SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bogdanoff Toni) "

Sökning: WFRF:(Bogdanoff Toni)

  • Resultat 1-23 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ali, Sharafat, 1976-, et al. (författare)
  • Hardness, elastic modulus and refractive index of oxynitride glasses prepared from woody biofuel ashes
  • 2017
  • Ingår i: European Journal of Glass Science and Techology. Part B. Physics and Chemistry of Glasses. - : Society of Glass Technology. - 1753-3562 .- 1750-6689. ; 58:6, s. 231-236
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports the hardness, elastic modulus and refractive index values of the oxynitride glasses prepared from woody biofuel ashes. The glasses were prepared in nitrogen atmosphere at 1350-1500°C with addition of Ca metal as a precursor to the extra addition of this modifier. The glasses were homogenous, but appeared translucent grey to black. They contained up to 23 eq% of Ca and 5 eq% of N. The glass densities vary slightly between 2·76 to 2·92 g/cm3. The molar volume and compactness values vary between 8·01 cm3/mol to 8·31 cm3/mol and 0·446 to 0·462 respectively. Mechanical properties like hardness and reduced elastic modulus show values, up to 10 and 105 GPa, respectively. These properties are strongly correlated with the amount of N in the glass. The refractive index (1·54-1·75) increases with increasing N and Ca contents.
  •  
2.
  • Bogdanoff, Toni, et al. (författare)
  • A simple procedure to assess the Complete Melt Quality in aluminium castings : implementation in a die-casting and a rheo-casting
  • 2024
  • Ingår i: International Journal of Cast Metals Research. - : Taylor & Francis. - 1364-0461 .- 1743-1336. ; 37:1, s. 71-79
  • Tidskriftsartikel (refereegranskat)abstract
    • A new simple approach was developed to assess the Complete Melt Quality of aluminium cast alloys throughout the production line. The approach relies on the concurrent use of reduced pressure tests (RPT) and tensile tests at each station in the production line when the melt is transferred and/or processed. These tests can be used to determine the source of melt-related problems in the production line. Two case studies from the procedure of both an aluminium die-casting and a rheo-casting plant showed that melts were significantly damaged in the tower furnace and got progressively more damaged through the production line proven by the RPT, tensile test, and fracture surface analysis results.
  •  
3.
  • Bogdanoff, Toni, et al. (författare)
  • Effect of Co and Ni Addition on the Microstructure and Mechanical Properties at Room and Elevated Temperature of an Al–7%Si Alloy
  • 2018
  • Ingår i: International Journal of metalcasting. - : Springer. - 1939-5981 .- 2163-3193. ; 12:3, s. 434-440
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing environmental demands are forcing the automotive industry to reduce vehicle emissions by producing more light-weight and fuel efficient vehicles. Al–Si alloys are commonly used in automotive applications because of excellent castability, high thermal conductivity, good wear properties and high strength-to-weight ratio. However, most of the aluminium alloys on the market exhibit significantly reduced strength at temperatures above 200 °C. This paper presents results of a study of the effects of Co and Ni in a hypoeutectic Al–Si alloy on microstructure and mechanical properties at room and elevated temperature. Tensile test specimens with microstructures comparable to those obtained in high-pressure die casting, i.e. SDAS ~ 10 µm, were produced by directional solidification in a Bridgman furnace. The results show an improvement in tensile properties up to 230 °C.
  •  
4.
  • Bogdanoff, Toni, et al. (författare)
  • On the combined effects of surface quality and pore size on the fatigue life of Al–7Si–3Cu–Mg alloy castings
  • 2023
  • Ingår i: Materials Science & Engineering. - : Elsevier. - 0921-5093 .- 1873-4936. ; 885
  • Tidskriftsartikel (refereegranskat)abstract
    • This study has aimed to determine the effects of surface quality and pore size, obtained by different levels of hydrogen content of the liquid metal, on the fatigue behavior of an Al–7%Si–3%Cu–Mg casting alloy. Three surface conditions have been studied: as-cast rough, as-cast smooth, and standard machined and polished surface. The S–N curves have shown that surface roughness and hydrogen content individually impact fatigue strength. Surprisingly, the fatigue strength of machined and polished samples, which aligns with standard testing practices, is significantly reduced, compared to other conditions. Fatigue cracks have been observed to initiate at the pores just below the as-cast surface or on the machined surfaces. In all cases, pores have been observed to be surrounded by bifilms. Moreover, hydrogen content and roughness of the as-cast surface have been found to interact to determine the fatigue performance. These findings necessitate a re-evaluation of fatigue testing procedures for cast aluminum components.
  •  
5.
  • Bogdanoff, Toni, et al. (författare)
  • On the Effectiveness of Rotary Degassing of Recycled Al-Si Alloy Melts : The Effect on Melt Quality and Energy Consumption for Melt Preparation
  • 2023
  • Ingår i: Sustainability. - : MDPI. - 2071-1050. ; 15:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The effectiveness of rotary degassing on the defect formation and mechanical properties of the final casting of aluminium alloy EN AC 46000 was investigated, along with its impact on the energy consumption in the casting furnace. In the melt preparation prior to casting, the molten metal is usually transported from the melting furnace to the casting furnace with rotary degassing as a cleaning procedure. Under the conditions of this specific study, negligible degradation was observed in the mechanical properties of the final cast component in an aluminium EN AC 46000 alloy after removing the rotary degassing step in the process. Furthermore, removing the rotary degassing step led to a reduced temperature drop in the melt, thus minimizing the need for reheating (energy consumption) by up to 75% in the casting furnace. The reduced energy consumption was up to 124,000 kWh in yearly production in a 1500 kg casting furnace. The environmental impact showed a similar to 1500 kg reduction in CO2 for one 1500 kg electrical casting furnace in a year.
  •  
6.
  • Bogdanoff, Toni, et al. (författare)
  • On the secondary cracks during crack propagation in an Al-Si-Cu-Mg alloy : An in-situ study
  • 2023
  • Ingår i: Materials Characterization. - : Elsevier. - 1044-5803 .- 1873-4189. ; 203
  • Tidskriftsartikel (refereegranskat)abstract
    • During in situ cyclic testing of hot isostatically pressed and heat-treated Al-5Si-0.5 Mg-1Cu alloy castings, cracks were observed to open up in places far away from the area of stress concentration. Cyclic testing was interrupted to assess these cracks. Analysis showed that these cracks originated from oxide bifilms that were entrained in the liquid state. Moreover, Si and Fe-rich intermetallics were observed to have precipitated on these bifilms. These finding makes it necessary to re-evaluate how damage is interpreted in mechanical studies. Entrainment damage, which takes place in the liquid state, may remain invisible in non-destructive inspection and can significantly affect fatigue properties when bifilms open up under low tensile stresses and present the propagating crack a path of low resistance during propagation.
  •  
7.
  • Bogdanoff, Toni, et al. (författare)
  • Prototyping of a high pressure die cast al-si alloy using plaster mold casting to replicate corresponding mechanical properties
  • 2019
  • Ingår i: Minerals, Metals and Materials Series. - Cham : Springer. - 9783030058630 - 9783030058647 ; , s. 435-442
  • Konferensbidrag (refereegranskat)abstract
    • Prototyping prior high pressure die casting (HPDC) is used for product/mold design optimization. Plaster mold casting is a cost-efficient prototyping technique providing good surface quality and dimension accuracy, similar to HPDC components. However, the corresponding mechanical properties of a component produced with these two methods are diverging significantly, mainly due to differences in the cooling rate. This work presents a procedure to optimize the plaster mold casting for prototyping to replicate mechanical properties of a commonly used Al-Si alloy (A380). Two commercial alloys with compositions close to the A380 alloy (A356.0 and A360.2) were used. Yield strength was considered as the main design criteria, thus the target mechanical property. Tensile testing results showed that with an optimized T6 heat treatment, not only the yield strength, but also ultimate tensile strength and elongation correspond well to the properties in the HPDC component.
  •  
8.
  • Bogdanoff, Toni, et al. (författare)
  • The complex interaction between microstructural features and crack evolution during cyclic testing in heat-treated Al–Si–Mg–Cu cast alloys
  • 2021
  • Ingår i: Materials Science & Engineering. - : Elsevier. - 0921-5093 .- 1873-4936. ; 825
  • Tidskriftsartikel (refereegranskat)abstract
    • The study aimed to investigate crack initiation and propagation at the micro-scale in heat-treated Al–7Si–Mg cast alloys with different copper (Cu) contents. In-situ cyclic testing in a scanning electron microscope coupled with electron back-scattered diffraction and digital image correlation was used to evaluate the complex interaction between the crack path and the microstructural features. The three-nearest-neighbour distance of secondary particles was a new tool to describe the crack propagation in the alloys. The amount of Cu retained in the α-Al matrix after heat treatment increased with the Cu content in the alloy and enhanced the strength with a slight decrease in elongation. During cyclic testing, the two-dimensional (2D) crack path appeared with a mixed propagation, both trans- and inter-granular, regardless of the Cu content of the alloy. On fracture surfaces, multiple crack initiation points were detected along the thickness of the samples. The debonding of silicon (Si) particles took place during crack propagation in the Cu-free alloy, while cracking of Si particles and intermetallic phases occurred in the alloy with 3.2 wt% Cu. Three-dimensional tomography using focused ion beam revealed that the improved strength of the α-Al matrix changes the number of cracked particles ahead of the propagating crack with Cu concentration above 1.5 wt%.
  •  
9.
  • Bogdanoff, Toni (författare)
  • The effect of microstructural features, defects and surface quality on the fatigue performance in Al-Si-Mg Cast alloys
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Global warming is driving industry to manufacture lighter components to reduce carbon dioxide (CO2) emissions. Promising candidates for achieving this are aluminium-silicon (Al-Si) cast alloys, which offer a high weight-to-strength ratio, excellent corrosion resistance, and good castability. However, understanding variations in the mechanical properties of these alloys is crucial to producing high-performance parts for critical applications. Defects and oxides are the primary reasons cast components in fatigue applications are rejected, as they negatively impact mechanical properties.A comprehensive understanding of the correlation between fatigue performance and parameters such as the α-aluminium matrix, Al-Si eutectic, surface roughness, porosities, hydrogen content, oxides, and intermetallic phases in Al-Si castings has not been reached.The research presented in this thesis used state-of-the-art experimental techniques to investigate the mechanical properties and crack-initiation and propagation behaviour of Al-Si-Mg cast alloy under cyclic loading. In-situ cyclic testing was conducted using scanning electron microscopy (SEM) combined with electron back-scattered diffraction (EBSD), digital image correlation (DIC), and focused ion beam (FIB) milling. These techniques enabled a comprehensive study of parameters affecting fatigue performance, including hydrogen content, surface roughness, oxides, and intermetallic phases. More specifically, we investigated the effect of melt quality, copper (Cu) content, oxide bifilms, surface quality, and porosity.The increased Cu concentration in heat-treated Al-Si alloys increased the amount of intermetallic phases, which affected the cracking behaviour. Furthermore, oxide bifilms were detected at crack-initiation sites, even in regions far away from the highly strained areas. Si- and Iron (Fe)-rich intermetallics were observed to have precipitated on these bifilms. Due to their very small size, these oxides are generally not detected by non-destructive inspections, but affect mechanical properties because they appear to open at relatively low tensile stresses. Finally, Al-Si alloy casting skins showed an interesting effect in terms of improving fatigue performance, highlighting the negative effect of surface polishing for such alloys.
  •  
10.
  • Bogdanoff, Toni, et al. (författare)
  • The effect of SI content on microstructure and mechanical properties of Al-Si alloy
  • 2016
  • Ingår i: La Metallurgia Italiana. - Milano : Associazione Italiana di Metallurgia. - 0026-0843. ; 108:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Al-Si alloys are the most popular casting alloys due to their excellent castability combined with high strengthto-weight ratio. This paper investigates the role of Si content in the range of 6.5 wt. % to 14.4 wt. % on the microstructure and mechanical properties of Al-Si-Mg casting alloys. All alloys were modified with 90-150 ppm Sr. No grain refiner was added. The samples were produced by directional solidification providing a microstructure that corresponds to microstructures found in die castings. From the phase diagram and coupled zone, increasing the Si level up to 14.4 wt. % is expected to start a competition between formation of α- dendrites and a fully eutectic microstructure. However, it is known that Sr-modification shifts the eutectic to higher Si contents. For the lower Si contents, the microstructure of the samples consisted of α-dendrites and a modified Al-Si eutectic. At 12.4 wt. % Si and above, a cellular eutectic microstructure was observed. No primary Si was observed even at 14.4 wt. % Si. The mechanical properties in terms of yield and tensile strength did not vary remarkably as a function of the Si level unlike the elongation to failure that dropped from 12 % at 6.5 wt. % Si to nearly 6 % at 14.4 wt. % Si; but still the material is exhibiting an elongation to failure that is far higher than normally expected.
  •  
11.
  •  
12.
  • Bogdanoff, Toni, et al. (författare)
  • The impact of HIP process and heat treatment on the mechanical behavior of an Al-Si-Mg alloy component
  • 2023
  • Konferensbidrag (refereegranskat)abstract
    • Castings generally contain pores and defects that can have a detrimental impact on mechanical properties. The hot isostatic pressing (HIP) process is usually applied to reduce internal porosities, which improves the mechanical properties because of the closed porosities. Therefore, this study investigates the effect of the HIP process on the mechanical properties of sand casting A356 aluminum alloys. This investigation was performed in collaboration with Unnaryd Modell, Quintus Technologies, and IAC Ankarsrum. Investigation of the complex interaction between the microstructural features on mechanical properties before and after the HIP process was examined using computed tomography scanning, in-situ cyclic testing, and scanning electron microscope. In the absence of large defects, the fatigue performance was improved. However, a significant variation in the result was found between the different conditions, whereas the coarser microstructure with larger porosities before the HIP process showed decreased ultimate tensile strength and elongation to failure. The samples tested under high cycle fatigue showed a reduced fatigue propagation zone in that the coarser microstructure. Moreover, large cleavage areas containing oxides in the fracture surfaces indicated that the HIP process closes all the porosities, but the oxide films are not creating a strong bonding. Furthermore, the samples tested under low cycle fatigue showed a difference in the crack propagation, whereas the coarser microstructure showed large cracks opened up away from the notch that assists the propagation leading to reduced fatigue life.
  •  
13.
  • Bogdanoff, Toni, et al. (författare)
  • The impact of HIP process and heat treatment on the mechanical behaviour of an Al–Si–Mg alloy component
  • 2024
  • Ingår i: International Journal of metalcasting. - : Springer. - 1939-5981 .- 2163-3193.
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates the effect of hot isostatic pressing (HIPping) on the static and fatigue properties of sand-casting A356 aluminium alloys. HIPping is a method to improve the fatigue properties in aluminium cast material by reducing or eliminating the inner porosities. Investigation of the complex interaction between the microstructural features on mechanical properties before and after the HIPping process was examined using computed tomography and scanning electron microscopy (SEM). Castings generally contain pores and defects that have a detrimental impact on the fatigue properties. The HIPping process closes the porosities in all investigated samples with an increase in density. Without significant defects, the mechanical performance improved in the finer microstructure. However, a considerable variation in the results was found between the different conditions, whereas the coarser microstructure with larger porosities before HIPping showed remarkably reduced results. The high-cycle fatigue-tested samples showed reduced fatigue propagation zone in the coarser microstructure. Moreover, large cleavage areas containing bifilms in the fracture surfaces indicate that the healing process of porosities is inefficient. These porosities are closed but not healed, resulting in a detrimental effect on the static and dynamic properties.
  •  
14.
  • Bogdanoff, Toni, et al. (författare)
  • The influence of copper addition on crack initiation and propagation in an Al–Si–Mg alloy during cyclic testing
  • 2020
  • Ingår i: Materialia. - : Elsevier. - 2589-1529. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of copper (Cu) addition up to 3.2 wt% on crack initiation and propagation in an Al–Si–Mg cast alloy was investigated using in-situ cyclic testing in the as-cast condition. A combination of digital image correlation, electron backscatter diffraction, and scanning electron microscopy was used to investigate crack initiation and propagation behaviour during in-situ cyclic testing. The results showed that Cu-rich intermetallic compounds with the addition of Cu up to 1.5 wt% do not affect the fatigue behaviour of these alloys, and that crack propagation in these cases is trans-granular and trans-dendritic. However, increasing the concentration of the Cu retained in the primary α-Al matrix in solid solution and Cu-containing precipitates delayed crack propagation during cyclic testing. The results showed that strain accumulation was highest at the grain boundaries; however, the crack preferred to propagate along or across primary α-Al dendrites due to the relatively lower mechanical strength of the matrix compared to the eutectic and intermetallic phases. Moreover, the addition of Cu of more than 3.0 wt% to Al-Si-Mg alloys changes the fatigue behaviour that a rapid failure occurs. 
  •  
15.
  • Bogdanoff, Toni (författare)
  • The influence of microstructure on the crack initiation and propagation in Al-Si casting alloys
  • 2021
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • For reducing the CO2 footprint in many industrial fields, the goal is to produce lighter components. The aluminium-silicon (Al-Si) cast alloys are promising candidates to fulfill these goals with a high weight-to-strength ratio, good corrosion properties, excellent castability, and recyclable material. However, the variations within these components need to be understood to produce high-performance components for critical applications. The main reason for the rejection in these applications is defects and microstructural features that reduce the mechanical properties. The addition of copper (Cu) is one way of increasing the mechanical properties in Al-Si alloys and is commonly used in the automotive industry. Casting defects harm the mechanical properties, and these defects can be reduced by improving the melt quality, the correct design of the component, and the gating system.The study aims to investigate the static mechanical properties and the crack initiation and propagation under cyclic loading in an Al-7Si-Mg cast alloy with state-of-the-art experiments. The main focuses were on the effect of the HIP process and the role of Cu addition. In-situ cyclic testing using a scanning electron microscope coupled with electron back-scattered diffraction, digital image correlation, focused ion beam (FIB) slicing, and computed tomography scanning was used to evaluate the complex interaction between the crack path and the microstructural features.The amount of Cu retained in the α-Al matrix in as-cast and heat-treated conditions significantly influenced the static mechanical properties by increasing yield strength and ultimate tensile strength with a decrease in elongation. The three-nearest-neighbor distance of eutectic Si and Cu-rich particles and crack tortuosity were new tools to describe the crack propagation in the alloys, showing that a reduced distance between the Cu-rich phases is detrimental for the mechanical properties. Three dimensional tomography using a FIB revealed that the alloy with 3.2 wt.% Cu had a significantly increased quantity of cracked Si particles and intermetallic phases ahead of the crack tip than the Cu-free alloy. The effect of Cu and HIP process in this work shows the complex interaction between the microstructural features and the mechanical properties, and this needs to be considered to produce high-performance components.
  •  
16.
  • Ghassemali, Ehsan, 1983-, et al. (författare)
  • Hall-Petch Equation in a Hypoeutectic Al-Si Cast Alloy : Grain Size vs. Secondary Dendrite Arm Spacing
  • 2017
  • Ingår i: Procedia Engineering. - : Elsevier. ; , s. 19-24
  • Konferensbidrag (refereegranskat)abstract
    • The Al-Si cast alloy family is widely used in the production of complex castings for various applications and known for its very good castability and high strength-to-weight ratio. However, early cracking under tensile loading is sometimes a limiting factor. Among other parameters, it is yet controversial whether grain boundaries are dominant strengthening factor in cast alloys, instead of dendrite/eutectic boundaries. This study presents the effect of secondary dendrite arm spacing (SDAS) and grain size on crack initiation and propagation of Al-Si cast alloys under tensile loading. The Al-10Si (wt.%) alloy with modified Si morphology was cast using inoculants (Al-5Ti-B master alloy) under different cooling rates to obtain a range of grain sizes (from below 138 μm to above 300 μm) and SDAS (6, 15 and 35 μm). Conventional tensile test as well as in-situ tensile test in a scanning electron microscope, equipped with an electron backscatter diffraction (EBSD) was carried out to understand the deformation mechanisms of the alloy. Observation of slip bands within the dendrites showed that in modified Si structure, the interdendritic (eutectic) area takes more portion of the strain during plastic deformation. Besides, only a few cracks were initiated at the grain boundaries; they were mostly initiated from dendrite/eutectic interface. All cracks propagated trans-granularly. Hall-Petch calculations also showed a strong relationship between SDAS and flow stress of the cast alloy. Although statistically correct, there was no physically meaningful relationship between the grain size and the flow stress. Nevertheless, formation of identical slip bands in each grain could be an evidence for the marginal effect of the grain size on the overall strength development of the alloy. Consequently, among other effects, the combinational dominant effect of SDAS and modest effect of grain size shall be considered for modification of the Hall-Petch equation for precise prediction of mechanical properties of cast alloys.
  •  
17.
  • Jarfors, Anders, 1963-, et al. (författare)
  • Effect of Use in High Pressure Die Casting on Vibenite®60 Tool Inserts Madeby Additive Manufacturing
  • 2016
  • Ingår i: DDMC2016 Frauenhofer Direct Digital Manufacturing Conference. - : Fraunhofer IRB Verlag. - 9783839610015
  • Konferensbidrag (refereegranskat)abstract
    • The thermo-physical and mechanical properties of Vibenite®60 was investigated in the as-manufactured, soft annealed and hardened state as well as after use in full scale high pressure die casting. Thermal conductivity in the as manufactured state was 23.3 to 27.5 W/mK in the temperature range from 25°C to 500°C. Annealing increased thermal conductivity to 25.0 up to 29.2 W/mK. Hardening reduced thermal conductivity of 19.8 to 26.1 W/mK. The tool wastested in production in the as fabricated state displayed a slight increase in thermal conductivity, which was interpreted as a slight tempering during use. Hardness measurements were made at room temperature and followed the same pattern as the thermo-physical properties. Rockwell and Vickers Hardness was lowest in the as lowest in the annealed state and hardest in the hardened state. Rockwell hardness was not affected by use in production while Vickers hardness decreased slightly.
  •  
18.
  • Olofsson, Jakob, 1980-, et al. (författare)
  • On revealing hidden entrainment damage during in situ tensile testing of cast aluminum alloy components
  • 2024
  • Ingår i: Materials Characterization. - : Elsevier. - 1044-5803 .- 1873-4189. ; 208
  • Tidskriftsartikel (refereegranskat)abstract
    • Tensile tests have been conducted on die-cast coupons of an Al-Si-Cu alloy, which have been found to contain no pores via X-ray inspection. Due to the digital image correlation used during tensile testing, either single or multiple strain concentrations have been detected and subsequently characterized. In all cases, oxide films have been found on fracture surfaces at the site of the strain concentrations. The analysis of a crack away from the fracture surface has also shown it to be an oxide bifilm. These results pour doubt on the effectiveness of quality assurance practices employed in industry.
  •  
19.
  • Olofsson, Jakob, 1980-, et al. (författare)
  • Revealing and simulating the effect of hidden damage on local and full-field deformation behaviour of cast aluminium
  • 2023
  • Ingår i: IOP Conference Series. - : Institute of Physics (IOP). - 1757-8981 .- 1757-899X. ; 1281:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Pores have been the main focus of quality assurance in castings. Latest research has shown that in aluminium castings pores can form only if there is existing entrainment damage, i.e., pores are merely the visible parts of the entrainment damage, and usually invisible damage is much more extensive. However, its effect on deformation behaviour has not been previously established or observed in-situ. This work applies 2D Digital Image Correlation (DIC) to an in-situ full-field stress-strain analysis of tensile samples with a non-conventional heterogeneous stress distribution. The observations reveal that the effect of hidden damage extends far beyond its impact on fracture behaviour and is responsible for initiating local strain concentrations during deformation. By extracting local stress-strain data, FE simulations have been performed to mimic the effect of local hidden damage on the heterogeneous stress-strain field. SEM and FIB-SEM analysis has been applied to investigate the cause for the strain concentrations. The combined results show that hidden damage in the form of oxide films is not only responsible for premature fracture, but also affects the deformation behaviour of tensile samples by introducing dispersed strain concentrations.
  •  
20.
  • Riestra, Martin, 1985-, et al. (författare)
  • Complexities in the assessment of melt quality
  • 2018
  • Ingår i: International Journal of metalcasting. - : Springer. - 1939-5981 .- 2163-3193. ; 12:3, s. 441-448
  • Tidskriftsartikel (refereegranskat)abstract
    • If high-performance aluminium castings are to be produced, the melt quality needs to be properly assured. Multiple tests for melt quality assessment exist and have previously been analysed. In most studies, the techniques were used separately. In this work, reduced pressure, fluidity, Prefil and tensile tests were evaluated. A commercial EN 46000 alloy was used as the base material with additions of 25 and 50 wt% machining chips to degrade the melt quality. In reduced pressure and fluidity tests, oxides floated to the top of samples, decreasing the reliability. Bifilm index increased with addition level, but not correspondingly. Density index, Prefil and fluidity tests did not present significant variations, and tensile properties only deteriorated with the 50 wt% addition level. The investigated techniques provided information, but measuring the melt quality reliably remains a challenge.
  •  
21.
  • Riestra, Martin, 1985-, et al. (författare)
  • Interactive effects of grain refinement, eutectic modification and solidification rate on tensile properties of Al-10Si alloy
  • 2017
  • Ingår i: Journal of materials processing & manufacturing science (Print). - : Elsevier. - 1062-0656 .- 1530-8065. ; 703, s. 270-279
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to clarify the effect of grain size and Si modification on the microstructure and tensile properties of the Al-10Si cast alloy, solidified under various cooling rates. To replicate the effect of cooling rate, directionally solidified samples were produced by remelting of the as-cast cylindrical bars. Tensile properties, grain sizes, Si modification level and chemical composition profiles were evaluated. Results showed that fast cooling rates alone, without the addition of grain refiners (Al-5Ti-1B master alloy), did not lead to equiaxed grain morphologies. On the other hand, for the slowest cooling rate tested, combined additions of the Al-5Ti-1B and the Al-10Sr master alloys resulted in equiaxed grain structures while addition of only grain refiner resulted in columnar grains. The combined additions effectively produced an equiaxed grain structure at all cooling rates tested, and further improved the tensile properties.
  •  
22.
  • Seifeddine, Salem, 1978-, et al. (författare)
  • On the role of copper and cooling rates on the microstructure, defect formations and mechanical properties of Al-Si-Mg alloys
  • 2013
  • Ingår i: Materials Sciences and Applications. - : Scientific Research Publishing. - 2153-117X .- 2153-1188. ; 4:3, s. 171-178
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper aims to assess the role of Cu on Al-Si-Mg alloys, in a range of 0 - 5 wt%, qualitatively on microstructure, defect formation, in terms of porosity, and strength in the as-cast conditions. The ternary system of Al-Si-Mg, using the A356 alloy as a base material, were cast using the gradient solidification technique; applying three different solidification rates to produce directional solidified samples with a variety of microstructure coarsenesses. Microstructural observations reveal that as the Cu levels in the alloys are increased, the amounts of intermetallic compounds as well as the Cu concentration in the α-Al matrix are increased. Furthermore, the level of porosity is unaffected and the tensile strength is improved at the expense of ductility.
  •  
23.
  • Sola, R., et al. (författare)
  • Anodizing of AA6082-T5 by conventional and innovative treatments : Microstructural characterization and dry sliding behaviour
  • 2020
  • Ingår i: Wear. - : Elsevier. - 0043-1648 .- 1873-2577. ; 458-459
  • Tidskriftsartikel (refereegranskat)abstract
    • This work focuses on the comparison of microstructure and tribological behaviour (dry sliding vs. 100Cr6 steel) of anodic layers produced on wrought AA6082-T5 by hard anodizing (HA), plasma electrolytic oxidation (PEO, sometimes also termed MAO, Micro-Arc Oxidation) and novel electro-chemical oxidation (ECO), derived from PEO minimising its disruptive plasma discharge. The results showed that PEO and HA do not decrease the coefficient of friction of AA6082, whilst ECO does (particularly after sealing with a phosphate-based solution), thanks to its smooth surface and decreased stability of Fe–O based transfer layers. All the anodizing treatments improve wear resistance of AA6082: ECO showed the highest wear resistance, due to the beneficial combination of compact microstructure, high and uniform thickness, high microhardness and adhesion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-23 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy