SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Black Rebecca Mae) "

Sökning: WFRF:(Black Rebecca Mae)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Black, Rebecca Mae, et al. (författare)
  • Proteomic analysis reveals dexamethasone rescues matrix breakdown but not anabolic dysregulation in a cartilage injury model
  • 2020
  • Ingår i: Osteoarthritis and Cartilage Open. - : Elsevier BV. - 2665-9131. ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: In this exploratory study, we used discovery proteomics to follow the release of proteins from bovine knee articular cartilage in response to mechanical injury and cytokine treatment. We also studied the effect of the glucocorticoid Dexamethasone (Dex) on these responses.Design: Bovine cartilage explants were treated with either cytokines alone (10 ng/ml TNFα, 20 ng/ml IL-6, 100 ng/ml sIL-6R), a single compressive mechanical injury, cytokines and injury, or no treatment, and cultured in serum-free DMEM supplemented with 1% ITS for 22 days. All samples were incubated with or without addition of 100 nM Dex. Mass spectrometry and western blot analyses were performed on medium samples for the identification and quantification of released proteins.Results: We identified 500 unique proteins present in all three biological replicates. Many proteins involved in the catabolic response of cartilage degradation had increased release after inflammatory stress. Dex rescued many of these catabolic effects. The release of some proteins involved in anabolic and chondroprotective processes was inconsistent, indicating differential effects on processes that may protect cartilage from injury. Dex restored only a small fraction of these to the control state, while others had their effects exacerbated by Dex exposure.Conclusions: We identified proteins that were released upon cytokine treatment which could be potential biomarkers of the inflammatory contribution to cartilage degradation. We also demonstrated the imperfect rescue of Dex on the effects of cartilage degradation, with many catabolic factors being reduced, while other anabolic or chondroprotective processes were not.
  •  
2.
  • Black, Rebecca Mae, et al. (författare)
  • Proteomic clustering reveals the kinetics of disease biomarkers in bovine and human models of post-traumatic osteoarthritis
  • 2021
  • Ingår i: Osteoarthritis and Cartilage Open. - : Elsevier BV. - 2665-9131. ; 3:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: In this study, we apply a clustering method to proteomic data sets from bovine and human models of post-traumatic osteoarthritis (PTOA) to distinguish clusters of proteins based on their kinetics of release from cartilage and examined these groups for PTOA biomarker candidates. We then quantified the effects of dexamethasone (Dex) on the kinetics of release of the cartilage media proteome. Design: Mass spectrometry was performed on sample medium collected from two separate experiments using juvenile bovine and human cartilage explants (3 samples/treatment condition) during 20- or 21-day treatment with inflammatory cytokines (TNF-α, IL-6, sIL-6R) with or without a single compressive mechanical injury. All samples were incubated with or without 100 ​nM Dex. Clustering was performed on the correlation between normalized averaged release vectors for each protein. Results: Our proteomic method identified the presence of distinct clusters of proteins based on the kinetics of their release over three weeks of culture. Clusters of proteins with peak release after one to two weeks had biomarker candidates with increased release compared to control. Dex rescued some of the changes in protein release kinetics the level of control, and in all conditions except control, there was late release of immune-related proteins. Conclusions: We demonstrate a clustering method applied to proteomic data sets to identify and validate biomarkers of early PTOA progression and explore the relationships between the release of spatially related matrix components. Dex restored the kinetics of release to many matrix components, but not all factors that contribute to cartilage homeostasis.
  •  
3.
  • Black, Rebecca Mae, et al. (författare)
  • Tissue catabolism and donor-specific dexamethasone response in a human osteochondral model of post-traumatic osteoarthritis
  • 2022
  • Ingår i: Arthritis Research and Therapy. - : Springer Science and Business Media LLC. - 1478-6354 .- 1478-6362. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Post-traumatic osteoarthritis (PTOA) does not currently have clinical prognostic biomarkers or disease-modifying drugs, though promising candidates such as dexamethasone (Dex) exist. Many challenges in studying and treating this disease stem from tissue interactions that complicate understanding of drug effects. We present an ex vivo human osteochondral model of PTOA to investigate disease effects on cartilage and bone homeostasis and discover biomarkers for disease progression and drug efficacy. Methods: Human osteochondral explants were harvested from normal (Collins grade 0–1) ankle talocrural joints of human donors (2 female, 5 male, ages 23–70). After pre-equilibration, osteochondral explants were treated with a single-impact mechanical injury and TNF-α, IL-6, and sIL-6R ± 100 nM Dex for 21 days and media collected every 2–3 days. Chondrocyte viability, tissue DNA content, and glycosaminoglycan (sGAG) percent loss to the media were assayed and compared to untreated controls using a linear mixed effects model. Mass spectrometry analysis was performed for both cartilage tissue and pooled culture medium, and the statistical significance of protein abundance changes was determined with the R package limma and empirical Bayes statistics. Partial least squares regression analyses of sGAG loss and Dex attenuation of sGAG loss against proteomic data were performed. Results: Injury and cytokine treatment caused an increase in the release of matrix components, proteases, pro-inflammatory factors, and intracellular proteins, while tissue lost intracellular metabolic proteins, which was mitigated with the addition of Dex. Dex maintained chondrocyte viability and reduced sGAG loss caused by injury and cytokine treatment by 2/3 overall, with donor-specific differences in the sGAG attenuation effect. Biomarkers of bone metabolism had mixed effects, and collagen II synthesis was suppressed with both disease and Dex treatment by 2- to 5-fold. Semitryptic peptides associated with increased sGAG loss were identified. Pro-inflammatory humoral proteins and apolipoproteins were associated with lower Dex responses. Conclusions: Catabolic effects on cartilage tissue caused by injury and cytokine treatment were reduced with the addition of Dex in this osteochondral PTOA model. This study presents potential peptide biomarkers of early PTOA progression and Dex efficacy that can help identify and treat patients at risk of PTOA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy