SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bloom JW) "

Search: WFRF:(Bloom JW)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Kunz, S, et al. (author)
  • Identification of a novel glucocorticoid receptor mutation in budesonide-resistant human bronchial epithelial cells
  • 2003
  • In: Molecular endocrinology (Baltimore, Md.). - : The Endocrine Society. - 0888-8809 .- 1944-9917. ; 17:12, s. 2566-2582
  • Journal article (peer-reviewed)abstract
    • We developed a molecular genetic model to investigate glucocorticoid receptor (GR) signaling in human bronchial epithelial cells in response to the therapeutic steroid budesonide. Based on a genetic selection scheme using the human Chago K1 cell line and integrated copies of a glucocorticoid-responsive herpes simplex virus thymidine kinase gene and a green fluorescent protein gene, we isolated five Chago K1 variants that grew in media containing budesonide and ganciclovir. Three spontaneous budesonide-resistant subclones were found to express low levels of GR, whereas two mutants isolated from ethylmethane sulfonate-treated cultures contained normal levels of GR protein. Analysis of the GR coding sequence in the budesonide-resistant subclone Ch-BdE5 identified a novel Val to Met mutation at amino acid position 575 (GRV575M) which caused an 80% decrease in transcriptional regulatory functions with only a minimal effect on ligand binding activity. Homology modeling of the GR structure in this region of the hormone binding domain and molecular dynamic simulations suggested that the GRV575M mutation would have a decreased affinity for the LXXLL motif of p160 coactivators. To test this prediction, we performed transactivation and glutathione-S-transferase pull-down assays using the p160 coactivator glucocorticoid interacting protein 1 (GRIP1)/transcriptional intermediary factor 2 and found that GRV575M transcriptional activity was not enhanced by GRIP1 in transfected cells nor was it able to bind GRIP1 in vitro. Identification of the novel GRV575M variant in human bronchial epithelial cells using a molecular genetic selection scheme suggests that functional assays performed in relevant cell types could identify subtle defects in GR signaling that contribute to reduced steroid sensitivities in vivo.
  •  
3.
  • Shah, S, et al. (author)
  • Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
  • 2020
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 163-
  • Journal article (peer-reviewed)abstract
    • Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.
  •  
4.
  •  
5.
  • 2021
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view