SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boudon Vincent) "

Sökning: WFRF:(Boudon Vincent)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Albert, Damien, et al. (författare)
  • A Decade with VAMDC : Results and Ambitions
  • 2020
  • Ingår i: Atoms. - : MDPI. - 2218-2004. ; 8:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents an overview of the current status of the Virtual Atomic and Molecular Data Centre (VAMDC) e-infrastructure, including the current status of the VAMDC-connected (or to be connected) databases, updates on the latest technological development within the infrastructure and a presentation of some application tools that make use of the VAMDC e-infrastructure. We analyse the past 10 years of VAMDC development and operation, and assess their impact both on the field of atomic and molecular (A&M) physics itself and on heterogeneous data management in international cooperation. The highly sophisticated VAMDC infrastructure and the related databases developed over this long term make them a perfect resource of sustainable data for future applications in many fields of research. However, we also discuss the current limitations that prevent VAMDC from becoming the main publishing platform and the main source of A&M data for user communities, and present possible solutions under investigation by the consortium. Several user application examples are presented, illustrating the benefits of VAMDC in current research applications, which often need the A&M data from more than one database. Finally, we present our vision for the future of VAMDC.
  •  
2.
  • Germann, Matthias, et al. (författare)
  • A methane line list with sub-MHz accuracy in the 1250 to 1380 cm−1 range from optical frequency comb Fourier transform spectroscopy
  • 2022
  • Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer. - : Elsevier BV. - 0022-4073 .- 1879-1352. ; 288
  • Tidskriftsartikel (refereegranskat)abstract
    • We use a Fourier transform spectrometer based on a difference frequency generation optical frequency comb to measure high-resolution, low-pressure, room-temperature spectra of methane in the 1250 – 1380-cm−1 range. From these spectra, we retrieve line positions and intensities of 678 lines of two isotopologues: 157 lines from the 12CH4 ν4 fundamental band, 131 lines from the 13CH4 ν4 fundamental band, as well as 390 lines from two 12CH4 hot bands, ν2 + ν4 – ν2 and 2ν4 – ν4. For another 165 lines from the 12CH4 ν4 fundamental band we retrieve line positions only. The uncertainties of the line positions range from 0.19 to 2.3 MHz, and their median value is reduced by a factor of 18 and 59 compared to the previously available data for the 12CH4 fundamental and hot bands, respectively, obtained from conventional FTIR absorption measurements. The new line positions are included in the global models of the spectrum of both methane isotopologues, and the fit residuals are reduced by a factor of 8 compared to previous absorption data, and 20 compared to emission data. The experimental line intensities have relative uncertainties in the range of 1.5 – 7.7%, similar to those in the previously available data; 235 new 12CH4 line intensities are included in the global model.
  •  
3.
  • Germann, Matthias, et al. (författare)
  • An Accurate Methane Line List in the 7.2-8.0 µm Range from Comb-Based Fourier Transform Spectroscopy
  • 2022
  • Ingår i: CLEO: 2022. - : Optica Publishing Group. - 9781557528209
  • Konferensbidrag (refereegranskat)abstract
    • We use comb-based Fourier transform spectroscopy to record high-resolution spectra of 12CH4 and 13CH4 from 1250 to 1380 cm-1. We obtain line positions and intensities of 4 bands with uncertainties of ~450 kHz and ~3%, respectively, which we use to improve a global fit of the effective Hamiltonian.
  •  
4.
  •  
5.
  • Mazza, Francesco, et al. (författare)
  • The ro-vibrational ν2 mode spectrum of methane investigated by ultrabroadband coherent Raman spectroscopy
  • 2023
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 158:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first experimental application of coherent Raman spectroscopy (CRS) on the ro-vibrational ν2 mode spectrum of methane (CH4). Ultrabroadband femtosecond/picosecond (fs/ps) CRS is performed in the molecular fingerprint region from 1100 to 2000 cm−1, employing fs laser-induced filamentation as the supercontinuum generation mechanism to provide the ultrabroadband excitation pulses. We introduce a time-domain model of the CH4 ν2 CRS spectrum, including all five ro-vibrational branches allowed by the selection rules Δv = 1, ΔJ = 0, ±1, ±2; the model includes collisional linewidths, computed according to a modified exponential gap scaling law and validated experimentally. The use of ultrabroadband CRS for in situ monitoring of the CH4 chemistry is demonstrated in a laboratory CH4/air diffusion flame: CRS measurements in the fingerprint region, performed across the laminar flame front, allow the simultaneous detection of molecular oxygen (O2), carbon dioxide (CO2), and molecular hydrogen (H2), along with CH4. Fundamental physicochemical processes, such as H2 production via CH4 pyrolysis, are observed through the Raman spectra of these chemical species. In addition, we demonstrate ro-vibrational CH4 v2 CRS thermometry, and we validate it against CO2 CRS measurements. The present technique offers an interesting diagnostics approach to in situ measurement of CH4-rich environments, e.g., in plasma reactors for CH4 pyrolysis and H2 production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy