SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bonanno Jeffrey B.) "

Search: WFRF:(Bonanno Jeffrey B.)

  • Result 1-1 of 1
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sheng, Xiang, et al. (author)
  • Mechanism and Structure of gamma-Resorcylate Decarboxylase
  • 2018
  • In: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 57:22, s. 3167-3175
  • Journal article (peer-reviewed)abstract
    • gamma-Resorcylate decarboxylase (gamma-RSD) has evolved to catalyze the reversible decarboxylation of 2,6-dihydroxybenzoate to resorcinol in a nonoxidative fashion. This enzyme is of significant interest because of its potential for the production of gamma-resorcylate and other benzoic acid derivatives under environmentally sustainable conditions. Kinetic constants for the decarboxylation of 2,6-dihydroxybenzoate catalyzed by gamma-RSD from Polaromonas sp. JS666 are reported, and the enzyme is shown to be active with 2,3-dihydroxybenzoate, 2,4,6-trihydroxybenzoate, and 2,6-dihydroxy-4-methylbenzoate. The three-dimensional structure of gamma-RSD with the inhibitor 2-nitroresorcinol (2-NR) bound in the active site is reported. 2-NR is directly ligated to a Mn2+ bound in the active site, and the nitro substituent of the inhibitor is tilted significantly from the plane of the phenyl ring. The inhibitor exhibits a binding mode different from that of the substrate bound in the previously determined structure of gamma-RSD from Rhizobtum sp. MTP-10005. On the basis of the crystal structure of the enzyme from Polaromonas sp. JS666, complementary density functional calculations were performed to investigate the reaction mechanism. In the proposed reaction mechanism, gamma-RSD binds 2,6-dihydroxybenzoate by direct coordination of the active site manganese ion to the carboxylate anion of the substrate and one of the adjacent phenolic oxygens. The enzyme subsequently catalyzes the transfer of a proton to Cl of y-resorcylate prior to the actual decarboxylation step. The reaction mechanism proposed previously, based on the structure of gamma-RSD from Rhizobtum sp. MTP-10005, is shown to be associated with high energies and thus less likely to be correct.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-1 of 1
Type of publication
journal article (1)
Type of content
peer-reviewed (1)
Author/Editor
Himo, Fahmi (1)
Almo, Steven C. (1)
Sheng, Xiang (1)
Raushel, Frank M. (1)
Patskovsky, Yury (1)
Vladimirova, Anna (1)
show more...
Bonanno, Jeffrey B. (1)
show less...
University
Stockholm University (1)
Language
English (1)
Research subject (UKÄ/SCB)
Natural sciences (1)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view