SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blumberg L) "

Sökning: WFRF:(Blumberg L)

  • Resultat 1-26 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Ching, C. R. K., et al. (författare)
  • What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group
  • 2022
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 56-82
  • Tidskriftsartikel (refereegranskat)abstract
    • MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
  •  
12.
  •  
13.
  • Muehlenbein, MP, et al. (författare)
  • Traveller exposures to animals: a GeoSentinel analysis
  • 2020
  • Ingår i: Journal of travel medicine. - : Oxford University Press (OUP). - 1708-8305 .- 1195-1982. ; 27:7
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundHuman coexistence with other animals can result in both intentional and unintentional contact with a variety of mammalian and non-mammalian species. International travellers are at risk for such encounters; travellers risk injury, infection and possibly death from domestic and wild animal bites, scratches, licks and other exposures. The aim of the present analysis was to understand the diversity and distribution of animal-related exposures among international travellers.MethodsData from January 2007 through December 2018 from the GeoSentinel Surveillance Network were reviewed. Records were included if the exposure was non-migration travel with a diagnosis of an animal (dog, cat, monkey, snake or other) bite or other exposure (non-bite); records were excluded if the region of exposure was not ascertainable or if another, unrelated acute diagnosis was reported.ResultsA total of 6470 animal exposures (bite or non-bite) were included. The majority (71%) occurred in Asia. Travellers to 167 countries had at least one report of an animal bite or non-bite exposure. The majority (76%) involved dogs, monkeys and cats, although a wide range of wild and domestic species were involved. Almost two-thirds (62.6%) of 4395 travellers with information available did not report a pretravel consultation with a healthcare provider.ConclusionsMinimizing bites and other animal exposures requires education (particularly during pretravel consultations) and behavioral modification. These should be supplemented by the use of pre-exposure rabies vaccination for travellers to high-risk countries (especially to those with limited access to rabies immunoglobulin), as well as encouragement of timely (in-country) post-exposure prophylaxis for rabies and Macacine alphaherpesvirus 1 (herpesvirus B) when warranted.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Legler, Juliette, et al. (författare)
  • The GOLIATH Project : Towards an Internationally Harmonised Approach for Testing Metabolism Disrupting Compounds
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 21:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this project report is to introduce the European "GOLIATH" project, a new research project which addresses one of the most urgent regulatory needs in the testing of endocrine-disrupting chemicals (EDCs), namely the lack of methods for testing EDCs that disrupt metabolism and metabolic functions. These chemicals collectively referred to as "metabolism disrupting compounds" (MDCs) are natural and anthropogenic chemicals that can promote metabolic changes that can ultimately result in obesity, diabetes, and/or fatty liver in humans. This project report introduces the main approaches of the project and provides a focused review of the evidence of metabolic disruption for selected EDCs. GOLIATH will generate the world's first integrated approach to testing and assessment (IATA) specifically tailored to MDCs. GOLIATH will focus on the main cellular targets of metabolic disruption-hepatocytes, pancreatic endocrine cells, myocytes and adipocytes-and using an adverse outcome pathway (AOP) framework will provide key information on MDC-related mode of action by incorporating multi-omic analyses and translating results from in silico, in vitro, and in vivo models and assays to adverse metabolic health outcomes in humans at real-life exposures. Given the importance of international acceptance of the developed test methods for regulatory use, GOLIATH will link with ongoing initiatives of the Organisation for Economic Development (OECD) for test method (pre-)validation, IATA, and AOP development.
  •  
18.
  •  
19.
  • Schug, Thaddeus T., et al. (författare)
  • Designing Endocrine Disruption Out of the Next Generation of Chemicals
  • 2013
  • Ingår i: Green Chemistry. - : Royal Society of Chemistry. - 1463-9262 .- 1463-9270. ; 15:1, s. 181-198
  • Tidskriftsartikel (refereegranskat)abstract
    • A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical's potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at "the drawing board." It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a 'proof-of-principle' test, we ran 6 endocrine disrupting chemicals (EDCs) that act via different endocrinological mechanisms through the protocol using published literature. Each was identified as endocrine active by one or more tiers. We believe that this voluntary testing protocol will be a dynamic tool to facilitate efficient and early identification of potentially problematic chemicals, while ultimately reducing the risks to public health.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • Schrumpf, E., et al. (författare)
  • The gut microbiota contributes to a mouse model of spontaneous bile duct inflammation
  • 2017
  • Ingår i: Journal of Hepatology. - : Elsevier BV. - 0168-8278 .- 1600-0641. ; 66:2, s. 382-389
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: A strong association between human inflammatory biliary diseases and gut inflammation has led to the hypothesis that gut microbes and lymphocytes activated in the intestine play a role in biliary inflammation. The NOD.c3c4 mouse model develops spontaneous biliary inflammation in extra- and intrahepatic bile ducts. We aimed to clarify the role of the gut microbiota in the biliary disease of NOD.c3c4 mice. Methods: We sampled cecal content and mucosa from conventionally raised (CONV-R) NOD.c3c4 and NOD control mice, extracted DNA and performed 16S rRNA sequencing. NOD.c3c4 mice were rederived into a germ free (GF) facility and compared with CONV-R NOD.c3c4 mice. NOD.c3c4 mice were also co-housed with NOD mice and received antibiotics from weaning. Results: The gut microbial profiles of mice with and without biliary disease were different both before and after rederivation (unweighted UniFrac-distance). GF NOD.c3c4 mice had less distended extra-hepatic bile ducts than CONV-R NOD.c3c4 mice, while antibiotic treated mice showed reduction of biliary infarcts. GF animals also showed a reduction in liver weight compared with CONV-R NOD.c3c4 mice, and this was also observed in antibiotic treated NOD.c3c4 mice. Co-housing of NOD and NOD. c3c4 mice indicated that the biliary phenotype was neither transmissible nor treatable by co-housing with healthy mice. Conclusions: NOD.c3c4 and NOD control mice show marked differences in the gut microbiota. GF NOD.c3c4 mice develop a milder biliary affection compared with conventionally raised NOD.c3c4 mice. Our findings suggest that the intestinal micro biota contributes to disease in this murine model of biliary inflammation. Lay summary: Mice with liver disease have a gut microflora (microbiota) that differs substantially from normal mice. In a normal environment, these mice spontaneously develop disease in their bile ducts. However, when these mice, are raised in an environment devoid of bacteria, the disease in the bile ducts diminishes. Overall this clearly indicates that the bacteria in the gut (the gut microbiota) influences the liver disease in these mice. (C) 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
  •  
25.
  •  
26.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-26 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy