SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bjursell M.) "

Sökning: WFRF:(Bjursell M.)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carreras, A., et al. (författare)
  • In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model
  • 2019
  • Ingår i: Bmc Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Plasma concentration of low-density lipoprotein (LDL) cholesterol is a well-established risk factor for cardiovascular disease. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which regulates cholesterol homeostasis, has recently emerged as an approach to reduce cholesterol levels. The development of humanized animal models is an important step to validate and study human drug targets, and use of genome and base editing has been proposed as a mean to target disease alleles.ResultsTo address the lack of validated models to test the safety and efficacy of techniques to target human PCSK9, we generated a liver-specific human PCSK9 knock-in mouse model (hPCSK9-KI). We showed that plasma concentrations of total cholesterol were higher in hPCSK9-KI than in wildtype mice and increased with age. Treatment with evolocumab, a monoclonal antibody that targets human PCSK9, reduced cholesterol levels in hPCSK9-KI but not in wildtype mice, showing that the hypercholesterolemic phenotype was driven by overexpression of human PCSK9. CRISPR-Cas9-mediated genome editing of human PCSK9 reduced plasma levels of human and not mouse PCSK9, and in parallel reduced plasma concentrations of total cholesterol; genome editing of mouse Pcsk9 did not reduce cholesterol levels. Base editing using a guide RNA that targeted human and mouse PCSK9 reduced plasma levels of human and mouse PCSK9 and total cholesterol. In our mouse model, base editing was more precise than genome editing, and no off-target editing nor chromosomal translocations were identified.ConclusionsHere, we describe a humanized mouse model with liver-specific expression of human PCSK9 and a human-like hypercholesterolemia phenotype, and demonstrate that this mouse can be used to evaluate antibody and gene editing-based (genome and base editing) therapies to modulate the expression of human PCSK9 and reduce cholesterol levels. We predict that this mouse model will be used in the future to understand the efficacy and safety of novel therapeutic approaches for hypercholesterolemia.
  •  
2.
  •  
3.
  • Lee, S. D., et al. (författare)
  • IDOL regulates systemic energy balance through control of neuronal VLDLR expression
  • 2019
  • Ingår i: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 1:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Liver X receptors limit cellular lipid uptake by stimulating the transcription of inducible degrader of the low-density lipoprotein receptor (IDOL), an E3 ubiquitin ligase that targets lipoprotein receptors for degradation. The function of IDOL in systemic metabolism is incompletely understood. Here we show that loss of IDOL in mice protects against the development of dietinduced obesity and metabolic dysfunction by altering food intake and thermogenesis. Unexpectedly, analysis of tissue-specific knockout mice revealed that IDOL affects energy balance, not through its actions in peripheral metabolic tissues (liver, adipose tissue, endothelium, intestine, and skeletal muscle) but by controlling lipoprotein receptor abundance in neurons. Single-cell RNA sequencing of the hypothalamus demonstrated that IDOL deletion altered gene expression linked to the control of metabolism. Finally, we identified very low-density lipoprotein receptor (VLDLR) rather than low-density lipoprotein receptor (LDLR) as the primary mediator of the effects of IDOL on energy balance. These data identify a role for the neuronal IDOL-VLDLR pathway in metabolic homoeostasis and diet-induced obesity.
  •  
4.
  • Rodriguez-Cuenca, S., et al. (författare)
  • Allostatic hypermetabolic response in PGC1 alpha/beta heterozygote mouse despite mitochondrial defects
  • 2021
  • Ingår i: Faseb Journal. - 0892-6638. ; 35:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging, obesity, and insulin resistance are associated with low levels of PGC1 alpha and PGC1 beta coactivators and defective mitochondrial function. We studied mice deficient for PGC1 alpha and PGC1 beta [double heterozygous (DH)] to investigate their combined pathogenic contribution. Contrary to our hypothesis, DH mice were leaner, had increased energy dissipation, a pro-thermogenic profile in BAT and WAT, and improved carbohydrate metabolism compared to wild types. WAT showed upregulation of mitochondriogenesis/oxphos machinery upon allelic compensation of PGC1 alpha 4 from the remaining allele. However, DH mice had decreased mitochondrial OXPHOS and biogenesis transcriptomes in mitochondria-rich organs. Despite being metabolically healthy, mitochondrial defects in DH mice impaired muscle fiber remodeling and caused qualitative changes in the hepatic lipidome. Our data evidence first the existence of organ-specific compensatory allostatic mechanisms are robust enough to drive an unexpected phenotype. Second, optimization of adipose tissue bioenergetics is sufficient to maintain a healthy metabolic phenotype despite a broad severe mitochondrial dysfunction in other relevant metabolic organs. Third, the decrease in PGC1s in adipose tissue of obese and diabetic patients is in contrast with the robustness of the compensatory upregulation in the adipose of the DH mice.
  •  
5.
  •  
6.
  • Stodberg, Tommy, et al. (författare)
  • Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The potassium-chloride co-transporter KCC2, encoded by SLC12A5, plays a fundamental role in fast synaptic inhibition by maintaining a hyperpolarizing gradient for chloride ions. KCC2 dysfunction has been implicated in human epilepsy, but to date, no monogenic KCC2-related epilepsy disorders have been described. Here we show recessive loss-of-function SLC12A5 mutations in patients with a severe infantile-onset pharmacoresistant epilepsy syndrome, epilepsy of infancy with migrating focal seizures (EIMFS). Decreased KCC2 surface expression, reduced protein glycosylation and impaired chloride extrusion contribute to loss of KCC2 activity, thereby impairing normal synaptic inhibition and promoting neuronal excitability in this early-onset epileptic encephalopathy.
  •  
7.
  • Bjursell, Mikael, 1977, et al. (författare)
  • Deletion of Gpr55 Results in Subtle Effects on Energy Metabolism, Motor Activity and Thermal Pain Sensation
  • 2016
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The G-protein coupled receptor 55 (GPR55) is activated by cannabinoids and non-cannabinoid molecules and has been speculated to play a modulatory role in a large variety of physiological and pathological processes, including in metabolically perturbed states. We therefore generated male mice deficient in the gene coding for the cannabinoid/lysophosphatidylinositol (LPI) receptor Gpr55 and characterized them under normal dietary conditions as well as during high energy dense diet feeding followed by challenge with the CB1 receptor antagonist/GPR55 agonist rimonabant. Gpr55 deficient male mice (Gpr55 KO) were phenotypically indistinguishable from their wild type (WT) siblings for the most part. However, Gpr55 KO animals displayed an intriguing nocturnal pattern of motor activity and energy expenditure (EE). During the initial 6 hours of the night, motor activity was significantly elevated without any significant effect observed in EE. Interestingly, during the last 6 hours of the night motor activity was similar but EE was significantly decreased in the Gpr55 KO mice. No significant difference in motor activity was detected during daytime, but EE was lower in the Gpr55 KO compared to WT mice. The aforementioned patterns were not associated with alterations in energy intake, daytime core body temperature, body weight (BW) or composition, although a non-significant tendency to increased adiposity was seen in Gpr55 KO compared to WT mice. Detailed analyses of daytime activity in the Open Field paradigm unveiled lower horizontal activity and rearing time for the Gpr55 KO mice. Moreover, the Gpr55 KO mice displayed significantly faster reaction time in the tail flick test, indicative of thermal hyperalgesia. The BW-decreasing effect of rimonabant in mice on long-term cafeteria diet did not differ between Gpr55 KO and WT mice. In conclusion, Gpr55 deficiency is associated with subtle effects on diurnal/nocturnal EE and motor activity behaviours but does not appear per se critically required for overall metabolism or behaviours.
  •  
8.
  • Bjursell, Magnus K., et al. (författare)
  • Adenosine Kinase Deficiency Disrupts the Methionine Cycle and Causes Hypermethioninemia, Encephalopathy, and Abnormal Liver Function
  • 2011
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 89:4, s. 507-515
  • Tidskriftsartikel (refereegranskat)abstract
    • Four inborn errors of metabolism (IEMs) are known to cause hypermethioninemia by directly interfering with the methionine cycle. Hypermethioninemia is occasionally discovered incidentally, but it is often disregarded as an unspecific finding, particularly if liver disease is involved. In many individuals the hypermethioninemia resolves without further deterioration, but it can also represent an early sign of a severe, progressive neurodevelopmental disorder. Further investigation of unclear hypermethioninemia is therefore important. We studied two siblings affected by severe developmental delay and liver dysfunction. Biochemical analysis revealed increased plasma levels of methionine, S-adenosylmethionine (Ado Met), and S-adenosylhomocysteine (AdoHcy) but normal or mildly elevated homocysteine (Hcy) levels, indicating a block in the methionine cycle. We excluded S-adenosylhomocysteine hydrolase (SAHH) deficiency, which causes a similar biochemical phenotype, by using genetic and biochemical techniques and hypothesized that there was a functional block in the SAHH enzyme as a result of a recessive mutation in a different gene. Using exome sequencing, we identified a homozygous c.902C>A (p.Ala301Glu) missense mutation in the adenosine kinase gene (ADK), the function of which fits perfectly with this hypothesis. Increased urinary adenosine excretion confirmed ADK deficiency in the siblings. Four additional individuals from two unrelated families with a similar presentation were identified and shown to have a homozygous c.653A>C (p.Asp218Ala) and c.38G>A (p.Gly13Glu) mutation, respectively, in the same gene. All three missense mutations were deleterious, as shown by activity measurements on recombinant enzymes. ADK deficiency is a previously undescribed, severe IEM shedding light on a functional link between the methionine cycle and adenosine metabolism.
  •  
9.
  • Carobbio, Stefania, et al. (författare)
  • Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity
  • 2013
  • Ingår i: Diabetes. - : Cell Press. - 0012-1797 .- 1939-327X. ; 62:11, s. 3697-3708
  • Tidskriftsartikel (refereegranskat)abstract
    • The epidemic of obesity imposes unprecedented challenges on human adipose tissue (WAT) storage capacity that may benefit from adaptive mechanisms to maintain adipocyte functionality. Here, we demonstrate that changes in the regulatory feedback set point control of Insig1/SREBP1 represent an adaptive response that preserves WAT lipid homeostasis in obese and insulin-resistant states. In our experiments, we show that Insig1 mRNA expression decreases in WAT from mice with obesity-associated insulin resistance and from morbidly obese humans and in in vitro models of adipocyte insulin resistance. Insig1 downregulation is part of an adaptive response that promotes the maintenance of SREBP1 maturation and facilitates lipogenesis and availability of appropriate levels of fatty acid unsaturation, partially compensating the antilipogenic effect associated with insulin resistance. We describe for the first time the existence of this adaptive mechanism in WAT, which involves Insig1/SREBP1 and preserves the degree of lipid unsaturation under conditions of obesity-induced insulin resistance. These adaptive mechanisms contribute to maintain lipid desaturation through preferential SCD1 regulation and facilitate fat storage in WAT, despite on-going metabolic stress.
  •  
10.
  •  
11.
  • Johansson, Eva M., 1900, et al. (författare)
  • Nuclear factor 1-C2 is regulated by prolactin and shows a distinct expression pattern in the mouse mammary epithelial cells during development
  • 2005
  • Ingår i: Molecular Endocrinology. - : The Endocrine Society. - 0888-8809 .- 1944-9917. ; 19:4, s. 992-1003
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously demonstrated that the transcription factor nuclear factor (NF)1-C2 plays an important role in the mammary gland for the activation of the tumor suppressor gene p53. It also activates the milk genes carboxyl ester lipase and whey acidic protein, implying that NF1-C2 participates both in the establishment of a functional gland and in protection of the gland against tumorigenesis during proliferation. In this study, we have developed a new sensitive NF1-C2-specific antiserum for immunohistochemical analyses of the NF1-C2 distribution during mammary gland development. We show that the NF1-C2 protein is present in the epithelial compartment at the virgin stage and throughout mammary gland development. However, in the lactation stage the NF1-C2 protein levels strongly decreased, and many epithelial nuclei stained negative. In situ hybridization shows that NF1-C2 transcripts are expressed in the whole epithelium at pregnancy as well as the lactation stage, indicating that the reduction in protein levels is posttranscriptionally regulated. At involution, the NF1-C2 proteins are back to high levels. Based on studies using NMuMG cells and mammary tissue from heterozygous prolactin receptor knockout mice, we also demonstrate that prolactin has a direct effect in the maintenance of the NF1-C2 protein levels in the mammary epithelial nuclei at the virgin stage and during pregnancy. Hence, we have identified another transcription factor in the mammary gland, besides signal transducer and activator of transcription 5, through which prolactin may control mammary gland development. Furthermore, our data suggest a link between prolactin and p53 in the mammary gland, through NF1-C2.
  •  
12.
  • Johansson, Eva M., 1900, et al. (författare)
  • The p53 tumor suppressor gene is regulated in vivo by nuclear factor 1-C2 in the mouse mammary gland during pregnancy.
  • 2003
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 22:38, s. 6061-70
  • Tidskriftsartikel (refereegranskat)abstract
    • The p53 tumor suppressor protein plays an important role in preventing cancer development by arresting or killing potential tumor cells. Downregulated p53 levels, or mutations within the p53 gene, leading to the loss of p53 activity, are found in many breast carcinomas. Here we demonstrate that the p53 gene is transcriptionally upregulated in the normal mouse mammary gland at midpregnancy. We show that the specific isoform nuclear factor 1-C2 (NF1-C2) plays an important role in this activation. Functional mutation of the NF1-binding site in the mouse p53 promoter resulted in a reduction of the gene expression to less than 30% in mammary epithelial cells. By the use of two powerful techniques, chromatin immunoprecipitation and oligonucleotide decoy, we verify the importance of NF1-C2 in p53 gene activation in vivo. These findings demonstrate a broader role for NF1-C2 in the mammary gland at midpregnancy, beyond its earlier reported activation of milk protein genes. We also demonstrate that NF1-A1 proteins are produced in the mouse mammary gland. However, due to their lower affinity to the NF1-binding site, these proteins are not involved in the transcriptional upregulation of p53 at midpregnancy. This paper constitutes the first report demonstrating the importance of NF1 proteins in the p53 gene activation in the mouse mammary gland. It is also the first time that p53 gene activation is coupled to a specific, endogenously expressed NF1 isoform.
  •  
13.
  • Kannius-Janson, Marie, 1969, et al. (författare)
  • Nuclear factor 1-C2 contributes to the tissue-specific activation of a milk protein gene in the differentiating mammary gland.
  • 2002
  • Ingår i: The Journal of biological chemistry. - 0021-9258. ; 277:20, s. 17589-96
  • Tidskriftsartikel (refereegranskat)abstract
    • Members of the nuclear factor 1 (NF1) transcription factor family have been postulated to be involved in the regulation of milk genes. In this work we have been able to identify the splice variant NF1-C2 as an important member of a tissue-specific activating complex that regulates the milk gene encoding carboxyl ester lipase (CEL). Mutation of the NF1-binding site in the CEL gene promoter results in a drastic reduction of the gene expression to about 15% in mammary epithelial cells. Furthermore, we demonstrate that the NF1-C2 protein interacts with a higher affinity to the NF1-binding site in the CEL gene promoter than other NF1 family members do and that NF1-C2 in the mouse mammary gland is a phosphorylated protein. During development of the mouse mammary gland, binding of NF1-C2 to the CEL gene promoter is induced at midpregnancy, in correlation with the induction of CEL gene expression. The fact that the NF1-C2 involving complex remains throughout the lactation period and decreases during the weaning period, when the CEL gene is down-regulated, supports its importance in the regulation of CEL gene expression. To our knowledge, this is the first report identifying a specific, endogenously expressed NF1 isoform to be involved in the tissue-specific activation of a gene.
  •  
14.
  • Lehours, P., et al. (författare)
  • Genome sequencing reveals a phage in Helicobacter pylori
  • 2011
  • Ingår i: mBio. - 2161-2129 .- 2150-7511. ; 2:6, s. e00239-
  • Tidskriftsartikel (refereegranskat)abstract
    •  Helicobacter pylori chronically infects the gastric mucosa in more than half of the human population; in a subset of this population, its presence is associated with development of severe disease, such as gastric cancer. Genomic analysis of several strains has revealed an extensive H pylori pan-genome, likely to grow as more genomes are sampled. Here we describe the draft genome sequence (63 contigs; 26× mean coverage) of H pylori strain B45, isolated from a patient with gastric mucosa-associated lymphoid tissue (MALT) lymphoma. The major finding was a 24.6-kb prophage integrated in the bacterial genome. The prophage shares most of its genes (22/27) with prophage region II of Helicobacter acinonychis strain Sheeba. After UV treatment of liquid cultures, circular DNA carrying the prophage integrase gene could be detected, and intracellular tailed phage-like particles were observed in H pylori cells by transmission electron microscopy, indicating that phage production can be induced from the prophage. PCR amplification and sequencing of the integrase gene from 341 H pylori strains from different geographic regions revealed a high prevalence of the prophage (21.4%). Phylogenetic reconstruction showed four distinct clusters in the integrase gene, three of which tended to be specific for geographic regions. Our study implies that phages may play important roles in the ecology and evolution of H pylori.
  •  
15.
  • Lelliott, Christopher J., et al. (författare)
  • Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance
  • 2006
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 4:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1beta (PGC-1beta) has been implicated in important metabolic processes. A mouse lacking PGC-1beta (PGC1betaKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1betaKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT). Under ambient temperature conditions, PGC-1beta ablation was partially compensated by up-regulation of PGC-1alpha in BAT and white adipose tissue (WAT) that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1betaKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1beta was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1betaKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1betaKO mice have impaired mitochondrial function. Lack of PGC-1beta also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1beta plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy