SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bolger Ann F. 1957 ) "

Sökning: WFRF:(Bolger Ann F. 1957 )

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bolger, Ann F, 1957-, et al. (författare)
  • Transit of blood flow through thehuman left ventricle mapped by cardiovascular magnetic resonance
  • 2007
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : Informa UK Limited. - 1097-6647 .- 1532-429X. ; 9:5, s. 741-747
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:The transit of blood through the beating heart is a basic aspect of cardiovascular physiology which remains incompletely studied. Quantification of the components of multidirectional flow in the normal left ventricle (LV) is lacking, making it difficult to put the changes observed with LV dysfunction and cardiac surgery into context.METHODS:Three dimensional, three directional, time resolved magnetic resonance phase-contrast velocity mapping was performed at 1.5 Tesla in 17 normal subjects, 6 female, aged 44+/-14 years (mean+/-SD). We visualized and measured the relative volumes of LV flow components and the diastolic changes in inflowing kinetic energy (KE). Of total diastolic inflow volume, 44+/-11% followed a direct, albeit curved route to systolic ejection (videos 1 and 2), in contrast to 11% in a subject with mildly dilated cardiomyopathy (DCM), who was included for preliminary comparison (video 3). In normals, 16+/-8% of the KE of inflow was conserved to the end of diastole, compared with 5% in the DCM patient. Blood following the direct route lost or transferred less of its KE during diastole than blood that was retained until the next beat (1.6+/-1.0 millijoules vs 8.2+/-1.9 millijoules, p<0.05); whereas, in the DCM patient, the reduction in KE of retained inflow was 18-fold greater than that of the blood tracing the direct route.CONCLUSION:Multidimensional flow mapping can measure the paths, compartmentalization and kinetic energy changes of blood flowing into the LV, demonstrating differences of KE loss between compartments, and potentially between the flows in normal and dilated left ventricles.
  •  
2.
  •  
3.
  •  
4.
  • Dyverfeldt, Petter, 1980-, et al. (författare)
  • Assessment of fluctuating velocities in disturbed cardiovascular blood flow : in vivo feasibility of generalized phase-contrast MRI
  • 2008
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1053-1807 .- 1522-2586. ; 28:3, s. 655-663
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeTo evaluate the feasibility of generalized phase-contrast magnetic resonance imaging (PC-MRI) for the noninvasive assessment of fluctuating velocities in cardiovascular blood flow.Materials and MethodsMultidimensional PC-MRI was used in a generalized manner to map mean flow velocities and intravoxel velocity standard deviation (IVSD) values in one healthy aorta and in three patients with different cardiovascular diseases. The acquired data were used to assess the kinetic energy of both the mean (MKE) and the fluctuating (TKE) velocity field.ResultsIn all of the subjects, both mean and fluctuating flow data were successfully acquired. The highest TKE values in the patients were found at sites characterized by abnormal flow conditions. No regional increase in TKE was found in the normal aorta.ConclusionPC-MRI IVSD mapping is able to detect flow abnormalities in a variety of human cardiovascular conditions and shows promise for the quantitative assessment of turbulence. This approach may assist in clarifying the role of disturbed hemodynamics in cardiovascular diseases.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Haraldsson, Henrik, 1977-, et al. (författare)
  • Improved estimation and visualization of two-dimensional myocardial strain rate using MR velocity mapping
  • 2008
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1053-1807 .- 1522-2586. ; 28:3, s. 604-611
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To estimate regional myocardial strain rate, with reduced sensitivity to noise and velocities outside the region of interest, and provide a visualization of the spatial variation of the obtained tensor field within the myocardium. Materials and Methods: Myocardial velocities were measured using two-dimensional phase contrast velocity mapping. Velocity gradients were estimated using normalized convolution and the calculated 2D strain rate tensor field was visualized using a glyph representation. Validation utilized a numerical phantom with known strain rate distribution. Strain rate glyph visualizations were created for normal myocardium in both systole and diastole and compared to a patient with an anteroseptal infarction. Results: In the phantom study the strain rate calculated with normalized convolution showed a very good agreement with the analytic solution, while traditional methods for gradient estimation were shown to be sensitive to both noise and surrounding velocity data. Normal myocardium showed a homogenous strain rate distribution, while a heterogeneous strain rate can be clearly seen in the patient data. Conclusion: The proposed approach for quantification and visualization of the regional myocardial strain rate can provide an objective measure of regional myocardial contraction and relaxation that may be valuable for the assessment of myocardial heart disease. © 2008 Wiley-Liss, Inc.
  •  
17.
  • Lantz, Jonas, 1982-, et al. (författare)
  • Impact of prosthetic mitral valve orientation on the ventricular flow field : Comparison using patient-specific computational fluid dynamics
  • 2021
  • Ingår i: Journal of Biomechanics. - : Elsevier Science Ltd. - 0021-9290 .- 1873-2380. ; 116
  • Tidskriftsartikel (refereegranskat)abstract
    • Significant mitral valve regurgitation creates progressive adverse remodeling of the left ventricle (LV). Replacement of the failing valve with a prosthesis generally improves patient outcomes but leaves the patient with non-physiological intracardiac flow patterns that might contribute to their future risk of thrombus formation and embolism. It has been suggested that the angular orientation of the implanted valve might modify the postoperative distortion of the intraventricular flow field. In this study, we investigated the effect of prosthetic valve orientation on LV flow patterns by using heart geometry from a patient with LV dysfunction and a competent native mitral valve to calculate intracardiac flow fields with computational fluid dynamics (CFD). Results were validated using in vivo 4D Flow MRI. The computed flow fields were compared to calculations following virtual implantation of a mechanical heart valve oriented in four different angles to assess the effect of leaflet position. Flow patterns were visualized in longand short-axes and quantified with flow component analysis. In comparison to a native valve, valve implantation increased the proportion of the mitral inflow remaining in the basal region and further increased the residual volume in the apical area. Only slight changes due to valve orientation were observed. Using our numerical framework, we demonstrated quantitative changes in left ventricular blood flow due to prosthetic mitral replacement. This framework may be used to improve design of prosthetic heart valves and implantation procedures to minimize the potential for apical flow stasis, and potentially assist personalized treatment planning. (c) 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
18.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy