SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blackburn Tom 1989) "

Sökning: WFRF:(Blackburn Tom 1989)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baird, C. D., et al. (författare)
  • Realising single-shot measurements of quantum radiation reaction in high-intensity lasers
  • 2019
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 21:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Modern laser technology is now sufficiently advanced that collisions between high-intensity laser pulses and laser-wakefield-accelerated (LWFA) electron beams can reach the strong-field regime, so that it is possible to measure the transition between the classical and quantum regimes of light-matter interactions. However, the energy spectrum of LWFA electron beams can fluctuate significantly from shot to shot, making it difficult to clearly discern quantum effects in radiation reaction (RR), for example. Here we show how this can be accomplished in only a single laser shot. A millimetre-scale pre-collision drift allows the electron beam to expand to a size larger than the laser focal spot and develop a correlation between transverse position and angular divergence. In contrast to previous studies, this means that a measurement of the beam's energy-divergence spectrum automatically distinguishes components of the beam that hit or miss the laser focal spot and therefore do and do not experience RR.
  •  
2.
  • Blackburn, Thomas, 1989, et al. (författare)
  • Reaching supercritical field strengths with intense lasers
  • 2019
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 21:5
  • Tidskriftsartikel (refereegranskat)abstract
    • It is conjectured that all perturbative approaches to quantum electrodynamics (QED) break down in the collision of a high-energy electron beam with an intense laser, when the laser fields are boosted to supercritical strengths far greater than the critical field of QED. As field strengths increase toward this regime, cascades of photon emission and electron-positron pair creation are expected, as well as the onset of substantial radiative corrections. Here we identify the important role played by the collision angle in mitigating energy losses to photon emission that would otherwise prevent the electrons reaching the supercritical regime. Weshow that a collision between an electron beam with energy in the tens of GeV and a laser pulse of intensity 10 W cm 24 2 - at oblique, or even normal, incidence is a viable platform for studying the breakdown of perturbative strong-field QED. Our results have implications for the design of near-term experiments as they predict that certain quantum effects are enhanced at oblique incidence. © 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
  •  
3.
  • Arran, C., et al. (författare)
  • Optimal parameters for radiation reaction experiments
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:7
  • Tidskriftsartikel (refereegranskat)abstract
    • As new laser facilities are developed with intensities on the scale of 10(22)-10(24) W cm(-2), it becomes ever more important to understand the effect of strong field quantum electrodynamic processes, such as quantum radiation reaction, which will play a dominant role in laser-plasma interactions at these intensities. Recent all-optical experiments, where GeV electrons from a laser wakefield accelerator encountered a counter-propagating laser pulse with a(0) > 10, have produced evidence of radiation reaction, but have not conclusively identified quantum effects nor their most suitable theoretical description. Here we show the number of collisions and the conditions required to accomplish this, based on a simulation campaign of radiation reaction experiments under realistic conditions. We conclude that while the critical energy of the photon spectrum distinguishes classical and quantum-corrected models, a better means of distinguishing the stochastic and deterministic quantum models is the change in the electron energy spread. This is robust against shot-to-shot fluctuations and the necessary laser intensity and electron beam energies are already available. For example, we show that so long as the electron energy spread is below 25%, collisions at a(0) = 10 with electron energies of 500 MeV could differentiate between different quantum models in under 30 shots, even with shot-to-shot variations at the 50% level.
  •  
4.
  • Arran, C., et al. (författare)
  • Potential to measure quantum effects in recent all-optical radiation reaction experiments
  • 2019
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11039
  • Konferensbidrag (refereegranskat)abstract
    • The construction of 10 PW class laser facilities with unprecedented intensities has emphasized the need for a thorough understanding of the radiation reaction process. We describe simulations for a recent all-optical colliding pulse experiment, where a GeV scale electron bunch produced by a laser wakefield accelerator interacted with a counter-propagating laser pulse. In the rest frame of the electron bunch, the electric field of the laser pulse is increased by several orders of magnitude, approaching the Schwinger field and leading to substantial variation from the classical Landau-Lifshitz model. Our simulations show how the final electron and photon spectra may allow us to differentiate between stochastic and semi-classical models of radiation reaction, even when there is significant shot-to-shot variation in the experimental parameters. In particular, constraints are placed on the maximum energy spread and shot-to-shot variation permissible if a stochastic model is to be proven with confidence.
  •  
5.
  • Behm, K. T., et al. (författare)
  • A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV
  • 2018
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 1089-7623 .- 0034-6748. ; 89:11
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 Author(s). We present a design for a pixelated scintillator based gamma-ray spectrometer for non-linear inverse Compton scattering experiments. By colliding a laser wakefield accelerated electron beam with a tightly focused, intense laser pulse, gamma-ray photons up to 100 MeV energies and with few femtosecond duration may be produced. To measure the energy spectrum and angular distribution, a 33 × 47 array of cesium-iodide crystals was oriented such that the 47 crystal length axis was parallel to the gamma-ray beam and the 33 crystal length axis was oriented in the vertical direction. Using an iterative deconvolution method similar to the YOGI code, modeling of the scintillator response using GEANT4 and fitting to a quantum Monte Carlo calculated photon spectrum, we are able to extract the gamma ray spectra generated by the inverse Compton interaction.
  •  
6.
  • Blackburn, Tom, 1989, et al. (författare)
  • Benchmarking semiclassical approaches to strong-field QED: Nonlinear Compton scattering in intense laser pulses
  • 2018
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 25:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The recoil associated with photon emission is key to the dynamics of ultrarelativistic electrons in strong electromagnetic fields, as found in high-intensity laser-matter interactions and astrophysical environments such as neutron star magnetospheres. When the energy of the photon becomes comparable to that of the electron, it is necessary to use quantum electrodynamics (QED) to describe the dynamics accurately. However, computing the appropriate scattering matrix element from strong-field QED is not generally possible due to multiparticle effects and the complex structure of the electromagnetic fields. Therefore, these interactions are treated semiclassically, coupling probabilistic emission events to classical electrodynamics using rates calculated in the locally constant field approximation. Here, we provide comprehensive benchmarking of this approach against the exact QED calculation for nonlinear Compton scattering of electrons in an intense laser pulse. We find agreement at the percentage level between the photon spectra, as well as between the models' predictions of absorption from the background field, for normalized amplitudes a0> 5. We discuss possible routes towards improved numerical methods and the implications of our results for the study of QED cascades.
  •  
7.
  • Blackburn, Tom, 1989, et al. (författare)
  • Nonlinear Breit-Wheeler pair creation with bremsstrahlung γ rays
  • 2018
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 60:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron-positron pairs are produced through the Breit-Wheeler process when energetic photons traverse electromagnetic fields of sufficient strength. Here we consider a possible experimental geometry for observation of pair creation in the highly nonlinear regime, in which bremsstrahlung of an ultrarelativistic electron beam in a high-Z target is used to produce γ rays that collide with a counter-propagating laser pulse. We show how the target thickness may be chosen to optimize the yield of Breit-Wheeler positrons, and verify our analytical predictions with simulations of the cascade in the material and in the laser pulse. The electron beam energy and laser intensity required are well within the capability of today's high-intensity laser facilities.
  •  
8.
  • Blackburn, Tom, 1989, et al. (författare)
  • Relativistically intense XUV radiation from laser-illuminated near-critical plasmas
  • 2018
  • Ingår i: Physical Review A. - 2469-9934 .- 2469-9926. ; 98:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulses of extreme ultraviolet (XUV) light, with wavelengths between 10 and 100nm, can be used to image and excite ultrafast phenomena such as the motion of atomic electrons. Here we show that the illumination of plasma with near-critical electron density may be used as a source of relativistically intense XUV radiation, providing the means for novel XUV-pump-XUV-probe experiments in the nonlinear regime. We describe how the optimal regime may be reached by tailoring the laser-target interaction parameters and by the presence of preplasma. Our results indicate that currently available laser facilities are capable of producing XUV pulses with duration ∼10fs, brilliance in excess of 1023photons/s/mm2/mrad2 (0.1% bandwidth), and intensity Iλ21019Wcm-2μm2.
  •  
9.
  • Blackburn, Tom, 1989, et al. (författare)
  • Scaling laws for positron production in laser-electron-beam collisions
  • 2017
  • Ingår i: Physical Review A. - 2469-9934 .- 2469-9926. ; 96:2, s. Article no 022128 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Showers of gamma rays and positrons are produced when a high-energy electron beam collides with a superintense laser pulse. We present scaling laws for the electron-beam energy loss, the gamma-ray spectrum, and the positron yield and energy that are valid in the nonlinear, radiation-reaction-dominated regime. As an application we demonstrate that by employing the collision of a > GeV electron beam with a laser pulse of intensity > 5 x 10(21) Wcm(-2), today's high-intensity laser facilities are capable of producing O(10(4)) positrons per shot via light-by-light scattering.
  •  
10.
  • Cole, J. M., et al. (författare)
  • Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam
  • 2018
  • Ingår i: Physical Review X. - 2160-3308. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (μ 500 MeV) with an intense laser pulse (a0 > 10). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy > 30 MeV.
  •  
11.
  • Del Sorbo, D., et al. (författare)
  • Spin polarization of electrons by ultraintense lasers
  • 2017
  • Ingår i: Physical Review A. - 2469-9934 .- 2469-9926. ; 96:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrons in plasmas produced by next-generation ultraintense lasers (I > 5 x 10(22)W/cm(2)) can be spin polarized to a high degree (10%-70%) by the laser pulses on a femtosecond time scale. This is due to electrons undergoing spin-flip transitions as they radiate gamma-ray photons, preferentially spin polarizing in one direction. Spin polarization can modify the radiation reaction force on the electrons, which differs by up to 30% for opposite spin polarizations. Consequently, the polarization of the radiated gamma-ray photons is also modified: the relative power radiated in the sigma and pi components increases and decreases by up to 30%, respectively, potentially reducing the rate of pair production in the plasma by up to 30%.
  •  
12.
  • Ridgers, C. P., et al. (författare)
  • Signatures of quantum effects on radiation reaction in laser-electron-beam collisions
  • 2017
  • Ingår i: Journal of Plasma Physics. - : Cambridge University Press (CUP). - 0022-3778 .- 1469-7807. ; 83:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Two signatures of quantum effects on radiation reaction in the collision of a similar to GeV electron beam with a high intensity (>3 x 10(20) W cm(-2)) laser pulse have been considered. We show that the decrease in the average energy of the electron beam may be used to measure the Gaunt factor g for synchrotron emission. We derive an equation for the evolution of the variance in the energy of the electron beam in the quantum regime, i.e. quantum efficiency parameter eta (sic) 1. We show that the evolution of the variance may be used as a direct measure of the quantum stochasticity of the radiation reaction and determine the parameter regime where this is observable. For example, stochastic emission results in a 25 % increase in the standard deviation of the energy spectrum of a GeV electron beam, 1 fs after it collides with a laser pulse of intensity 10(21) W cm(-2). This effect should therefore be measurable using current high-intensity laser systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy