SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bohaty S. M.) "

Sökning: WFRF:(Bohaty S. M.)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gohl, K., et al. (författare)
  • Expedition 379 methods
  • 2021
  • Ingår i: Proceedings of the International Ocean Discovery Program. - : International Ocean Discovery Program (IODP). - 2377-3189. ; 379
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Gohl, K., et al. (författare)
  • Expedition 379 summary
  • 2021
  • Ingår i: Proceedings of the International Ocean Discovery Program. - : International Ocean Discovery Program (IODP). - 2377-3189. ; 79
  • Tidskriftsartikel (refereegranskat)abstract
    • The Amundsen Sea sector of Antarctica has long been considered the most vulnerable part of the West Antarctic Ice Sheet (WAIS) because of the great water depth at the grounding line, a subglacial bed seafloor deepening toward the interior of the continent, and the absence of substantial ice shelves. Glaciers in this configuration are thought to be susceptible to rapid or runaway retreat. Ice flowing into the Amundsen Sea Embayment is undergoing the most rapid changes of any sector of the Antarctic ice sheets outside the Antarctic Peninsula, including substantial grounding-line retreat over recent decades, as observed from satellite data. Recent models suggest that a threshold leading to the collapse of WAIS in this sector may have been already crossed and that much of the ice sheet could be lost even under relatively moderate greenhouse gas emission scenarios.Drill cores from the Amundsen Sea provide tests of several key questions about controls on ice sheet stability. The cores offer a direct offshore record of glacial history in a sector that is exclusively influenced by ice draining the WAIS, which allows clear comparisons between the WAIS history and low-latitude climate records. Today, relatively warm (modified) Circumpolar Deep Water (CDW) is impinging onto the Amundsen Sea shelf and causing melting under ice shelves and at the grounding line of the WAIS in most places. Reconstructions of past CDW intrusions can assess the ties between warm water upwelling and large-scale changes in past grounding-line positions. Carrying out these reconstructions offshore from the drainage basin that currently has the most substantial negative mass balance of ice anywhere in Antarctica is thus of prime interest to future predictions.The scientific objectives for this expedition are built on hypotheses about WAIS dynamics and related paleoenvironmental and paleoclimatic conditions. The main objectives areTo test the hypothesis that WAIS collapses occurred during the Neogene and Quaternary and, if so, when and under which environmental conditions;To obtain ice-proximal records of ice sheet dynamics in the Amundsen Sea that correlate with global records of ice-volume changes and proxy records for atmospheric and ocean temperatures;To study the stability of a marine-based WAIS margin and how warm deepwater incursions control its position on the shelf;To find evidence for the earliest major grounded WAIS advances onto the middle and outer shelf;To test the hypothesis that the first major WAIS growth was related to the uplift of the Marie Byrd Land dome.International Ocean Discovery Program (IODP) Expedition 379 completed two very successful drill sites on the continental rise of the Amundsen Sea. Site U1532 is located on a large sediment drift, now called the Resolution Drift, and it penetrated to 794 m with 90% recovery. We collected almost-continuous cores from recent age through the Pleistocene and Pliocene and into the upper Miocene. At Site U1533, we drilled 383 m (70% recovery) into the more condensed sequence at the lower flank of the same sediment drift. The cores of both sites contain unique records that will enable study of the cyclicity of ice sheet advance and retreat processes as well as ocean-bottom water circulation and water mass changes. In particular, Site U1532 revealed a sequence of Pliocene sediments with an excellent paleomagnetic record for high-resolution climate change studies of the previously sparsely sampled Pacific sector of the West Antarctic margin.Despite the drilling success at these sites, the overall expedition experienced three unexpected difficulties that affected many of the scientific objectives:The extensive sea ice on the continental shelf prevented us from drilling any of the proposed shelf sites.The drill sites on the continental rise were in the path of numerous icebergs of various sizes that frequently forced us to pause drilling or leave the hole entirely as they approached the ship. The overall downtime caused by approaching icebergs was 50% of our time spent on site.A medical evacuation cut the expedition short by 1 week.Recovery of core on the continental rise at Sites U1532 and U1533 cannot be used to indicate the extent of grounded ice on the shelf or, thus, of its retreat directly. However, the sediments contained in these cores offer a range of clues about past WAIS extent and retreat. At Sites U1532 and U1533, coarse-grained sediments interpreted to be ice-rafted debris (IRD) were identified throughout all recovered time periods. A dominant feature of the cores is recorded by lithofacies cyclicity, which is interpreted to represent relatively warmer periods variably characterized by sediments with higher microfossil abundance, greater bioturbation, and higher IRD concentrations alternating with colder periods characterized by dominantly gray laminated terrigenous muds. Initial comparison of these cycles to published late Quaternary records from the region suggests that the units interpreted to be records of warmer time intervals in the core tie to global interglacial periods and the units interpreted to be deposits of colder periods tie to global glacial periods.Cores from the two drill sites recovered sediments of dominantly terrigenous origin intercalated or mixed with pelagic or hemipelagic deposits. In particular, Site U1533, which is located near a deep-sea channel originating from the continental slope, contains graded silts, sands, and gravels transported downslope from the shelf to the rise. The channel is likely the pathway of these sediments transported by turbidity currents and other gravitational downslope processes. The association of lithologic facies at both sites predominantly reflects the interplay of downslope and contouritic sediment supply with occasional input of more pelagic sediment. Despite the lack of cores from the shelf, our records from the continental rise reveal the timing of glacial advances across the shelf and thus the existence of a continent-wide ice sheet in West Antarctica during longer time periods since at least the late Miocene.Cores from both sites contain abundant coarse-grained sediments and clasts of plutonic origin transported either by downslope processes or by ice rafting. If detailed provenance studies confirm our preliminary assessment that the origin of these samples is from the plutonic bedrock of Marie Byrd Land, their thermochronological record will potentially reveal timing and rates of denudation and erosion linked to crustal uplift. The chronostratigraphy of both sites enables the generation of a seismic sequence stratigraphy for the entire Amundsen Sea continental rise, spanning the area offshore from the Amundsen Sea Embayment westward along the Marie Byrd Land margin to the easternmost Ross Sea through a connecting network of seismic lines.
  •  
3.
  • Wellner, J.S., et al. (författare)
  • Site U1532
  • 2021
  • Ingår i: Proceedings of the International Ocean Discovery Program. - : International Ocean Discovery Program (IODP). - 2377-3189. ; 379
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Wellner, J.S., et al. (författare)
  • Site U1533
  • 2021
  • Ingår i: Proceedings of the International Ocean Discovery Program. - : International Ocean Discovery Program (IODP). - 2377-3189. ; 379
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Revelli, A., et al. (författare)
  • Resonant inelastic x-ray incarnation of Young's double-slit experiment
  • 2019
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Young's archetypal double-slit experiment forms the basis for modern diffraction techniques: The elastic scattering of waves yields an interference pattern that captures the real-space structure. Here, we report on an inelastic incarnation of Young's experiment and demonstrate that resonant inelastic x-ray scattering (RIXS) measures interference patterns, which reveal the symmetry and character of electronic excited states in the same way as elastic scattering does for the ground state. A prototypical example is provided by the quasi-molecular electronic structure of insulating Ba3CeIr2O9 with structural Ir dimers and strong spin-orbit coupling. The double "slits" in this resonant experiment are the highly localized core levels of the two Ir atoms within a dimer. The clear double-slit-type sinusoidal interference patterns that we observe allow us to characterize the electronic excitations, demonstrating the power of RIXS interferometry to unravel the electronic structure of solids containing, e.g., dimers, trimers, ladders, or other superstructures.
  •  
6.
  • Klages, J. P., et al. (författare)
  • Temperate rainforests near the South Pole during peak Cretaceous warmth
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 580:7801, s. 81-86
  • Tidskriftsartikel (refereegranskat)abstract
    • The mid-Cretaceous period was one of the warmest intervals of the past 140millionyears1–5, driven by atmospheric carbon dioxide levels of around 1,000parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether polar ice could exist under such environmental conditions. Here we use a sedimentary sequence recovered from the West Antarctic shelf—the southernmost Cretaceous record reported so far—and show that a temperate lowland rainforest environment existed at a palaeolatitude of about 82°S during the Turonian–Santonian age (92 to 83millionyearsago). This record contains an intact 3-metre-long network of in situ fossil roots embedded in a mudstone matrix containing diverse pollen and spores. A climate model simulation shows that the reconstructed temperate climate at this high latitude requires a combination of both atmospheric carbon dioxide concentrations of 1,120–1,680parts per million by volume and a vegetated land surface without major Antarctic glaciation, highlighting the important cooling effect exerted by ice albedo under high levels of atmospheric carbon dioxide. © 2020, The Author(s), under exclusive licence to Springer Nature Limited.
  •  
7.
  • Taylor, V. E., et al. (författare)
  • Transient Shoaling, Over-Deepening and Settling of the Calcite Compensation Depth at the Eocene-Oligocene Transition
  • 2023
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 38:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The major Cenozoic shift from a shallow (∼3–4 km) to deep (∼4.5 km) calcite compensation depth (CCD) occurred at the Eocene-Oligocene Transition (∼34 Ma), suggesting a strong relationship between calcium carbonate (CaCO3) cycling and Antarctic glaciation. However, the linkages between these two events are debated. Here we present new records of bulk sediment stable isotope and carbonate composition from a depth transect of sites in the low-latitude Pacific Ocean and one site from the South Atlantic Ocean, together with a new benthic foraminiferal stable isotope record (δ13Cb and δ18Ob) from the Pacific where the sedimentary sequence is most expanded. Our records reveal a short-lived (∼300 Kyr) CCD shoaling event closely associated with a negative carbon isotope excursion in the latest Eocene. This event is immediately followed by CCD deepening which occurs in two rapid (∼40 Kyr-long) steps. Our data show that the first of these deepening steps represents recovery from the latest Eocene shoaling event while the second was closely associated with a rapid increase in δ18Ob and shows a distinctive over-deepening and settling pattern to >5 and 4.4 km, respectively. These results, together with good agreement between Pacific and South Atlantic records, strongly suggest that the carbon cycle was perturbed globally shortly before the inception of Antarctic glaciation. Once large-scale Antarctic glaciation was initiated, rapid further change in global seawater chemistry triggered transitory deep ocean carbonate burial fluxes far exceeding their early Oligocene steady state values.
  •  
8.
  • Cappelli, C., et al. (författare)
  • The Early to Middle Eocene Transition : An Integrated Calcareous Nannofossil and Stable Isotope Record From the Northwest Atlantic Ocean (Integrated Ocean Drilling Program Site U1410)
  • 2019
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 34:12, s. 1913-1930
  • Tidskriftsartikel (refereegranskat)abstract
    • The early to middle Eocene is marked by prominent changes in calcareous nannofossil assemblages coinciding both with long-term climate changes and modification of the North Atlantic deep ocean circulation. In order to assess the impact of Eocene climate change on surface water environmental conditions of the Northwest Atlantic, we developed calcareous nannoplankton assemblage data and bulk stable isotope records (delta O-18 and delta C-13) across an early to middle Eocene interval (~52-43 Ma) at Integrated Ocean Drilling Program Site U1410 (Southeast Newfoundland Ridge, ~41 degrees N). At this site, early Eocene sediments are pelagic nannofossil chalk, whereas middle Eocene deposits occur as clay-rich drift sediments reflecting the progressive influence of northern-sourced deep currents. Between the end of Early Eocene Climatic Optimum (EECO) and the Ypresian/Lutetian boundary, calcareous nannofossils switched from an assemblage mainly composed of warm-water and oligotrophic taxa (Zygrhablithus, Discoaster, Sphenolithus, Coccolithus) to one dominated by the more temperate and eutrophic reticulofenestrids. The most prominent period of accelerated assemblage change occurred during a ~2-Myr phase of relatively high bulk delta O-18 values possibly related to the post-EECO cooling. Although the dominance of reticulofenestrids persisted unvaried throughout the middle Eocene interval, early Lutetian (~47.4 to 47 Ma) stable isotope records indicate a reversal in the paleoenvironmetal trends suggesting a potential restoration of warmer conditions. Importantly, our data indicate that the ~2-Myr interval immediately following the EECO was crucial in establishing the modern calcareous nannofossil assemblage structure and also reveal that the establishment of Reticulofenestra-dominated assemblage occurred prior to the onset of persistent deep current system in the Northwest Atlantic.
  •  
9.
  • Pälike, Heiko, et al. (författare)
  • A Cenozoic record of the equatorial Pacific carbonate compensation depth
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 488:7413, s. 609-614
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.
  •  
10.
  • Witkowski, Jakub, et al. (författare)
  • Early Paleogene biosiliceous sedimentation in the Atlantic Ocean : Testing the inorganic origin hypothesis for Paleocene and Eocene chert and porcellanite
  • 2020
  • Ingår i: Palaeogeography, Palaeoclimatology, Palaeoecology. - : Elsevier BV. - 0031-0182. ; 556
  • Tidskriftsartikel (refereegranskat)abstract
    • The widespread occurrence of lower Eocene chert and porcellanite has been viewed as a major paleoceanographic issue since the advent of ocean drilling, and both biotic and abiotic forcings have been proposed to explain it. We present a reconstruction of indurated siliceous sediment (ISS) and preserved biosiliceous sediment (PBS) occurrences in the Atlantic Ocean through the Paleocene and Eocene (~66 through 34 Ma). ISS and PBS distributions reveal dissimilar temporal trends, with the peak of ISS occurrences coinciding with the Early Eocene Climatic Optimum, in line with previous studies. PBS occurrences show a generally increasing trend culminating between 44 and 43 Ma. The common co-occurrence of ISS and PBS, and their coherent geographic distribution lends strong support to the biogenic origin of the precursor to the widespread Paleogene ISS, and argues against an inorganic mode of early Cenozoic chert and porcellanite precipitation. Weight per cent biogenic opal records and trends in linear sedimentation rates indicate two plausible modes of silicification: 1) silicification due to prolonged exposure of biogenic opal-rich sediments to corrosive bottom waters; and 2) silicification due to elevated pressures and temperatures caused by rapid burial of biogenic opal-rich deposits. The confinement of ISS and PBS to proximal sites along continental margins points to the reliance of siliceous sedimentation through the Paleocene and Eocene on terrestrial supply of dissolved silicon. Consistent with this, quantitative siliceous microfossil assemblage records from the Blake Nose in the NW Atlantic indicate that the nutrient-rich marginal rather than oligotrophic pelagic settings hosted the majority of siliceous plankton production through the early Paleogene. The inorganic SiO2 precipitation model is unlikely to have been the dominant mechanism responsible for ubiquitous occurrences of early Paleogene ISS. We favor the biogenic ISS precursor scenario and reconcile it with the low-productivity early Cenozoic oceans by showing that large volumes of biogenic silica were supplied to the western North Atlantic Ocean from the North American margin through the Paleocene and Eocene. Dissolution of this surplus silica was facilitated by an early southwestward flow of young, SiO2-depleted waters from the North Atlantic. All these factors contributed to ISS and PBS focusing in the western North Atlantic through the early Paleogene.
  •  
11.
  •  
12.
  • Witkowski, Jakub, et al. (författare)
  • North Atlantic marine biogenic silica accumulation through the early to middle Paleogene : Implications for ocean circulation and silicate weathering feedback
  • 2021
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:5, s. 1937-1954
  • Tidskriftsartikel (refereegranskat)abstract
    • The Paleogene history of biogenic opal accumulation in the North Atlantic provides insight into both the evolution of deepwater circulation in the Atlantic basin and weathering responses to major climate shifts. However, existing records are compromised by low temporal resolution and/or stratigraphic discontinuities. In order to address this problem, we present a multi-site, high-resolution record of biogenic silica (bioSiO2) accumulation from Blake Nose (ODP Leg 171B, western North Atlantic) spanning the early Paleocene to late Eocene time interval (~65-34 Ma). This record represents the longest single-locality history of marine bioSiO2 burial compiled to date and offers a unique perspective into changes in bioSiO2 fluxes through the early to middle Paleogene extreme greenhouse interval and the subsequent period of long-term cooling. Blake Nose bioSiO2 fluxes display prominent fluctuations that we attribute to variations in sub-thermocline nutrient supply via cyclonic eddies associated with the Gulf Stream. Following elevated and pulsed bioSiO2 accumulation through the Paleocene to early Eocene greenhouse interval, a prolonged interval of markedly elevated bioSiO2 flux in the middle Eocene between ~ 46 and 42 Ma is proposed to reflect nutrient enrichment at Blake Nose due to invigorated overturning circulation following an early onset of Northern Component Water export from the Norwegian-Greenland Sea at ~ 49 Ma. Reduced bioSiO2 flux in the North Atlantic, in combination with increased bioSiO2 flux documented in existing records from the equatorial Pacific between ~ 42 and 38 Ma, is interpreted to indicate diminished nutrient supply and reduced biosiliceous productivity at Blake Nose in response to weakening of the overturning circulation. Subsequently, in the late Eocene, a deepwater circulation regime favoring limited bioSiO2 burial in the Atlantic and enhanced bioSiO2 burial in the Pacific was established after ~ 38 Ma, likely in conjunction with reinvigoration of deepwater export from the North Atlantic. We also observe that Blake Nose bioSiO2 fluxes through the middle Eocene cooling interval (~ 48 to 34 Ma) are similar to or higher than background fluxes throughout the late Paleocene-early Eocene interval (~ 65 to 48 Ma) of intense greenhouse warmth. This observation is consistent with a temporally variable rather than constant silicate weathering feedback strength model for the Paleogene, which would instead predict that marine bioSiO2 burial should peak during periods of extreme warming.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy