of organic matter compositional changes, but only pyrolysis provides detailed information on how the composition changes, which allows for a deeper understanding of the processes behind the changes. The same two lakes are also analysed with DRIFTS and with this approach information on the major organic compound groups aromatics, lignin, aliphatics, proteins and polysaccharides is extracted. In combination with the rapid analysis time and low cost, DRIFTS emerges as a very useful tool for rapid yet informative organic matter analysis. DRIFTS is then evaluated as a stand-alone tool for sediment characterisation in four mountain lakes. The four lakes all have different sediment composition and as a result of the multi-fraction information obtained with DRIFTS compositional differences can be related and explained in terms of their individual lake and landscape settings. The importance of landscape setting is further highlighted in the synthesis of the long-term dynamics of lake-water quality in seven lakes where development trajectories and responses to different types of disturbances are connected to the extent of peatlands within the lake catchments. This thesis demonstrates the advantages of two different approaches for more detailed lake sediment organic matter characterisation and advances our understanding of the molecular organic matter composition in boreal lakes over the Holocene, and how landscape setting affects both the organic matter composition and the sensitivity of lakes to disturbance.
  •  
35.
  • Nota, Kevin, 1993-, et al. (författare)
  • Norway spruce postglacial recolonization of Fennoscandia
  • 2022
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Contrasting theories exist regarding how Norway spruce (Picea abies) recolonized Fennoscandia after the last glaciation and both early Holocene establishments from western microrefugia and late Holocene colonization from the east have been postulated. Here, we show that Norway spruce was present in southern Fennoscandia as early as 14.7 ± 0.1 cal. kyr BP and that the millennia-old clonal spruce trees present today in central Sweden likely arrived with an early Holocene migration from the east. Our findings are based on ancient sedimentary DNA from multiple European sites (N = 15) combined with nuclear and mitochondrial DNA analysis of ancient clonal (N = 135) and contemporary spruce forest trees (N = 129) from central Sweden. Our other findings imply that Norway spruce was present shortly after deglaciation at the margins of the Scandinavian Ice Sheet, and support previously disputed finds of pollen in southern Sweden claiming spruce establishment during the Lateglacial.
  •  
36.
  • Olajos, Fredrik, 1987- (författare)
  • Using environmental DNA to unravel aquatic ecosystem dynamics
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Human-induced climate change has led to unprecedented declines in Earth's biodiversity and significant habitat loss. Aquatic ecosystems areespecially at risk, facing pollution, overexploitation, and destruction. Consequently, monitoring biodiversity is critical. Traditional monitoring methods are often low in detection rates, time-consuming, invasive, and harmful to species, which hampers comprehensive biodiversity assessments. Environmental DNA (eDNA) offers a rapid alternative fortaxonomic identification, extracting genetic material from soil, sediments, or water without capturing living organisms, proving useful where traditional methods fall short. However, its integration into aquatic ecology is hampered by unresolved methodological issues.This thesis demonstrates how eDNA can help reconstruct fish colonization histories in lakes post-glacial retreat. I employed species-specific primers with digital droplet PCR and metagenomic shotgun sequencing on ancient DNA from Holocene lake sediments. My findings show the detectability of DNA from ancient fish populations. However, each method exhibited technical limitations that led to varying degrees offalse negatives and false positive results. Additionally, I examined how Northern pike (Esox Lucius) affects ecological speciation in Europeanwhitefish (Coregonus lavaretus), promoting a shift from insectivorous to piscivorous states, enhancing predator biodiversity and biomass. Dietan alyses of piscivorous birds through digital droplet PCR revealed that smaller whitefish support a larger, more diverse bird community. Finally, I compared two molecular techniques for quantifying bird diets from fecal DNA, finding that metabarcoding with a universal fish primer and digital droplet PCR yielded similar results. This research enhances ourunderstanding of the potential and limitations of molecular tools forspecies identification and aids the integration of eDNA into aquatic ecology.
  •  
37.
  • Renberg, Ingemar, 1945-, et al. (författare)
  • Environmental history : A piece in the puzzle for establishing plans for environmental management
  • 2009
  • Ingår i: Journal of Environmental Management. - : Elsevier. - 0301-4797 .- 1095-8630. ; 90:8, s. 2794-2800
  • Tidskriftsartikel (refereegranskat)abstract
    • Establishment of plans for environmental planning and management requires that a number of natural and societal factors must be taken into consideration. Insights into the inherent dynamics of nature as well as the role that past human activities have played for establishing the current condition of the landscape and the natural environment in general are essential. Many natural and man-made changes occur over time scales of decades or centuries, and these are difficult to comprehend without a historical perspective. Such a perspective can be obtained using palaeoecological studies, i.e. by geochemical and biological analyses of lake sediment and peat deposits. To illustrate the long-term dynamics of nature and particularly the role of man, we present here five case studies from Sweden concerning pollution, lake acidification, lake eutrophication, biodiversity, and landscape dynamics and conservation – topics of broad interests – and discuss benefits of including a longer time perspective in environmental management.
  •  
38.
  • Rydberg, Johan, 1976-, et al. (författare)
  • A whole-lake basin analysis of the spatial distribution of total- and methylmercury in relation to the sediment matrix using WD-XRF and FT-IRS
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The aim of this study was to try and identify some of the factors controlling the spatial distributions of total- and methyl-Hg across a single whole-lake basin. In order to achieve this we analyzed the geochemical composition of 83 surface sediment samples from the lake Stor-Strömsjön using WD-XRF and FT-IRS. Our results show that in the north-western basin (i.e., the main recipient of the dominant inlet) total-Hg distribution is controlled by fine-grained mineral matter, while the eastern basin (which lacks major inlets) the main controlling factor is organic matter. There is only a weak correlations between methyl-Hg concentrations and either total-Hg (r2=0.12) or organic matter (r2=0.15) concentrations. Instead the distribution of methyl-Hg is largely controlled by water depth and sulfur (59 %). The spatial patterns for total-Hg concentrations vs. inventories (mass per unit area) are rather different. Even if total-Hg concentrations are about the same in locations controlled by organic matter and fine-grained mineral matter, the total-Hg inventories are much higher in the latter. For methyl-Hg the spatial distribution is patchy both for concentrations and inventories, and the highest methyl-Hg inventory was found in a shallow location with coarse-grained minerogenic sediment. The large variations in the controlling factors, even within a single whole-lake basin, suggest that lake type and surrounding catchment have an effect on the behavior of Hg. This needs to be recognized both when studying Hg loading on ecosystems, and when using lake sediments to reconstruct atmospheric Hg deposition.
  •  
39.
  • Rydberg, Johan, 1976-, et al. (författare)
  • Assessing the stability of mercury and methylmercury in a varved lake sediment deposit
  • 2008
  • Ingår i: Environmental Science & Technology. - : American Chemical Society. - 0013-936X .- 1520-5851. ; 42:12, s. 4391-4396
  • Tidskriftsartikel (refereegranskat)abstract
    • Using lake sediments to infer past total mercury and methylmercury loading to the environment requires that diagenetic processes within the sediment do not significantly affect the concentrations or net accumulation rates of the mercury species. Because carbon is lost during early sediment diagenesis, the close link between carbon and mercury raises the question of how reliable lake sediments are as archives of total mercury and methylmercury loading. In this study we used a series of freeze cores taken in a lake with varved (annually laminated) sediment to assess the stability of total mercury and methylmercury over time. By tracking material deposited in specific years in cores collected in different years, we found that despite a 20–25% loss of carbon in the first 10–15 years, there was no apparent loss of total mercury over time; hence, lake sediments can be considered as reliable archives. However, over the first 5–8 years after sedimentation, about 30–40% of the methylmercury was lost (a decrease of 0.025–0.030 μg MeHg m−2 yr−1), suggesting that sediment profiles showing increasing methylmercury concentrations toward the sediment surface are in large part an artifact of diagenetic processes (net demethylation), rather than a record of changes in methylmercury loading.
  •  
40.
  • Rydberg, Johan, 1976-, et al. (författare)
  • Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes
  • 2010
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 408:20, s. 4778-4783
  • Tidskriftsartikel (refereegranskat)abstract
    • In sub-arctic and arctic regions mercury is an element of concern for both wildlife and humans. Over thousands of years large amounts of atmospherically deposited mercury, both from natural and anthropogenic sources, have been sequestered together with carbon in northern peatlands. Many of these peatlands are currently underlain by permafrost, which controls mire stability and hydrology. With the ongoing climate change there is concern that permafrost thawing will turn large areas of these northern peatlands from carbon/mercury-sinks into much wetter carbon/mercury-sources. Here we can show that such a change in mire structure in the sub-arctic Stordalen mire in northern Sweden actually is responsible for an increased export of mercury to the adjacent lake Inre Harrsjön. We also show that sediment mercury accumulation rates during a warm period in the pre-industrial past were higher than in the 1970s when atmospheric input peaked, indicating that in areas with permafrost, climate can have an effect on mercury loading to lakes as large as anthropogenic emissions. Thawing of permafrost and the subsequent export of carbon is a widespread phenomenon, and the projection is that it will increase even more in the near future. Together with our observations from Stordalen, this makes northern peatlands into a substantial source of mercury, at risk of being released into sensitive arctic freshwater and marine systems.
  •  
41.
  • Rydberg, Johan, 1976-, et al. (författare)
  • Importance of vegetation type for mercury sequestration in the northern Swedish mire, Rödmossamyran :  
  • 2010
  • Ingår i: Geochimica et Cosmochimica Acta. - : Elsevier Ltd. - 0016-7037 .- 1872-9533. ; 74:24, s. 7116-7126
  • Tidskriftsartikel (refereegranskat)abstract
    • Even if mires have proven to be relatively reliable archives over the temporal trends in atmospheric mercury deposition, there are large discrepancies between sites regarding the magnitude of the anthropogenic contribution to the global mercury cycle. A number of studies have also revealed significant differences in mercury accumulation within the same mire area. This raises the question of which factors, other than mercury deposition, affect the sequestration of this element in peat. One such factor could be vegetation type, which has the potential to affect both interception and retention of mercury. In order to assess how small-scale differences in vegetation type can affect mercury sequestration we sampled peat and living plants along three transects on a northern Swedish mire. The mire has two distinctly different vegetation types, the central part consists of an open area dominated by Sphagnum whereas the surrounding fen, in addition to Sphagnum mosses, has an understory of ericaceous shrubs and a sparse pine cover. A few main patterns can be observed in our data; (1) Both peat and Sphagnum-mosses have higher mercury content (both concentration and inventory) in the pine-covered fen compared to the open Sphagnum area (100% and 71% higher for peat and plants, respectively). These differences clearly exceed the 33% difference observed for lead-210, which is considered as a good analogue for atmospheric mercury deposition. (2) The differences in mercury concentration between peat profiles within a single vegetation type can largely be attributed to differences in peat decomposition. (3) When growing side by side in the open Sphagnum area, the moss species Sphagnum subsecundum has significantly higher mercury concentrations compared to S. centrale (24 ± 3 and 18 ± 2 ng Hg g−1, respectively). Based on these observations we suggest that species composition, vegetation type and decomposition can affect the mercury sequestration in a peat record, and that any changes in these properties over time, or space, have the potential to modify the mercury deposition signal recorded in the peat.
  •  
42.
  • Sjöström, Jenny K., 1978-, et al. (författare)
  • Late Holocene peat paleodust deposition in south-western Sweden : exploring geochemical properties, local mineral sources and regional aeolian activity
  • 2022
  • Ingår i: Chemical Geology. - : Elsevier. - 0009-2541 .- 1872-6836. ; 602
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric mineral dust not only interacts with the climate system by scattering incoming solar radiation and affecting atmospheric photochemistry, but also contributes critical nutrients to marine and terrestrial ecosystems. In a high-resolution analysis of paleodust deposition, peat development and soil dust sources, we assess the interplay between dust deposition and bog development of the Davidsmosse bog in south-western Sweden. Analyses of the 5400-year record (458 cm) included radiocarbon dating, bulk density, ash content, chemical and mineralogical composition and carbon stable isotopes, subsequently explored using principal component analysis. Fourteen dust events (DEs) were recorded (cal BP) in the peat sequence: 3580–3490; 3280; 3140; 3010–2840; 2740; 2610; 2480; 2340; 2240–2130; 1690; 1240; 960, 890–760, and 620–360. The majority of the DEs were coupled to increases in peat accumulation rates and increased nutrient content (N, P and K) suggesting that the DEs contributed with nutrients to the bog ecosystem, promoting increased accumulation. We also analyzed the chemical and mineral composition of potential mineral source deposits (separated into 6 grain-size fractions) from sites within a 4 km radius as well as aeolian dunes closer to the coast (25 km). The composition deposited on the present-day bog surface indicates that the bulk of the contemporary minerals have a local origin (<1.5 km), but the DEs may be of a more distant origin. The results also indicate that quartz and plagioclase feldspar content consistently increase with increasing grain-size, both in the source samples as well as in the peat sequence, and that the Si/Al ratio can be used to infer grain size changes in the peat. Two longer phases saw numerous DEs, between 2800 and 2130 cal BP and a stepwise increase from 960 towards 360 cal BP. The episodic character of the events, together with the inferred coarse grain size, suggest that the particles were deposited by (winter) storms. Future studies should include grain size analysis as well as a more in-depth comparison with regional paleo dust and storm records to increase knowledge on both transport processes (creep, saltation, suspension) and the climate processes driving late Holocene dust and storm events in Scandinavia.
  •  
43.
  • Sjöström, Jenny K., et al. (författare)
  • Paleodust deposition and peat accumulation rates : bog size matters
  • 2020
  • Ingår i: Chemical Geology. - : Elsevier. - 0009-2541 .- 1872-6836. ; 554
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a high-resolution peat paleodust and accumulation rate record spanning the last 8300 years from Draftinge Mosse (400 ha), southern Sweden (57 degrees 06'27.6 '' N 13 degrees 42'54.1 '' E). The record was analysed for peat accumulation rates (PAR), elemental concentrations, mineralogy, and plant macrofossil content. Five periods of increased mineral deposition were recorded. The first event occurred between similar to 6280 and similar to 5570 cal BP, during the fen to bog transition. This is followed by four atmospheric mineral dust events (DE) which were recorded in the ombrotrophic section of the sequence at (cal BP): similar to 2200; similar to 1385-1150; similar to 830-590, and from similar to 420 to the present. Statistical analysis and elemental ratios indicated that both the mineralogy and grain size shifted when the system transitioned from fen into bog, showing that the governing transport process shifted with the peat-land succession stages. This highlights the importance of identifying peatland succession stages within peat paleodust studies. Following all four DE, increases in PAR were observed, implying a coupling to dust deposition. Comparison of DE and PAR with a paleodust record from Store Mosse, a 20 times larger bog located ca 18 km away (Kylander et al. 2016), showed that both PAR and dust deposition are largely represented by single-core reconstructions, indicating that they are driven by a common climate forcing mechanism. However, higher PAR and dust deposition rates were observed in the more moderately sized Draftinge Mosse, suggesting that the size of the bog is important to consider in peat paleodust studies. Furthermore, the smaller bog responded more rapidly to hydrological changes, indicating that the size of the bog affects its' buffering capacity. Authigenic carbonates, observed here during episodes of rapid peat growth, coincide with changes in REE ratios, indicating that authigenic peat processes potentially cause REE fractionation.
  •  
44.
  • Sjöström, Jenny K., et al. (författare)
  • Procedure for Organic Matter Removal from Peat Samples for XRD Mineral Analysis
  • 2019
  • Ingår i: Wetlands (Wilmington, N.C.). - : Springer. - 0277-5212 .- 1943-6246. ; 39:3, s. 473-481
  • Tidskriftsartikel (refereegranskat)abstract
    • Ombrotrophic peatlands are recognized archives of past atmospheric mineral dust deposition. Net dust deposition rates, grain size, mineral hosts and source areas are typically inferred from down-core elemental data. Although elemental analysis can be time efficient and data rich, there are some inherent limitations. X-ray diffraction (XRD) analysis allowsdirect identification of mineral phases in environmental samples but few studies have applied this method to peat samples and a well-developed protocol for extracting the inorganic fraction of highly organic samples (>95%) is lacking. We tested and compared different levels of pre-treatment: no pre-treatment, thermal combustion (300, 350, 400, 450, 500 and 550 degrees C) and chemical oxidation (H2O2 and Na2S2O8) using a homogenised highly organic (>98%) composite peat sample. Subsequently, minerals were identified by XRD. The results show that combustion is preferred to chemical oxidation because it most efficiently removes organic matter (OM), an important pre-requisite for identifying mineral phases by XRD analysis. Thermally induced phase transitions can be anticipated when temperature is the only factor to take into consideration. Based on the data required in this studythe recommended combustion temperature is 500 degrees C which efficiently removes OM while preserving a majority of common dust minerals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-44 av 44
Typ av publikation
tidskriftsartikel (33)
annan publikation (3)
doktorsavhandling (3)
forskningsöversikt (3)
rapport (1)
konferensbidrag (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (37)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Bindler, Richard, 19 ... (41)
Rydberg, Johan, 1976 ... (13)
Martínez Cortizas, A ... (11)
Meyer-Jacob, Carsten ... (8)
Bigler, Christian (6)
Kylander, Malin E. (6)
visa fler...
Mighall, Tim (5)
Tolu, Julie, 1985- (5)
Myrstener, Erik (4)
Ninnes, Sofia (4)
Bertilsson, Stefan (3)
Klaminder, Jonatan, ... (3)
López-Costas, Olalla (3)
Fritz, S. C. (3)
Domaizon, Isabelle (3)
Capo, Eric (3)
Kylander, Malin E., ... (3)
Bigler, Christian, 1 ... (3)
Liu, Enfeng (3)
Rosén, Peter, 1970- (3)
Renberg, Ingemar, 19 ... (3)
Sjöström, Jenny K. (3)
Sabatier, P (2)
Parducci, Laura, 196 ... (2)
Schenk, Frederik (2)
Kjær, Kurt H. (2)
Álvarez-Fernández, N ... (2)
Wang, Xiao-Ru, Profe ... (2)
Vogel, Hendrik (2)
Martínez Cortizas, A (2)
Arnaud, Fabien (2)
Nath, Bibhash (2)
Segerström, Ulf (2)
Hansson, Sophia, 198 ... (2)
Debroas, Didier (2)
Kylander, Malin (2)
Cooke, Colin A. (2)
Pérez-Rodríguez, Mar ... (2)
Shen, JI (2)
Guedron, S. (2)
Brisset, E. (2)
Baker, P. A. (2)
Gälman, Veronika, 19 ... (2)
Karlsson, Jon, 1984- (2)
Mattielli, Nadine (2)
Zhang, Enlou (2)
Sjöström, Jenny K., ... (2)
Lambertsson, Lars, 1 ... (2)
Lin, Qi (2)
Ryberg, Eleonor E. (2)
visa färre...
Lärosäte
Umeå universitet (44)
Stockholms universitet (12)
Sveriges Lantbruksuniversitet (5)
Lunds universitet (3)
Uppsala universitet (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Engelska (43)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (40)
Lantbruksvetenskap (2)
Teknik (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy