SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Boone C.) "

Search: WFRF:(Boone C.)

  • Result 1-50 of 61
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
6.
  •  
7.
  • Kerzenmacher, T., et al. (author)
  • Validation of NO2 and NO from the Atmospheric Chemistry Experiment (ACE)
  • 2008
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:19, s. 5801--5841-
  • Journal article (peer-reviewed)abstract
    • Vertical profiles of NO2 and NO have been obtained from solar occultation measurements by the Atmospheric Chemistry Experiment (ACE), using an infrared Fourier Transform Spectrometer (ACE-FTS) and (for NO2) an ultraviolet-visible-near-infrared spectrometer, MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation). In this paper, the quality of the ACE-FTS version 2.2 NO2 and NO and the MAESTRO version 1.2 NO2 data are assessed using other solar occultation measurements (HALOE, SAGE II, SAGE III, POAM III, SCIAMACHY), stellar occultation measurements (GOMOS), limb measurements (MIPAS, OSIRIS), nadir measurements (SCIAMACHY), balloon-borne measurements (SPIRALE, SAOZ) and ground-based measurements (UV-VIS, FTIR). Time differences between the comparison measurements were reduced using either a tight coincidence criterion, or where possible, chemical box models. ACE-FTS NO2 and NO and the MAESTRO NO2 are generally consistent with the correlative data. The ACE-FTS and MAESTRO NO2 volume mixing ratio (VMR) profiles agree with the profiles from other satellite data sets to within about 20% between 25 and 40 km, with the exception of MIPAS ESA (for ACE-FTS) and SAGE II (for ACE-FTS (sunrise) and MAESTRO) and suggest a negative bias between 23 and 40 km of about 10%. MAESTRO reports larger VMR values than the ACE-FTS. In comparisons with HALOE, ACE-FTS NO VMRs typically (on average) agree to ±8% from 22 to 64 km and to +10% from 93 to 105 km, with maxima of 21% and 36%, respectively. Partial column comparisons for NO2 show that there is quite good agreement between the ACE instruments and the FTIRs, with a mean difference of +7.3% for ACE-FTS and +12.8% for MAESTRO.
  •  
8.
  • Fresard, Laure, et al. (author)
  • Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts
  • 2019
  • In: Nature Medicine. - : NATURE PUBLISHING GROUP. - 1078-8956 .- 1546-170X. ; 25:6, s. 911-919
  • Journal article (peer-reviewed)abstract
    • It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene(1). The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches(2-5). For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases(6-8). This includes muscle biopsies from patients with undiagnosed rare muscle disorders(6,9), and cultured fibroblasts from patients with mitochondrial disorders(7). However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution.
  •  
9.
  • Léget, P. -F., et al. (author)
  • Correcting for peculiar velocities of Type la supernovae in clusters of galaxies
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 615
  • Journal article (peer-reviewed)abstract
    • Context. Type Ia supernovae (SNe Ia) are widely used to measure the expansion of the Universe. To perform such measurements the luminosity and cosmological redshift (z) of the SNe Ia have to be determined. The uncertainty on z includes an unknown peculiar velocity, which can be very large for SNe Ia in the virialized cores of massive clusters. Aims. We determine which SNe Ia exploded in galaxy clusters using 145 SNe Ia from the Nearby Supernova Factory. We then study how the correction for peculiar velocities of host galaxies inside the clusters improves the Hubble residuals. Methods. We found 11 candidates for membership in clusters. We applied the biweight technique to estimate the redshift of a cluster. Then, we used the galaxy cluster redshift instead of the host galaxy redshift to construct the Hubble diagram. Results. For SNe Ia inside galaxy clusters, the dispersion around the Hubble diagram when peculiar velocities are taken into account is smaller compared with a case without peculiar velocity correction, which has a wRMS = 0.130 +/- 0.038 mag instead of wRMS = 0.137 +/- 0.036 mag. The significance of this improvement is 3.58 sigma. If we remove the very nearby Virgo cluster member SN2006X (z < 0.01) from the analysis, the significance decreases to 1.34 sigma. The peculiar velocity correction is found to be highest for the SNe Ia hosted by blue spiral galaxies. Those SNe Ia have high local specific star formation rates and smaller stellar masses, which is seemingly counter to what might be expected given the heavy concentration of old, massive elliptical galaxies in clusters. Conclusions. As expected, the Hubble residuals of SNe Ia associated with massive galaxy clusters improve when the cluster redshift is taken as the cosmological redshift of the supernova. This fact has to be taken into account in future cosmological analyses in order to achieve higher accuracy for cosmological redshift measurements. We provide an approach to do so.
  •  
10.
  • Léget, P-F, et al. (author)
  • SUGAR : An improved empirical model of Type Ia supernovae based on spectral features
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 636
  • Journal article (peer-reviewed)abstract
    • Context. Type Ia supernovae (SNe Ia) are widely used to measure the expansion of the Universe. Improving distance measurements of SNe Ia is one technique to better constrain the acceleration of expansion and determine its physical nature.Aims. This document develops a new SNe Ia spectral energy distribution (SED) model, called the SUpernova Generator And Reconstructor (SUGAR), which improves the spectral description of SNe Ia, and consequently could improve the distance measurements.Methods. This model was constructed from SNe Ia spectral properties and spectrophotometric data from the Nearby Supernova Factory collaboration. In a first step, a principal component analysis-like method was used on spectral features measured at maximum light, which allowed us to extract the intrinsic properties of SNe Ia. Next, the intrinsic properties were used to extract the average extinction curve. Third, an interpolation using Gaussian processes facilitated using data taken at different epochs during the lifetime of an SN Ia and then projecting the data on a fixed time grid. Finally, the three steps were combined to build the SED model as a function of time and wavelength. This is the SUGAR model.Results. The main advancement in SUGAR is the addition of two additional parameters to characterize SNe Ia variability. The first is tied to the properties of SNe Ia ejecta velocity and the second correlates with their calcium lines. The addition of these parameters, as well as the high quality of the Nearby Supernova Factory data, makes SUGAR an accurate and efficient model for describing the spectra of normal SNe Ia as they brighten and fade.Conclusions. The performance of this model makes it an excellent SED model for experiments like the Zwicky Transient Facility, the Large Synoptic Survey Telescope, or the Wide Field Infrared Survey Telescope.
  •  
11.
  • Nordin, J., et al. (author)
  • Understanding type Ia supernovae through their U-band spectra
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 614
  • Journal article (peer-reviewed)abstract
    • Context. Observations of type Ia supernovae (SNe Ia) can be used to derive accurate cosmological distances through empirical standardization techniques. Despite this success neither the progenitors of SNe Ia nor the explosion process are fully understood. The U-band region has been less well observed for nearby SNe, due to technical challenges, but is the most readily accessible band for high-redshift SNe. Aims. Using spectrophotometry from the Nearby Supernova Factory, we study the origin and extent of U-band spectroscopic variations in SNe Ia and explore consequences for their standardization and the potential for providing new insights into the explosion process. Methods. We divide the U-band spectrum into four wavelength regions lambda(uNi), lambda(uTi), lambda(uSi) and lambda(uCa). Two of these span the Ca H&K lambda lambda 3934, 3969 complex. We employ spectral synthesis using SYNAPPS to associate the two bluer regions with Ni/Co and Ti. Results. The flux of the uTi feature is an extremely sensitive temperature/ luminosity indicator, standardizing the SN peak luminosity to 0.116 +/- 0.011 mag root mean square (RMS). A traditional SALT2. 4 fit on the same sample yields a 0.135 mag RMS. Standardization using uTi also reduces the difference in corrected magnitude between SNe originating from different host galaxy environments. Early U-band spectra can be used to probe the Ni + Co distribution in the ejecta, thus offering a rare window into the source of light curve power. The uCa flux further improves standardization, yielding a 0.086 +/- 0.010 mag RMS without the need to include an additional intrinsic dispersion to reach chi(2) /dof similar to 1. This reduction in RMS is partially driven by an improved standardization of Shallow Silicon and 91T-like SNe.
  •  
12.
  • Rigault, M., et al. (author)
  • Strong dependence of Type Ia supernova standardization on the local specific star formation rate
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 644
  • Journal article (peer-reviewed)abstract
    • As part of an on-going effort to identify, understand and correct for astrophysics biases in the standardization of Type Ia supernovae (SN Ia) for cosmology, we have statistically classified a large sample of nearby SNe Ia into those that are located in predominantly younger or older environments. This classification is based on the specific star formation rate measured within a projected distance of 1 kpc from each SN location (LsSFR). This is an important refinement compared to using the local star formation rate directly, as it provides a normalization for relative numbers of available SN progenitors and is more robust against extinction by dust. We find that the SNe Ia in predominantly younger environments are ΔY = 0.163 ± 0.029 mag (5.7σ) fainter than those in predominantly older environments after conventional light-curve standardization. This is the strongest standardized SN Ia brightness systematic connected to the host-galaxy environment measured to date. The well-established step in standardized brightnesses between SNe Ia in hosts with lower or higher total stellar masses is smaller, at ΔM = 0.119 ± 0.032 mag (4.5σ), for the same set of SNe Ia. When fit simultaneously, the environment-age offset remains very significant, with ΔY = 0.129 ± 0.032 mag (4.0σ), while the global stellar mass step is reduced to ΔM = 0.064  ±  0.029 mag (2.2σ). Thus, approximately 70% of the variance from the stellar mass step is due to an underlying dependence on environment-based progenitor age. Also, we verify that using the local star formation rate alone is not as powerful as LsSFR at sorting SNe Ia into brighter and fainter subsets. Standardization that only uses the SNe Ia in younger environments reduces the total dispersion from 0.142  ±  0.008 mag to 0.120  ±  0.010 mag. We show that as environment-ages evolve with redshift, a strong bias, especially on the measurement of the derivative of the dark energy equation of state, can develop. Fortunately, data that measure and correct for this effect using our local specific star formation rate indicator, are likely to be available for many next-generation SN Ia cosmology experiments.
  •  
13.
  • Adams, C., et al. (author)
  • Validation of ACE and OSIRIS ozone and NO2 measurements using ground-based instruments at 80 degrees N
  • 2012
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 5:5, s. 927-953
  • Journal article (peer-reviewed)abstract
    • The Optical Spectrograph and Infra-Red Imager System (OSIRIS) and the Atmospheric Chemistry Experiment (ACE) have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL), which is located at Eureka, Canada (80A degrees N, 86A degrees W) and is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). The ground-based instruments included in this study are four zenith-sky differential optical absorption spectroscopy (DOAS) instruments, one Bruker Fourier transform infrared spectrometer (FTIR) and four Brewer spectrophotometers. Ozone total columns measured by the DOAS instruments were retrieved using new Network for the Detection of Atmospheric Composition Change (NDACC) guidelines and agree to within 3.2%. The DOAS ozone columns agree with the Brewer spectrophotometers with mean relative differences that are smaller than 1.5%. This suggests that for these instruments the new NDACC data guidelines were successful in producing a homogenous and accurate ozone dataset at 80A degrees N. Satellite 14-52 km ozone and 17-40 km NO2 partial columns within 500 km of PEARL were calculated for ACE-FTS Version 2.2 (v2.2) plus updates, ACE-FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) v1.2 and OSIRIS SaskMART v5.0x ozone and Optimal Estimation v3.0 NO2 data products. The new ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial columns are nearly identical, with mean relative differences of 0.0 +/- 0.2% and -0.2 +/- 0.1% for v2.2 minus v3.0 ozone and NO2, respectively. Ozone columns were constructed from 14-52 km satellite and 0-14 km ozonesonde partial columns and compared with the ground-based total column measurements. The satellite-plus-sonde measurements agree with the ground-based ozone total columns with mean relative differences of 0.1-7.3%. For NO2, partial columns from 17 km upward were scaled to noon using a photochemical model. Mean relative differences between OSIRIS, ACE-FTS and ground-based NO2 measurements do not exceed 20%. ACE-MAESTRO measures more NO2 than the other instruments, with mean relative differences of 25-52%. Seasonal variation in the differences between NO2 partial columns is observed, suggesting that there are systematic errors in the measurements and/or the photochemical model corrections. For ozone spring-time measurements, additional coincidence criteria based on stratospheric temperature and the location of the polar vortex were found to improve agreement between some of the instruments. For ACE-FTS v2.2 minus Bruker FTIR, the 2007-2009 spring-time mean relative difference improved from -5.0 +/- 0.4% to -3.1 +/- 0.8% with the dynamical selection criteria. This was the largest improvement, likely because both instruments measure direct sunlight and therefore have well-characterized lines-of-sight compared with scattered sunlight measurements. For NO2, the addition of a +/- 1A degrees latitude coincidence criterion improved spring-time intercomparison results, likely due to the sharp latitudinal gradient of NO2 during polar sunrise. The differences between satellite and ground-based measurements do not show any obvious trends over the missions, indicating that both the ACE and OSIRIS instruments continue to perform well.
  •  
14.
  • Huang, X., et al. (author)
  • The Extinction Properties of and Distance to the Highly Reddened Type IA Supernova 2012cu
  • 2017
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 836:2
  • Journal article (peer-reviewed)abstract
    • Correcting Type Ia Supernova brightnesses for extinction by dust has proven to be a vexing problem. Here we study the dust foreground to the highly reddened SN 2012cu, which is projected onto a dust lane in the galaxy NGC 4772. The analysis is based on multi-epoch, spectrophotometric observations spanning from 3300-9200 A degrees, obtained by the Nearby Supernova Factory. Phase-matched comparison of the spectroscopically twinned SN 2012cu and SN 2011fe across 10 epochs results in the best-fit color excess of (E(B-V), RMS) = (1.00, 0.03) and total-to-selective extinction ratio of (RV, RMS) = (2.95, 0.08) toward SN 2012cu within its host galaxy. We further identify several diffuse interstellar bands and compare the 5780 angstrom band with the dust- to-band ratio for the Milky Way (MW). Overall, we find the foreground dust-extinction properties for SN 2012cu to be consistent with those of the MW. Furthermore, we find no evidence for significant time variation in any of these extinction tracers. We also compare the dust extinction curve models of Cardelli et al., O'Donnell,. and Fitzpatrick, and find the predictions of Fitzpatrick fit SN 2012cu the best. Finally, the distance to NGC4772, the host of SN 2012cu, at a redshift of z = 0.0035, often assigned to the Virgo Southern Extension, is determined to be 16.6 +/- 1.1 Mpc. We compare this result with distance measurements in the literature.
  •  
15.
  • Saunders, C., et al. (author)
  • SNEMO : Improved Empirical Models for Type Ia Supernovae
  • 2018
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 869:2
  • Journal article (peer-reviewed)abstract
    • SN Ia cosmology depends on the ability to fit and standardize observations of supernova magnitudes with an empirical model. We present here a series of new models of SN Ia spectral time series that capture a greater amount of supernova diversity than is possible with the models that are currently customary. These are entitled SuperNova Empirical MOdels (SNEMO; https://snfactory.lbl.gov/snemo). The models are constructed using spectrophotometric time series from 172 individual supernovae from the Nearby Supernova Factory, comprising more than 2000 spectra. Using the available observations, Gaussian processes are used to predict a full spectral time series for each supernova. A matrix is constructed from the spectral time series of all the supernovae, and Expectation Maximization Factor Analysis is used to calculate the principal components of the data. K-fold cross-validation then determines the selection of model parameters and accounts for color variation in the data. Based on this process, the final models are trained on supernovae that have been dereddened using the Fitzpatrick and Massa extinction relation. Three final models are presented here: SNEMO2, a two-component model for comparison with current Type Ia models; SNEMO7, a seven-component model chosen for standardizing supernova magnitudes, which results in a total dispersion of 0.100mag for a validation set of supernovae, of which 0.087 mag is unexplained (a total dispersion of 0.113 mag with an unexplained dispersion of 0.097 mag is found for the total set of training and validation supernovae); and SNEMO15, a comprehensive 15-component model that maximizes the amount of spectral time-series behavior captured.
  •  
16.
  • Strong, K., et al. (author)
  • Validation of ACE-FTS N2O measurements
  • 2008
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8, s. 4759-4786
  • Journal article (peer-reviewed)abstract
    • The Atmospheric Chemistry Experiment (ACE), also known as SCISAT, was launched on 12 August 2003, carrying two instruments that measure vertical profiles of atmospheric constituents using the solar occultation technique. One of these instruments, the ACE Fourier Transform Spectrometer (ACE-FTS), is measuring volume mixing ratio (VMR) profiles of nitrous oxide (N2O) from the upper troposphere to the lower mesosphere at a vertical resolution of about 3–4 km. In this study, the quality of the ACE-FTS version 2.2 N2O data is assessed through comparisons with coincident measurements made by other satellite, balloon-borne, aircraft, and ground-based instruments. These consist of vertical profile comparisons with the SMR, MLS, and MIPAS satellite instruments, multiple aircraft flights of ASUR, and single balloon flights of SPIRALE and FIRS-2, and partial column comparisons with a network of ground-based Fourier Transform InfraRed spectrometers (FTIRs). Between 6 and 30 km, the mean absolute differences for the satellite comparisons lie between −42 ppbv and +17 ppbv, with most within ±20 ppbv. This corresponds to relative deviations from the mean that are within ±15%, except for comparisons with MIPAS near 30 km, for which they are as large as 22.5%. Between 18 and 30 km, the mean absolute differences for the satellite comparisons are generally within ±10 ppbv. From 30 to 60 km, the mean absolute differences are within ±4 ppbv, and are mostly between −2 and +1 ppbv. Given the small N2O VMR in this region, the relative deviations from the mean are therefore large at these altitudes, with most suggesting a negative bias in the ACE-FTS data between 30 and 50 km. In the comparisons with the FTIRs, the mean relative differences between the ACE-FTS and FTIR partial columns (which cover a mean altitude range of 14 to 27 km) are within ±5.6% for eleven of the twelve contributing stations. This mean relative difference is negative at ten stations, suggesting a small negative bias in the ACE-FTS partial columns over the altitude regions compared. Excellent correlation (R=0.964) is observed between the ACE-FTS and FTIR partial columns, with a slope of 1.01 and an intercept of −0.20 on the line fitted to the data.
  •  
17.
  • Taubenberger, S., et al. (author)
  • SN2012dn from early to late times : 09dc-like supernovae reassessed
  • 2019
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 488:4, s. 5473-5488
  • Journal article (peer-reviewed)abstract
    • As a candidate super-Chandrasekhar' or 09dc-like TypeIa supernova (SNIa), SN 2012dn shares many characteristics with other members of this remarkable class of objects but lacks their extraordinary luminosity. Here, we present and discuss the most comprehensive optical data set of this SN to date, comprised of a densely sampled series of early-time spectra obtained within the Nearby Supernova Factory project, plus photometry and spectroscopy obtained at the Very Large Telescope about 1yr after the explosion. The light curves, colour curves, spectral time series, and ejecta velocities of SN 2012dn are compared with those of other 09dc-like and normal SNeIa, the overall variety within the class of 09dc-like SNeIa is discussed, and new criteria for 09dc-likeness are proposed. Particular attention is directed to additional insight that the late-phase data provide. The nebular spectra show forbidden lines of oxygen and calcium, elements that are usually not seen in late-time spectra of SNeIa, while the ionization state of the emitting iron plasma is low, pointing to low ejecta temperatures and high densities. The optical light curves are characterized by an enhanced fading starting similar to 60d after maximum and very low luminosities in the nebular phase, which is most readily explained by unusually early formation of clumpy dust in the ejecta. Taken together, these effects suggest a strongly perturbed ejecta density profile, which might lend support to the idea that 09dc-like characteristics arise from a brief episode of interaction with a hydrogen-deficient envelope during the first hours or days after the explosion.
  •  
18.
  • Wolff, M.A., et al. (author)
  • Validation of HNO3, ClONO2 and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS)
  • 2008
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:13, s. 3529-3562
  • Journal article (peer-reviewed)abstract
    • The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS). This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR) profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS), aircraft measurements (ASUR), and single balloon-flights (SPIRALE, FIRS-2). Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR) spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv ±20%) from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km) show a slight negative bias of −1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofísica de Andalucía (IMK-IAA) data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which the mean relative difference is 4.7%. ACE-FTS N2O5 has a low bias relative to MIPAS IMK-IAA, reaching −0.25 ppbv at the altitude of the N2O5 maximum (around 30 km). Mean absolute differences at lower altitudes (16–27 km) are typically −0.05 ppbv for MIPAS nighttime and ±0.02 ppbv for MIPAS daytime measurements.
  •  
19.
  • Carleer, M. R., et al. (author)
  • Validation of water vapour profiles from the Atmospheric Chemistry Experiment (ACE)
  • 2008
  • In: Atmospheric Chemistry and Physics Discussion: An Interactive Open Access Journal of the European Geosciences Union. ; 8:2, s. 4499-4559
  • Journal article (peer-reviewed)abstract
    • The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Water vapour (H2O), one of the most important molecules for climate and atmospheric chemistry, is one of the key species provided by the two principal instruments, the infrared Fourier Transform Spectrometer (ACE-FTS) and the MAESTRO UV-Visible spectrometer (ACE-MAESTRO). The first instrument performs measurements on several lines in the 1362–2137 cm−1 range, from which vertically resolved H2O concentration profiles are retrieved, from 7 to 90 km altitude. ACE-MAESTRO measures profiles using the water absorption band in the near infrared part of the spectrum at 926.0–969.7 nm. This paper presents a comprehensive validation of the ACE-FTS profiles. We have compared the H2O volume mixing ratio profiles with space-borne (SAGE II, HALOE, POAM III, MIPAS, SMR) observations and measurements from balloon-borne frostpoint hygrometers and a ground based lidar. We show that the ACE-FTS measurements provide H2O profiles with small retrieval uncertainties in the stratosphere (better than 5% from 15 to 70 km, gradually increasing above). The situation is unclear in the upper troposphere, due mainly to the high variability of the water vapour volume mixing ratio in this region. A new water vapour data product from the ACE-MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) is also presented and initial comparisons with ACE-FTS are discussed.
  •  
20.
  • Clerbaux, C., et al. (author)
  • CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations
  • 2008
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8, s. 2569-2594
  • Journal article (peer-reviewed)abstract
    • The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO), a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS). This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006). We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane) observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES) as well as limb-viewing remote sensors (MIPAS, SMR and MLS) were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above). These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km), than 30% in the lower stratosphere (12–30 km), and than 25% from 30 to 100 km.
  •  
21.
  • Lambert, A., et al. (author)
  • Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements
  • 2007
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:D24
  • Journal article (peer-reviewed)abstract
    • The quality of the version 2.2 (v2.2) middle atmosphere water vapor and nitrous oxide measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System (EOS) Aura satellite is assessed. The impacts of the various sources of systematic error are estimated by a comprehensive set of retrieval simulations. Comparisons with correlative data sets from ground-based, balloon and satellite platforms operating in the UV/ visible, infrared and microwave regions of the spectrum are performed. Precision estimates are also validated, and recommendations are given on the data usage. The v2.2 H 2 O data have been improved over v1.5 by providing higher vertical resolution in the lower stratosphere and better precision above the stratopause. The single-profile precision is ∼0.2-0.3 ppmv (4-9%), and the vertical resolution is ∼3-4 km in the stratosphere. The precision and vertical resolution become worse with increasing height above the stratopause. Over the pressure range 0.1-0.01 hPa the precision degrades from 0.4 to 1.1 ppmv (6-34%), and the vertical resolution degrades to ∼12-16 km. The accuracy is estimated to be 0.2-0.5 ppmv (4-11%) for the pressure range 68-0.01 hPa. The scientifically useful range of the H 2 O data is from 316 to 0.002 hPa, although only the 82-0.002 hPa pressure range is validated here. Substantial improvement has been achieved in the v2.2 N 2 O data over v1.5 by reducing a significant low bias in the stratosphere and eliminating unrealistically high biased mixing ratios in the polar regions. The single-profile precision is ∼13-25 ppbv (7-38%), the vertical resolution is ∼4-6 km and the accuracy is estimated to be 3-70 ppbv (9-25%) for the pressure range 100-4.6 hPa. The scientifically useful range of the N 2 O data is from 100 to 1 hPa. Copyright 2007 by the American Geophysical Union.
  •  
22.
  • Lombardo, S., et al. (author)
  • SCALA : In situ calibration for integral field spectrographs
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 607
  • Journal article (peer-reviewed)abstract
    • Aims. The scientific yield of current and future optical surveys is increasingly limited by systematic uncertainties in the flux calibration. This is the case for type Ia supernova (SN Ia) cosmology programs, where an improved calibration directly translates into improved cosmological constraints. Current methodology rests on models of stars. Here we aim to obtain flux calibration that is traceable to state-of-the-art detector-based calibration. Methods. We present the SNIFS Calibration Apparatus (SCALA), a color (relative) flux calibration system developed for the SuperNova integral field spectrograph (SNIFS), operating at the University of Hawaii 2.2 m (UH 88) telescope. Results. By comparing the color trend of the illumination generated by SCALA during two commissioning runs, and to previous laboratory measurements, we show that we can determine the light emitted by SCALA with a long-term repeatability better than 1%. We describe the calibration procedure necessary to control for system aging. We present measurements of the SNIFS throughput as estimated by SCALA observations. Conclusions. The SCALA calibration unit is now fully deployed at the UH 88 telescope, and with it color-calibration between 4000 angstrom and 9000 angstrom is stable at the percent level over a one-year baseline.
  •  
23.
  • Sioris, C. E., et al. (author)
  • Vertical profiles of lightning-produced NO2 enhancements in the upper troposphere observed by OSIRIS
  • 2007
  • In: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 7:16, s. 4281-4294
  • Journal article (peer-reviewed)abstract
    • The purpose of this study is to perform a global search of the upper troposphere (z >= 10 km) for enhancements of nitrogen dioxide and determine their sources. This is the first application of satellite-based limb scattering to study upper tropospheric NO2. We have searched two years ( May 2003 - May 2005) of OSIRIS ( Optical Spectrograph and Infrared Imager System) operational NO2concentrations ( version 2.3/ 2.4) to find large enhancements in the observations by comparing with photochemical box model calculations and by identifying local maxima in NO2 volume mixing ratio. We find that lightning is the main production mechanism responsible for the large enhancements in OSIRIS NO2 observations as expected. Similar patterns in the abundances and spatial distribution of the NO2 enhancements are obtained by perturbing the lightning within the GEOS- Chem 3- dimensional chemical transport model. In most cases, the presence of lightning is confirmed with coincident imagery from LIS ( Lightning Imaging Sensor) and the spatial extent of the NO2 enhancement is mapped using nadir observations of tropospheric NO2 at high spatial resolution from SCIAMACHY ( Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) and OMI ( Ozone Monitoring Instrument). The combination of the lightning and chemical sensors allows us to investigate globally the role of lightning to the abundance of NO2 in the upper troposphere ( UT). Lightning contributes 60% of the tropical upper tropospheric NO2 in GEOS- Chem simulations. The spatial and temporal distribution of NO2 enhancements from lightning ( Maylyzed.
  •  
24.
  • Enfors, Sven-Olof, et al. (author)
  • Physiological responses to mixing in large scale bioreactors
  • 2001
  • In: Journal of Biotechnology. - 0168-1656 .- 1873-4863. ; 85:2, s. 175-185
  • Journal article (peer-reviewed)abstract
    • Escherichia coli fed-batch cultivations at 22 m(3) scale were compared to corresponding laboratory scale processes and cultivations using a scale-down reactor furnished with a high-glucose concentration zone to mimic the conditions in a feed zone of the large bioreactor. Formate accumulated in the large reactor, indicating the existence of oxygen limitation zones. It is suggested that the reduced biomass yield at large scale partly is due to repeated production/reassimilation of acetate from overflow metabolism and mixed acid fermentation products due to local moving zones with oxygen limitation. The conditions that generated mixed-acid fermentation in the scale-down reactor also induced a number of stress responses, monitored by analysis of mRNA of selected stress induced genes. The stress responses were relaxed when the cells returned to the substrate limited and oxygen sufficient compartment of the reactor. Corresponding analysis in the large reactor showed that the concentration of mRNA of four stress induced genes was lowest at the sampling port most distant from the feed zone. It is assumed that repeated induction/relaxation of stress responses in a large bioreactor may contribute to altered physiological properties of the cells grown in large-scale bioreactor. Flow cytometric analysis revealed reduced damage with respect to cytoplasmic membrane potential and integrity in cells grown in the dynamic environments of the large scale reactor and the scale-down reactor.
  •  
25.
  • Hopfner, M., et al. (author)
  • Validation of MIPAS ClONO2 measurements
  • 2007
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 7, s. 257-281
  • Journal article (peer-reviewed)abstract
    • Altitude profiles of ClONO2 retrieved with the IMK (Institut fur Meteorologie und Klimaforschung) science-oriented data processor from MIPAS/Envisat (Michelson Interferometer for Passive Atmospheric Sounding on Envisat) mid-infrared limb emission measurements between July 2002 and March 2004 have been validated by comparison with balloon-borne (Mark IV, FIRS2, MIPAS-B), airborne (MIPAS-STR), ground-based (Spitsbergen, Thule, Kiruna, Harestua, Jungfraujoch, Izana, Wollongong, Lauder), and spaceborne (ACE-FTS) observations. With few exceptions we found very good agreement between these instruments and MIPAS with no evidence for any bias in most cases and altitude regions. For balloon-borne measurements typical absolute mean differences are below 0.05 ppbv over the whole altitude range from 10 to 39 km. In case of ACE-FTS observations mean differences are below 0.03 ppbv for observations below 26 km. Above this altitude the comparison with ACE-FTS is affected by the photochemically induced diurnal variation of ClONO2. Correction for this by use of a chemical transport model led to an overcompensation of the photochemical effect by up to 0.1 ppbv at altitudes of 30-35 km in case of MIPAS-ACE-FTS comparisons while for the balloon-borne observations no such inconsistency has been detected. The comparison of MIPAS derived total column amounts with ground-based observations revealed no significant bias in the MIPAS data. Mean differences between MIPAS and FTIR column abundances are 0.11 +/- 0.12 x 10(14) cm(-2) (1.0 +/- 1.1%) and -0.09 +/- 0.19 x 10(14) cm(-2) (-0.8 +/- 1.7%), depending on the coincidence criterion applied. chi(2) tests have been performed to assess the combined precision estimates of MIPAS and the related instruments. When no exact coincidences were available as in case of MIPAS-FTIR or MIPAS-ACE-FTS comparisons it has been necessary to take into consideration a coincidence error term to account for chi(2) deviations. From the resulting chi(2) profiles there is no evidence for a systematic over/underestimation of the MIPAS random error analysis.
  •  
26.
  • Nassar, R., et al. (author)
  • A global inventory of stratospheric chlorine in 2004
  • 2006
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 111:22
  • Journal article (peer-reviewed)abstract
    • Total chlorine (CITOT) in the stratosphere has been determined using the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) measurements of HCl, ClONO2, CH3Cl, CCl4, CCl3F (CFC-11), CCl2F2 (CFC-12), CHClF2 (HCFC-22), CCl2FCClF2 (CFC-113), CH3CClF2 (HCFC-142b), COClF, and ClO supplemented by data from several other sources, including both measurements and models. Separate chlorine inventories were carried out in five latitude zones (60°-82°N, 30°-60°N, 30°S-30°N, 30°-60°S, and 60°-82°S), averaging the period of February 2004 to January 2005 inclusive, when possible, to deal with seasonal variations. The effect of diurnal variation was avoided by only using measurements taken at local sunset. Mean stratospheric ClTOT values of 3.65 ppbv were determined for both the northern and southern midlatitudes (with an estimated 1σ, accuracy of ±0.13 ppbv and a precision of ±.09 ppbv), accompanied by a slightly lower value in the tropics and slightly higher values at high latitudes. Stratospheric ClTOT profiles in all five latitude zones are nearly linear with a slight positive slope in ppbv /km. Both the observed slopes and pattern of latitudinal variation can be interpreted as evidence of the beginning of a decline in global stratospheric chlorine, which is qualitatively consistent with the mean stratospheric circulation pattern and time lag necessary for transport.
  •  
27.
  • Rubin, D., et al. (author)
  • The Discovery of a Gravitationally Lensed Supernova Ia at Redshift 2.22
  • 2018
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 866:1
  • Journal article (peer-reviewed)abstract
    • We present the discovery and measurements of a gravitationally lensed supernova (SN) behind the galaxy cluster MOO J1014+0038. Based on multi-band Hubble Space Telescope and Very Large Telescope (VLT) photometry of the supernova, and VLT spectroscopy of the host galaxy, we find a 97.5% probability that this SN is a SN Ia, and a 2.5% chance of a CC SN. Our typing algorithm combines the shape and color of the light curve with the expected rates of each SN type in the host galaxy. With a redshift of 2.2216, this is the highest redshift SN. Ia discovered with a spectroscopic host-galaxy redshift. A further distinguishing feature is that the lensing cluster, at redshift 1.23, is the most distant to date to have an amplified SN. The SN lies in the middle of the color and light-curve shape distributions found at lower redshift, disfavoring strong evolution to z = 2.22. We estimate an amplification due to gravitational lensing of 2.8(-0.5)(+0.6) (1.10 +/- 0.23 mag)-compatible with the value estimated from the weak-lensing-derived mass and the mass-concentration relation from Lambda CDM simulations-making it the most amplified SN Ia discovered behind a galaxy cluster.
  •  
28.
  • Sheese, P. E., et al. (author)
  • Validation of ACE-FTS version 3.5 NO y species profiles using correlative satellite measurements
  • 2016
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 9:12, s. 5781-5810
  • Journal article (peer-reviewed)abstract
    • The ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) instrument on the Canadian SCISAT satellite, which has been in operation for over 12 years, has the capability of deriving stratospheric profiles of many of the NOy (N + NO + NO2 + NO3 + 2 x N2O5 + HNO3 + HNO4 + ClONO2 + BrONO2) species. Version 2.2 of ACE-FTS NO, NO2, HNO3, N2O5, and ClONO2 has previously been validated, and this study compares the most recent version (v3.5) of these five ACE-FTS products to spatially and temporally coincident measurements from other satellite instruments - GOMOS, HALOE, MAESTRO, MIPAS, MLS, OSIRIS, POAM III, SAGE III, SCIAMACHY, SMILES, and SMR. For each ACE-FTS measurement, a photochemical box model was used to simulate the diurnal variations of the NOy species and the ACE-FTS measurements were scaled to the local times of the coincident measurements. The comparisons for all five species show good agreement with correlative satellite measurements. For
  •  
29.
  • Broekman, Maarten J. E., et al. (author)
  • Evaluating expert-based habitat suitability information of terrestrial mammals with GPS-tracking data
  • 2022
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 31:8, s. 1526-1541
  • Journal article (peer-reviewed)abstract
    • Aim: Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species.Location: Worldwide.Time period: 1998-2021.Major taxa studied: Forty-nine terrestrial mammal species.Methods: Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types.Results: IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively.Main conclusions: We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data.
  •  
30.
  • Jin, J.J., et al. (author)
  • Co-located ACE-FTS and Odin/SMR stratospheric-mesospheric CO 2004 measurements and comparison with a GCM
  • 2005
  • In: Geophysical Research Letters. - 1944-8007 .- 0094-8276. ; 32:15
  • Journal article (peer-reviewed)abstract
    • This paper presents a comparison of co-located and near simultaneous CO measurements from January to May, 2004 and from the Arctic to southern polar regions using the ACE-FTS, in solar occultation mode, and the Odin/SMR, which measures atmospheric emission. We find that there is excellent agreement between the two instruments at the locations investigated over 4 orders of magnitude from the lower stratosphere to the lower thermosphere. There is also good agreement with the CMAM model simulation from 20 km to 90 km in sub-tropical and tropical latitudes but poorer agreement in the upper stratosphere and lower mesosphere in winter polar regions. For the Arctic in March 2004 this can be attributed, at least partly, to the unique dynamical processes in the stratosphere in the winter of 2003 - 2004. Clearly CO measurements from these instruments will provide a useful tool for testing model transport from the troposphere to the thermosphere.
  •  
31.
  • Santee, M.L., et al. (author)
  • Validation of the Aura Microwave Limb Sounder HNO3 Measurements
  • 2007
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:D24
  • Journal article (peer-reviewed)abstract
    • [1] We assess the quality of the version 2.2 (v2.2) HNO(3) measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO(3) product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO(3) data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of similar to 0.7 ppbv throughout. Vertical resolution is 3-4 km in the upper troposphere and lower stratosphere, degrading to similar to 5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO(3) measurements biases that vary with altitude between +/- 0.5 and +/- 2 ppbv and multiplicative errors of +/- 5-15% throughout the stratosphere, rising to similar to +/- 30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO(3) measurements from ground- based, balloon- borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO(3) mixing ratios are uniformly low by 10-30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO(3) values are low in this region as well, but are useful for scientific studies (with appropriate averaging).
  •  
32.
  • Williams, S. C., et al. (author)
  • See Change : VLT spectroscopy of a sample of high-redshift Type Ia supernova host galaxies
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 495:4, s. 3859-3880
  • Journal article (peer-reviewed)abstract
    • The Supernova Cosmology Project has conducted the 'See Change' programme, aimed at discovering and observing high-redshift (1.13 <= z <= 1.75) Type Ia supernovae (SNe Ia). We used multifilter Hubble Space Telescope (HST) observations of massive galaxy clusters with sufficient cadence to make the observed SN Ia light curves suitable for a cosmological probe of dark energy at z > 0.5. This See Change sample of SNe Ia with multi-colour light curves will be the largest to date at these redshifts. As part of the See Change programme, we obtained ground-based spectroscopy of each discovered transient and/or its host galaxy. Here, we present Very Large Telescope (VCT) spectra of See Change transient host galaxies, deriving their redshifts, and host parameters such as stellar mass and star formation rate. Of the 39 See Change transients/hosts that were observed with the VLT, we successfully determined the redshift for 26, including 15 SNe Ia at z > 0.97. We show that even in passive environments, it is possible to recover secure redshifts for the majority of SN hosts out to z = 1.5. We find that with typical exposure times of 3-4h on an 8-m-class telescope we can recover similar to 75 per cent of SN Ia redshifts in the range of 0.97 < z < 1.5. Furthermore, we show that the combination of HST photometry and VLT spectroscopy is able to provide estimates of host galaxy stellar mass that are sufficiently accurate for use in a mass-step correction in the cosmological analysis.
  •  
33.
  • Burillo, S. G., et al. (author)
  • Molecular line emission in NGC 1068 imaged with ALMA : I. An AGN-driven outflow in the dense molecular gas
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 567, s. 125-
  • Journal article (peer-reviewed)abstract
    • Aims. We investigate the fueling and the feedback of star formation and nuclear activity in NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We aim to understand if and how gas accretion can self-regulate.Methods. We have used the Atacama Large Millimeter Array (ALMA) to map the emission of a set of dense molecular gas (n(H2) ' 1056 cm3) tracers (CO(3-2), CO(6-5), HCN(4-3), HCO+(4-3), and CS(7-6)) and their underlying continuum emission in the central r ∼ 2 kpc of NGC 1068 with spatial resolutions ∼0:3000:500 (∼20-35 pc for the assumed distance of D = 14 Mpc). Results. The sensitivity and spatial resolution of ALMA give an unprecedented detailed view of the distribution and kinematics of the dense molecular gas (n(H2) ≈ 1056cm3) in NGC 1068. Molecular line and dust continuum emissions are detected from a r ∼ 200 pc off-centered circumnuclear disk (CND), from the 2.6 kpc-diameter bar region, and from the r ∼ 1:3 kpc starburst (SB) ring. Most of the emission in HCO+, HCN, and CS stems from the CND. Molecular line ratios show dramatic order-of-magnitude changes inside the CND that are correlated with the UV/X-ray illumination by the active galactic nucleus (AGN), betraying ongoing feedback. We used the dust continuum fluxes measured by ALMA together with NIR/MIR data to constrain the properties of the putative torus using CLUMPY models and found a torus radius of 20+6 10 pc. The Fourier decomposition of the gas velocity field indicates that rotation is perturbed by an inward radial flow in the SB ring and the bar region. However, the gas kinematics from r ∼ 50 pc out to r ∼ 400 pc reveal a massive (Mmol ∼ 2:7+0:9 1:2 × 107 M) outflow in all molecular tracers. The tight correlation between the ionized gas outflow, the radio jet, and the occurrence of outward motions in the disk suggests that the outflow is AGN driven. Conclusions. The molecular outflow is likely launched when the ionization cone of the narrow line region sweeps the nuclear disk. The outflow rate estimated in the CND, dM=dt ∼ 63+21 37 M yr1, is an order of magnitude higher than the star formation rate at these radii, confirming that the outflow is AGN driven. The power of the AGN is able to account for the estimated momentum and kinetic luminosity of the outflow. The CND mass load rate of the CND outflow implies a very short gas depletion timescale of ≤1 Myr. The CND gas reservoir is likely replenished on longer timescales by efficient gas inflow from the outer disk. © ESO 2014.
  •  
34.
  •  
35.
  • Jin, J.J., et al. (author)
  • Comparison of CMAM simulations of carbon monoxide (CO), nitrous oxide (N2O), and methane (CH4) with observations from Odin/SMR, ACE-FTS, and Aura/MLS
  • 2009
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9, s. 3233-3252
  • Journal article (peer-reviewed)abstract
    • Simulations of CO, N2O and CH4 from a coupled chemistry-climate model (CMAM) are compared with satellite measurements from Odin Sub-Millimeter Radiometer (Odin/SMR), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and Aura Microwave Limb Sounder (Aura/MLS). Pressure-latitude cross-sections and seasonal time series demonstrate that CMAM reproduces the observed global CO, N2O, and CH4 distributions quite well. Generally, excellent agreement with measurements is found between CO simulations and observations in the stratosphere and mesosphere. Differences between the simulations and the ACE-FTS observations are generally within 30%, and the differences between CMAM results and SMR and MLS observations are slightly larger. These differences are comparable with the difference between the instruments in the upper stratosphere and mesosphere. Comparisons of N2O show that CMAM results are usually within 15% of the measurements in the lower and middle stratosphere, and the observations are close to each other. However, the standard version of CMAM has a low N2O bias in the upper stratosphere. The CMAM CH4 distribution also reproduces the observations in the lower stratosphere, but has a similar but smaller negative bias in the upper stratosphere. The negative bias may be due to that the gravity drag is not fully resolved in the model. The simulated polar CO evolution in the Arctic and Antarctic agrees with the ACE and MLS observations. CO measurements from 2006 show evidence of enhanced descent of air from the mesosphere into the stratosphere in the Arctic after strong stratospheric sudden warmings (SSWs). CMAM also shows strong descent of air after SSWs. In the tropics, CMAM captures the annual oscillation in the lower stratosphere and the semiannual oscillations at the stratopause and mesopause seen in Aura/MLS CO and N2O observations and in Odin/SMR N2O observations. The Odin/SMR and Aura/MLS N2O observations also show a quasi-biennial oscillation (QBO) in the upper stratosphere, whereas, the CMAM does not have QBO included. This study confirms that CMAM is able to simulate middle atmospheric transport processes reasonably well.
  •  
36.
  • Laeng, A., et al. (author)
  • Validation of MIPAS IMK/IAA V5R_O3_224 ozone profiles
  • 2014
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 7:11, s. 3971-3987
  • Journal article (peer-reviewed)abstract
    • We present the results of an extensive validation program of the most recent version of ozone vertical profiles retrieved with the IMK/IAA (Institute for Meteorology and Climate Research/Instituto de Astrofisica de Andalucia) MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) research level 2 processor from version 5 spectral level 1 data. The time period covered corresponds to the reduced spectral resolution period of the MIPAS instrument, i.e., January 2005-April 2012. The comparison with satellite instruments includes all post-2005 satellite limb and occultation sensors that have measured the vertical profiles of tropospheric and stratospheric ozone: ACE-FTS, GOMOS, HALOE, HIRDLS, MLS, OSIRIS, POAM, SAGE II, SCIAMACHY, SMILES, and SMR. In addition, balloon-borne MkIV solar occultation measurements and ground-based Umkehr measurements have been included, as well as two nadir sensors: IASI and SBUV. For each reference data set, bias determination and precision assessment are performed. Better agreement with reference instruments than for the previous data version, V5R_O3_220 (Laeng et al., 2014), is found: the known high bias around the ozone vmr (volume mixing ratio) peak is significantly reduced and the vertical resolution at 35 km has been improved. The agreement with limb and solar occultation reference instruments that have a known small bias vs. ozonesondes is within 7% in the lower and middle stratosphere and 5% in the upper troposphere. Around the ozone vmr peak, the agreement with most of the satellite reference instruments is within 5 %; this bias is as low as 3% for ACE-FTS, MLS, OSIRIS, POAM and SBUV.
  •  
37.
  • Milz, Mathias, et al. (author)
  • Validation of water vapour profiles (version 13) retrieved by the IMK/IAA scientific retrieval processor based on full resolution spectra measured by MIPAS on board Envisat
  • 2009
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 2:2, s. 379-399
  • Journal article (peer-reviewed)abstract
    • Vertical profiles of stratospheric water vapour measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) with the full resolution mode between September 2002 and March 2004 and retrieved with the IMK/IAA scientific retrieval processor were compared to a number of independent measurements in order to estimate the bias and to validate the existing precision estimates of the MIPAS data. The estimated precision for MIPAS is 5 to 10% in the stratosphere, depending on altitude, latitude, and season. The independent instruments were: the Halogen Occultation Experiment (HALOE), the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the Improved Limb Atmospheric Spectrometer-II (ILAS-II), the Polar Ozone and Aerosol Measurement (POAM III) instrument, the Middle Atmospheric Water Vapour Radiometer (MIAWARA), the Michelson Interferometer for Passive Atmospheric Sounding, balloon-borne version (MIPAS-B), the Airborne Microwave Stratospheric Observing System(AMSOS), the Fluorescent Stratospheric Hygrometer for Balloon (FLASH-B), the NOAA frostpoint hygrometer, and the Fast In Situ Hygrometer (FISH). For the in-situ measurements and the ground based, air- and balloon borne remote sensing instruments, the measurements are restricted to central and northern Europe. The comparisons to satellite-borne instruments are predominantly at mid- to high latitudes on both hemispheres. In the stratosphere there is no clear indicationof a bias in MIPAS data, because the independent measurements in some cases are drier and in some cases are moister than the MIPAS measurements. Compared to the infrared measurements of MIPAS, measurements in the ultraviolet and visible have a tendency to be high, whereas microwave measurements have a tendency to be low. Theresults of chi2-based precision validation are somewhat controversial among the comparison estimates. However, for comparison instruments whose error budget also includes errors due to uncertainties in spectrally interfering species and where good coincidences were found, the chi2 values found are in the expected range or even below. This suggests that there is no evidence of systematically underestimated MIPAS random errors.
  •  
38.
  •  
39.
  • Pérez-González, P.G.P., et al. (author)
  • Improving the identification of high-z Herschel sources with position priors and optical/NIR and FIR/mm photometric redshifts
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L15
  • Journal article (peer-reviewed)abstract
    • We present preliminary results about the detection of high redshift (U)LIRGs in the Bullet cluster field by the PACS and SPIRE instruments within the Herschel Lensing Survey (HLS) Program. We describe in detail a photometric procedure designed to recover robust fluxes and deblend faint Herschel sources near the confusion noise. The method is based on the use of the positions of Spitzer/MIPS 24 mu m sources as priors. Our catalogs are able to reliably (5 sigma) recover galaxies with fluxes above 6 and 10 mJy in the PACS 100 and 160 mu m channels, respectively, and 12 to 18 mJy in the SPIRE bands. We also obtain spectral energy distributions covering the optical through the far-infrared/millimeter spectral ranges of all the Herschel detected sources, and analyze them to obtain independent estimations of the photometric redshift based on either stellar population or dust emission models. We exemplify the potential of the combined use of Spitzer position priors plus independent optical and IR photometric redshifts to robustly assign optical/NIR counterparts to the sources detected by Herschel and other (sub-)mm instruments.
  •  
40.
  • Rex, M., et al. (author)
  • The far-infrared/submillimeter properties of galaxies located behind the Bullet cluster
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L13
  • Journal article (peer-reviewed)abstract
    • The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100-500 mu m bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 mu m and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 mu m-selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities. This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled up versions of lower luminosity local galaxies with star formation occurring on larger physical scales.
  •  
41.
  • van Krieken, J. H., et al. (author)
  • Guideline on the requirements of external quality assessment programs in molecular pathology
  • 2013
  • In: Virchows Archiv. - : Springer Science and Business Media LLC. - 0945-6317 .- 1432-2307. ; 462:1, s. 27-37
  • Journal article (peer-reviewed)abstract
    • Molecular pathology is an integral part of daily diagnostic pathology and used for classification of tumors, for prediction of prognosis and response to therapy, and to support treatment decisions. For these reasons, analyses in molecular pathology must be highly reliable and hence external quality assessment (EQA) programs are called for. Several EQA programs exist to which laboratories can subscribe, but they vary in scope, number of subscribers, and execution. The guideline presented in this paper has been developed with the purpose to harmonize EQA in molecular pathology. It presents recommendations on how an EQA program should be organized, provides criteria for a reference laboratory, proposes requirements for EQA test samples, and defines the number of samples needed for an EQA program. Furthermore, a system for scoring of the results is proposed as well as measures to be taken for poorly performing laboratories. Proposals are made regarding the content requirements of an EQA report and how its results should be communicated. Finally, the need for an EQA database and a participant manual are elaborated. It is the intention of this guideline to improve EQA for molecular pathology in order to provide more reliable molecular analyses as well as optimal information regarding patient selection for treatment.
  •  
42.
  •  
43.
  • Boone, F., et al. (author)
  • An extended Herschel drop-out source in the center of AS1063: A normal dusty galaxy at z = 6.1 or SZ substructures?
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 559, s. L1-
  • Journal article (peer-reviewed)abstract
    • In the course of our 870 μm APEX/LABOCA follow-up of the Herschel Lensing Survey we have detected a source in AS1063 (RXC J2248.7-4431) that has no counterparts in any of the Herschel PACS/SPIRE bands, it is a Herschel "drop-out" with S870=S500 ≥ 0:5. The 870 μm emission is extended and centered on the brightest cluster galaxy, suggesting either a multiply imaged background source or substructure in the Sunyaev-Zel'dovich increment due to inhomogeneities in the hot cluster gas of this merging cluster. We discuss both interpretations with emphasis on the putative lensed source. Based on the observed properties and on our lens model we find that this source may be the first submillimeter galaxy (SMG) with a moderate far-infrared (FIR) luminosity (LFIR. © ESO 2013.
  •  
44.
  • Boone, Jan, et al. (author)
  • Optimal unemployment insurance with monitoring and sanctions
  • 2007
  • In: Economic Journal. - : Oxford University Press (OUP). - 0013-0133 .- 1468-0297. ; 117:518, s. 399-421
  • Journal article (peer-reviewed)abstract
    • This article analyses the design of optimal unemployment insurance in a search equilibrium framework where search effort among the unemployed is not perfectly observable. We examine to what extent the optimal policy involves monitoring of search effort and benefit sanctions if observed search is deemed insufficient. We find that introducing monitoring and sanctions represents a welfare improvement for reasonable estimates of monitoring costs; this conclusion holds both relative to a system featuring indefinite payments of benefits and a system with a time limit on unemployment benefit receipt.
  •  
45.
  • Boone, Sebastiaan C., et al. (author)
  • Evaluation of the Value of Waist Circumference and Metabolomics in the Estimation of Visceral Adipose Tissue
  • 2022
  • In: American Journal of Epidemiology. - : Oxford University Press (OUP). - 0002-9262 .- 1476-6256. ; 191:5, s. 886-899
  • Journal article (peer-reviewed)abstract
    • Visceral adipose tissue (VAT) is a strong prognostic factor for cardiovascular disease and a potential target for cardiovascular risk stratification. Because VAT is difficult to measure in clinical practice, we estimated prediction models with predictors routinely measured in general practice and VAT as outcome using ridge regression in 2,501 middle-aged participants from the Netherlands Epidemiology of Obesity study, 2008-2012. Adding waist circumference and other anthropometric measurements on top of the routinely measured variables improved the optimism-adjusted R-2 from 0.50 to 0.58 with a decrease in the root-mean-square error (RMSE) from 45.6 to 41.5 cm(2) and with overall good calibration. Further addition of predominantly lipoprotein-related metabolites from the Nightingale platform did not improve the optimism-corrected R-2 and RMSE. The models were externally validated in 370 participants from the Prospective Investigation of Vasculature in Uppsala Seniors (PIVUS, 2006-2009) and 1,901 participants from the Multi-Ethnic Study of Atherosclerosis (MESA, 2000-2007). Performance was comparable to the development setting in PIVUS (R-2 = 0.63, RMSE = 42.4 cm(2), calibration slope = 0.94) but lower in MESA (R-2 = 0.44, RMSE = 60.7 cm(2), calibration slope = 0.75). Our findings indicate that the estimation of VAT with routine clinical measurements can be substantially improved by incorporating waist circumference but not by metabolite measurements.
  •  
46.
  •  
47.
  • Hayden, Brian, et al. (author)
  • The HST See Change Program. I. Survey Design, Pipeline, and Supernova Discoveries
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 912:2
  • Journal article (peer-reviewed)abstract
    • The See Change survey was designed to make z > 1 cosmological measurements by efficiently discovering high-redshift Type Ia supernovae (SNe Ia) and improving cluster mass measurements through weak lensing. This survey observed twelve galaxy clusters with the Hubble Space Telescope (HST) spanning the redshift range z = 1.13-1.75, discovering 57 likely transients and 27 likely SNe Ia at z similar to 0.8-2.3. As in similar previous surveys, this proved to be a highly efficient use of HST for supernova observations; the See Change survey additionally tested the feasibility of maintaining, or further increasing, the efficiency at yet higher redshifts, where we have less detailed information on the expected cluster masses and star formation rates. We find that the resulting number of SNe Ia per orbit is a factor of similar to 8 higher than for a field search, and 45% of our orbits contained an active SN Ia within 22 rest-frame days of peak, with one of the clusters by itself yielding 6 of the SNe Ia. We present the survey design, pipeline, and supernova discoveries. Novel features include fully blinded supernova searches, the first random forest candidate classifier for undersampled IR data (with a 50% detection threshold within 0.05 mag of human searchers), real-time forward-modeling photometry of candidates, and semi-automated photometric classifications and follow-up forecasts. We also describe the spectroscopic follow-up, instrumental in measuring host galaxy redshifts. The cosmology analysis of our sample will be presented in a companion paper.
  •  
48.
  • Hlozek, R., et al. (author)
  • Results of the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC)
  • 2023
  • In: Astrophysical Journal Supplement Series. - 0067-0049 .- 1538-4365. ; 267:2
  • Journal article (peer-reviewed)abstract
    • Next-generation surveys like the Legacy Survey of Space and Time (LSST) on the Vera C. Rubin Observatory (Rubin) will generate orders of magnitude more discoveries of transients and variable stars than previous surveys. To prepare for this data deluge, we developed the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC), a competition that aimed to catalyze the development of robust classifiers under LSST-like conditions of a nonrepresentative training set for a large photometric test set of imbalanced classes. Over 1000 teams participated in PLAsTiCC, which was hosted in the Kaggle data science competition platform between 2018 September 28 and 2018 December 17, ultimately identifying three winners in 2019 February. Participants produced classifiers employing a diverse set of machine-learning techniques including hybrid combinations and ensemble averages of a range of approaches, among them boosted decision trees, neural networks, and multilayer perceptrons. The strong performance of the top three classifiers on Type Ia supernovae and kilonovae represent a major improvement over the current state of the art within astronomy. This paper summarizes the most promising methods and evaluates their results in detail, highlighting future directions both for classifier development and simulation needs for a next-generation PLAsTiCC data set.
  •  
49.
  • Jones, A., et al. (author)
  • Technical Note: A trace gas climatology derived from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) data set
  • 2012
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:11, s. 5207-5220
  • Journal article (peer-reviewed)abstract
    • The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) aboard the Canadian satellite SCISAT (launched in August 2003) was designed to investigate the composition of the upper troposphere, stratosphere, and mesosphere. ACE-FTS utilizes solar occultation to measure temperature and pressure as well as vertical profiles of over thirty chemical species including O-3, H2O, CH4, N2O, CO, NO, NO2, N2O5, HNO3, HCl, ClONO2, CCl3F, CCl2F2, and HF. Global coverage for each species is obtained approximately over a three month period and measurements are made with a vertical resolution of typically 3-4 km. A quality-controlled climatology has been created for each of these 14 baseline species, where individual profiles are averaged over the period of February 2004 to February 2009. Measurements used are from the ACE-FTS version 2.2 data set including updates for O-3 and N2O5. The climatological fields are provided on a monthly and three-monthly basis (DJF, MAM, JJA, SON) at 5 degree latitude and equivalent latitude spacing and on 28 pressure surfaces (26 of which are defined by the Stratospheric Processes And their Role in Climate (SPARC) Chemistry-Climate Model Validation Activity). The ACE-FTS climatological data set is available through the ACE website.
  •  
50.
  • Kasai, Y., et al. (author)
  • Validation of stratospheric and mesospheric ozone observed by SMILES from International Space Station
  • 2013
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 6:9, s. 2311-2338
  • Journal article (peer-reviewed)abstract
    • We observed ozone (O3) in the vertical region between 250 and 0.0005 hPa (~ 12–96 km) using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the Japanese Experiment Module (JEM) of the International Space Station (ISS) between 12 October 2009 and 21 April 2010. The new 4 K superconducting heterodyne receiver technology of SMILES allowed us to obtain a one order of magnitude better signal-to-noise ratio for the O3 line observation compared to past spaceborne microwave instruments. The non-sun-synchronous orbit of the ISS allowed us to observe O3 at various local times. We assessed the quality of the vertical profiles of O3 in the 100–0.001 hPa (~ 16–90 km) region for the SMILES NICT Level 2 product version 2.1.5. The evaluation is based on four components: error analysis; internal comparisons of observations targeting three different instrumental setups for the same O3 625.371 GHz transition; internal comparisons of two different retrieval algorithms; and external comparisons for various local times with ozonesonde, satellite and balloon observations (ENVISAT/MIPAS, SCISAT/ACE-FTS, Odin/OSIRIS, Odin/SMR, Aura/MLS, TELIS). SMILES O3 data have an estimated absolute accuracy of better than 0.3 ppmv (3%) with a vertical resolution of 3–4 km over the 60 to 8 hPa range. The random error for a single measurement is better than the estimated systematic error, being less than 1, 2, and 7%, in the 40–1, 80–0.1, and 100–0.004 hPa pressure regions, respectively. SMILES O3 abundance was 10–20% lower than all other satellite measurements at 8–0.1 hPa due to an error arising from uncertainties of the tangent point information and the gain calibration for the intensity of the spectrum. SMILES O3 from observation frequency Band-B had better accuracy than that from Band-A. A two month period is required to accumulate measurements covering 24 h in local time of O3 profile. However such a dataset can also contain variation due to dynamical, seasonal, and latitudinal effects
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 61
Type of publication
journal article (59)
research review (2)
Type of content
peer-reviewed (61)
Author/Editor
Walker, K. A. (19)
Bernath, P. F. (18)
Boone, C. D. (17)
Murtagh, Donal, 1959 (15)
Urban, Joachim, 1964 (14)
Boone, K. (11)
show more...
Rubin, D. (10)
Aldering, G. (10)
Perlmutter, S. (10)
Dupuy, E. (10)
Nordin, J (10)
Kowalski, M. (9)
Rigault, M. (9)
Pain, R. (9)
Saunders, C (9)
Höpfner, M. (9)
Runge, K. (8)
Antilogus, P. (8)
Smadja, G. (8)
Pereira, R (8)
Strong, K. (8)
Suzuki, N (8)
Tao, C. (8)
Taubenberger, S. (8)
Hillebrandt, W. (8)
Barbary, K. (8)
Bailey, S. (8)
Gangler, E. (8)
Fouchez, D (8)
Pecontal, E. (8)
Thomas, R. C. (8)
Copin, Y. (8)
Dixon, S (8)
Bongard, S. (8)
Rabinowitz, D. (8)
Baltay, C. (8)
Boone, C. (7)
McElroy, C. T. (7)
von Clarmann, T. (7)
Leget, P. -F (7)
Glatthor, N. (7)
Manney, G. L. (7)
Martin, S. (6)
Schneider, M. (6)
Chen, J. (6)
Mahieu, E. (6)
Froidevaux, L. (6)
Funke, B. (6)
Stiller, G. P. (6)
Kuesters, D. (6)
show less...
University
Chalmers University of Technology (27)
Stockholm University (15)
Karolinska Institutet (10)
Uppsala University (4)
Luleå University of Technology (4)
Lund University (4)
show more...
Umeå University (3)
Linköping University (3)
Swedish University of Agricultural Sciences (3)
University of Gothenburg (2)
Royal Institute of Technology (1)
show less...
Language
English (61)
Research subject (UKÄ/SCB)
Natural sciences (44)
Medical and Health Sciences (9)
Engineering and Technology (6)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view