SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Boursier Jerome) "

Search: WFRF:(Boursier Jerome)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Boursier, Jerome, et al. (author)
  • Non-invasive tests accurately stratify patients with NAFLD based on their risk of liver-related events
  • 2022
  • In: Journal of Hepatology. - : ELSEVIER. - 0168-8278 .- 1600-0641. ; 76:5, s. 1013-1020
  • Journal article (peer-reviewed)abstract
    • Background & Aims: Previous studies on the prognostic significance of non-invasive liver fibrosis tests in non-alcoholic fatty liver disease (NAFLD) lack direct comparison to liver biopsy. We aimed to evaluate the prognostic accuracy of fibrosis-4 (FIB4) and vibration-controlled transient elastography (VCTE), compared to liver biopsy, for the prediction of liver-related events (LREs) in NAFLD. Methods: A total of 1,057 patients with NAFLD and baseline FIB4 and VCTE were included in a multicenter cohort. Of these patients, 594 also had a baseline liver biopsy. The main study outcome during follow-up was occurrence of LREs, a composite endpoint combining cirrhosis complications and/or hepatocellular carcinoma. Discriminative ability was evaluated using Harrells C-index. Results: FIB4 and VCTE showed good accuracy for the prediction of LREs, with Harrells C-indexes >0.80 (0.817 [0.768-0.866] vs. 0.878 [0.835-0.921], respectively, p = 0.059). In the biopsy subgroup, Harrells C-indexes of histological fibrosis staging and VCTE were not significantly different (0.932 [0.910-0.955] vs. 0.881 [0.832-0.931], respectively, p = 0.164), while both significantly outperformed FIB4 for the prediction of LREs. FIB4 and VCTE were independent predictors of LREs in the whole study cohort. The stepwise FIB4-VCTE algorithm accurately stratified the risk of LREs: compared to patients with "FIB4 <1.30", those with "FIB4 >- 1.30 then VCTE <8.0 kPa" had similar risk of LREs (adjusted hazard ratio [aHR] 1.3; 95% CI 0.3-6.8), whereas the risk of LREs significantly increased in patients with "FIB4 >1.30 then VCTE 8.0-12.0 kPa" (aHR 3.8; 95% CI 1.3-10.9), and even more for those with "FIB4 >-1.30 then VCTE >12.0 kPa" (aHR 12.4; 95% CI 5.1- 30.2). Conclusion: VCTE and FIB4 accurately stratify patients with NAFLD based on their risk of LREs. These non-invasive tests are alternatives to liver biopsy for the identification of patients in need of specialized management. Lay summary: The amount of fibrosis in the liver is closely associated with the risk of liver-related complications in nonalcoholic fatty liver disease (NAFLD). Liver biopsy currently remains the reference standard for the evaluation of fibrosis, but its application is limited by its invasiveness. Therefore, we evaluated the ability of non-invasive liver fibrosis tests to predict liver-related complications in NAFLD. Our results show that the blood test FIB4 and transient elastography stratify the risk of liver-related complications in NAFLD, and that transient elastography has similar prognostic accuracy as liver biopsy. These results support the use of non-invasive liver fibrosis tests instead of liver biopsy for the management of patients with NAFLD.(C) 2022 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
  •  
2.
  • Govaere, Olivier, et al. (author)
  • A proteo-transcriptomic map of non-alcoholic fatty liver disease signatures
  • 2023
  • In: Nature Metabolism. - : NATURE PORTFOLIO. - 2522-5812. ; 5:4, s. 572-578
  • Journal article (peer-reviewed)abstract
    • Govaere et al. integrate circulating protein data from more than 300 patients with non-alcoholic fatty liver disease (NAFLD) with transcriptomics and develop a non-invasive diagnostics tool to identify patients with at-risk NAFLD based on body mass index, type 2 diabetes status and four circulating proteins. Non-alcoholic fatty liver disease (NAFLD) is a common, progressive liver disease strongly associated with the metabolic syndrome. It is unclear how progression of NAFLD towards cirrhosis translates into systematic changes in circulating proteins. Here, we provide a detailed proteo-transcriptomic map of steatohepatitis and fibrosis during progressive NAFLD. In this multicentre proteomic study, we characterize 4,730 circulating proteins in 306 patients with histologically characterized NAFLD and integrate this with transcriptomic analysis in paired liver tissue. We identify circulating proteomic signatures for active steatohepatitis and advanced fibrosis, and correlate these with hepatic transcriptomics to develop a proteo-transcriptomic signature of 31 markers. Deconvolution of this signature by single-cell RNA sequencing reveals the hepatic cell types likely to contribute to proteomic changes with disease progression. As an exemplar of use as a non-invasive diagnostic, logistic regression establishes a composite model comprising four proteins (ADAMTSL2, AKR1B10, CFHR4 and TREM2), body mass index and type 2 diabetes mellitus status, to identify at-risk steatohepatitis.
  •  
3.
  • Govaere, Olivier, et al. (author)
  • Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis
  • 2020
  • In: Science Translational Medicine. - Washington, DC, United States : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 12:572
  • Journal article (peer-reviewed)abstract
    • The mechanisms that drive nonalcoholic fatty liver disease (NAFLD) remain incompletely understood. This large multicenter study characterized the transcriptional changes that occur in liver tissue across the NAFLD spectrum as disease progresses to cirrhosis to identify potential circulating markers. We performed high-throughput RNA sequencing on a discovery cohort comprising histologically characterized NAFLD samples from 206 patients. Unsupervised clustering stratified NAFLD on the basis of disease activity and fibrosis stage with differences in age, aspartate aminotransferase (AST), type 2 diabetes mellitus, and carriage of PNPLA3 rs738409, a genetic variant associated with NAFLD. Relative to early disease, we consistently identified 25 differentially expressed genes as fibrosing steatohepatitis progressed through stages F2 to F4. This 25-gene signature was independently validated by logistic modeling in a separate replication cohort (n = 175), and an integrative analysis with publicly available single-cell RNA sequencing data elucidated the likely relative contribution of specific intrahepatic cell populations. Translating these findings to the protein level, SomaScan analysis in more than 300 NAFLD serum samples confirmed that circulating concentrations of proteins AKR1B10 and GDF15 were strongly associated with disease activity and fibrosis stage. Supporting the biological plausibility of these data, in vitro functional studies determined that endoplasmic reticulum stress up-regulated expression of AKR1B10, GDF15, and PDGFA, whereas GDF15 supplementation tempered the inflammatory response in macrophages upon lipid loading and lipopolysaccharide stimulation. This study provides insights into the pathophysiology of progressive fibrosing steatohepatitis, and proof of principle that transcriptomic changes represent potentially tractable and clinically relevant markers of disease progression.
  •  
4.
  • Hardy, Timothy, et al. (author)
  • The European NAFLD Registry : A real-world longitudinal cohort study of nonalcoholic fatty liver disease
  • 2020
  • In: Contemporary Clinical Trials. - : Elsevier. - 1551-7144 .- 1559-2030. ; 98
  • Journal article (peer-reviewed)abstract
    • Non-Alcoholic Fatty Liver Disease (NAFLD), a progressive liver disease that is closely associated with obesity, type 2 diabetes, hypertension and dyslipidaemia, represents an increasing global public health challenge. There is significant variability in the disease course: the majority exhibit only fat accumulation in the liver but a significant minority develop a necroinflammatory form of the disease (non-alcoholic steatohepatitis, NASH) that may progress to cirrhosis and hepatocellular carcinoma. At present our understanding of pathogenesis, disease natural history and long-term outcomes remain incomplete. There is a need for large, well characterised patient cohorts that may be used to address these knowledge gaps and to support the development of better biomarkers and novel therapies. The European NAFLD Registry is an international, prospectively recruited observational cohort study that aims to establish a large, highly-phenotyped patient cohort and linked bioresource. Here we describe the infrastructure, data management and monitoring plans, and the standard operating procedures implemented to ensure the timely and systematic collection of high-quality data and samples. Already recruiting subjects at secondary/tertiary care centres across Europe, the Registry is supporting the European Union IMI2-funded LITMUS Liver Investigation: Testing Marker Utility in Steatohepatitis consortium, which is a major international effort to robustly validate biomarkers that diagnose, risk stratify and/or monitor NAFLD progression and liver fibrosis stage. The European NAFLD Registry has the demonstrable capacity to support research and biomarker development at scale and pace.
  •  
5.
  • Johnson, Katherine, et al. (author)
  • Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression : Diagnostic and mechanistic relevance
  • 2022
  • In: JHEP Reports. - : Elsevier. - 2589-5559. ; 4:2
  • Journal article (peer-reviewed)abstract
    • Background & Aims: Serum microRNA (miRNA) levels are known to change in non-alcoholic fatty liver disease (NAFLD) and may serve as useful biomarkers. This study aimed to profile miRNAs comprehensively at all NAFLD stages.Methods: We profiled 2,083 serum miRNAs in a discovery cohort (183 cases with NAFLD representing the complete NAFLD spectrum and 10 population controls). miRNA libraries generated by HTG EdgeSeq were sequenced by Illumina NextSeq. Selected serum miRNAs were profiled in 372 additional cases with NAFLD and 15 population controls by quantitative reverse transcriptase PCR.Results: Levels of 275 miRNAs differed between cases and population controls. Fewer differences were seen within individual NAFLD stages, but miR-193a-5p consistently showed increased levels in all comparisons. Relative to NAFL/non-alcoholic steatohepatitis (NASH) with mild fibrosis (stage 0/1), 3 miRNAs (miR-193a-5p, miR-378d, and miR378d) were increased in cases with NASH and clinically significant fibrosis (stages 2-4), 7 (miR193a-5p, miR-378d, miR-378e, miR-320b, miR-320c, miR-320d, and miR-320e) increased in cases with NAFLD activity score (NAS) 5-8 compared with lower NAS, and 3 (miR-193a-5p, miR-378d, and miR-378e) increased but 1 (miR-19b-3p) decreased in steatosis, activity, and fibrosis (SAF) activity score 2-4 compared with lower SAF activity. The significant findings for miR-193a-5p were replicated in the additional cohort with NAFLD. Studies in Hep G2 cells showed that following palmitic acid treatment, miR-193a-5p expression decreased significantly. Gene targets for miR-193a-5p were investigated in liver RNAseq data for a case subgroup (n = 80); liver GPX8 levels correlated positively with serum miR-193a-5p.Conclusions: Serum miR-193a-5p levels correlate strongly with NAFLD activity grade and fibrosis stage. MiR-193a-5p may have a role in the hepatic response to oxidative stress and is a potential clinically tractable circulating biomarker for progressive NAFLD.Lay summary: MicroRNAs (miRNAs) are small pieces of nucleic acid that may turn expression of genes on or off. These molecules can be detected in the blood circulation, and their levels in blood may change in liver disease including non-alcoholic fatty liver disease (NAFLD). To see if we could detect specific miRNA associated with advanced stages of NAFLD, we carried out miRNA sequencing in a group of 183 patients with NAFLD of varying severity together with 10 population controls. We found that a number of miRNAs showed changes, mainly increases, in serum levels but that 1 particular miRNA miR-193a-5p consistently increased. We confirmed this increase in a second group of cases with NAFLD. Measuring this miRNA in a blood sample may be a useful way to determine whether a patient has advanced NAFLD without an invasive liver biopsy.
  •  
6.
  • Lee, Jenny, et al. (author)
  • Machine learning algorithm improves the detection of NASH (NAS-based) and at-risk NASH: A development and validation study
  • 2023
  • In: Hepatology. - : LIPPINCOTT WILLIAMS & WILKINS. - 0270-9139 .- 1527-3350. ; 78:1, s. 258-271
  • Journal article (peer-reviewed)abstract
    • Background and Aims: Detecting NASH remains challenging, while at-risk NASH (steatohepatitis and F >= 2) tends to progress and is of interest for drug development and clinical application. We developed prediction models by supervised machine learning techniques, with clinical data and biomarkers to stage and grade patients with NAFLD. Approach and Results: Learning data were collected in the Liver Investigation: Testing Marker Utility in Steatohepatitis metacohort (966 biopsy-proven NAFLD adults), staged and graded according to NASH CRN. Conditions of interest were the clinical trial definition of NASH (NAS >= 4;53%), at-risk NASH (NASH with F >= 2;35%), significant (F >= 2;47%), and advanced fibrosis (F >= 3;28%). Thirty-five predictors were included. Missing data were handled by multiple imputations. Data were randomly split into training/validation (75/25) sets. A gradient boosting machine was applied to develop 2 models for each condition: clinical versus extended (clinical and biomarkers). Two variants of the NASH and at-risk NASH models were constructed: direct and composite models.Clinical gradient boosting machine models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72. There were no improvements when biomarkers were included. The direct NASH model produced AUCs (clinical/extended) of 0.61/0.65. The composite NASH model performed significantly better (0.71) for both variants. The composite at-risk NASH model had an AUC of 0.83 (clinical and extended), an improvement over the direct model. Significant fibrosis models had AUCs (clinical/extended) of 0.76/0.78. The extended advanced fibrosis model (0.86) performed significantly better than the clinical version (0.82). Conclusions: Detection of NASH and at-risk NASH can be improved by constructing independent machine learning models for each component, using only clinical predictors. Adding biomarkers only improved the accuracy of fibrosis.
  •  
7.
  • Mozes, Ferenc E., et al. (author)
  • Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty liver disease: an individual participant data meta-analysis
  • 2023
  • In: The Lancet Gastroenterology & Hepatology. - : ELSEVIER INC. - 2468-1253. ; 8:8, s. 704-713
  • Journal article (peer-reviewed)abstract
    • Background Histologically assessed liver fibrosis stage has prognostic significance in patients with non-alcoholic fatty liver disease (NAFLD) and is accepted as a surrogate endpoint in clinical trials for non-cirrhotic NAFLD. Our aim was to compare the prognostic performance of non-invasive tests with liver histology in patients with NAFLD. Methods This was an individual participant data meta-analysis of the prognostic performance of histologically assessed fibrosis stage (F0-4), liver stiffness measured by vibration-controlled transient elastography (LSM-VCTE), fibrosis-4 index (FIB-4), and NAFLD fibrosis score (NFS) in patients with NAFLD. The literature was searched for a previously published systematic review on the diagnostic accuracy of imaging and simple non-invasive tests and updated to Jan 12, 2022 for this study. Studies were identified through PubMed/MEDLINE, EMBASE, and CENTRAL, and authors were contacted for individual participant data, including outcome data, with a minimum of 12 months of follow-up. The primary outcome was a composite endpoint of all-cause mortality, hepatocellular carcinoma, liver transplantation, or cirrhosis complications (ie, ascites, variceal bleeding, hepatic encephalopathy, or progression to a MELD score >= 15). We calculated aggregated survival curves for trichotomised groups and compared them using stratified log-rank tests (histology: F0-2 vs F3 vs F4; LSM: <10 vs 10 to <20 vs >= 20 kPa; FIB-4: <1<middle dot>3 vs 1<middle dot>3 to <= 2<middle dot>67 vs >2<middle dot>67; NFS: <-1<middle dot>455 vs -1<middle dot>455 to <= 0<middle dot>676 vs >0<middle dot>676), calculated areas under the time-dependent receiver operating characteristic curves (tAUC), and performed Cox proportional-hazards regression to adjust for confounding. This study was registered with PROSPERO, CRD42022312226.Findings Of 65 eligible studies, we included data on 2518 patients with biopsy-proven NAFLD from 25 studies (1126 [44<middle dot>7%] were female, median age was 54 years [IQR 44-63), and 1161 [46<middle dot>1%] had type 2 diabetes). After a median follow-up of 57 months [IQR 33-91], the composite endpoint was observed in 145 (5<middle dot>8%) patients. Stratified log-rank tests showed significant differences between the trichotomised patient groups (p<0<middle dot>0001 for all comparisons). The tAUC at 5 years were 0<middle dot>72 (95% CI 0<middle dot>62-0<middle dot>81) for histology, 0<middle dot>76 (0<middle dot>70-0<middle dot>83) for LSM-VCTE, 0<middle dot>74 (0<middle dot>64-0<middle dot>82) for FIB-4, and 0<middle dot>70 (0<middle dot>63-0<middle dot>80) for NFS. All index tests were significant predictors of the primary outcome after adjustment for confounders in the Cox regression.Interpretation Simple non-invasive tests performed as well as histologically assessed fibrosis in predicting clinical outcomes in patients with NAFLD and could be considered as alternatives to liver biopsy in some cases.
  •  
8.
  • Pavlides, Michael, et al. (author)
  • Liver investigation: Testing marker utility in steatohepatitis (LITMUS): Assessment & validation of imaging modality performance across the NAFLD spectrum in a prospectively recruited cohort study (the LITMUS imaging study): Study protocol
  • 2023
  • In: Contemporary Clinical Trials. - : ELSEVIER SCIENCE INC. - 1551-7144 .- 1559-2030. ; 134
  • Journal article (peer-reviewed)abstract
    • Non-alcoholic fatty liver disease (NAFLD) is the liver manifestation of the metabolic syndrome with global prevalence reaching epidemic levels. Despite the high disease burden in the population only a small proportion of those with NAFLD will develop progressive liver disease, for which there is currently no approved pharmacotherapy. Identifying those who are at risk of progressive NAFLD currently requires a liver biopsy which is problematic. Firstly, liver biopsy is invasive and therefore not appropriate for use in a condition like NAFLD that affects a large proportion of the population. Secondly, biopsy is limited by sampling and observer dependent variability which can lead to misclassification of disease severity. Non-invasive biomarkers are therefore needed to replace liver biopsy in the assessment of NAFLD. Our study addresses this unmet need. The LITMUS Imaging Study is a prospectively recruited multi-centre cohort study evaluating magnetic resonance imaging and elastography, and ultrasound elastography against liver histology as the reference standard. Imaging biomarkers and biopsy are acquired within a 100-day window. The study employs standardised processes for imaging data collection and analysis as well as a real time central monitoring and quality control process for all the data submitted for analysis. It is anticipated that the high-quality data generated from this study will underpin changes in clinical practice for the benefit of people with NAFLD. Study Registration: clinicaltrials.gov: NCT05479721
  •  
9.
  • Vali, Yasaman, et al. (author)
  • Biomarkers for staging fibrosis and non-alcoholic steatohepatitis in non-alcoholic fatty liver disease (the LITMUS project) : a comparative diagnostic accuracy study
  • 2023
  • In: The Lancet Gastroenterology & Hepatology. - : Elsevier Ltd. - 2468-1253. ; 8:8, s. 714-725
  • Journal article (peer-reviewed)abstract
    • Background: The reference standard for detecting non-alcoholic steatohepatitis (NASH) and staging fibrosis—liver biopsy—is invasive and resource intensive. Non-invasive biomarkers are urgently needed, but few studies have compared these biomarkers in a single cohort. As part of the Liver Investigation: Testing Marker Utility in Steatohepatitis (LITMUS) project, we aimed to evaluate the diagnostic accuracy of 17 biomarkers and multimarker scores in detecting NASH and clinically significant fibrosis in patients with non-alcoholic fatty liver disease (NAFLD) and identify their optimal cutoffs as screening tests in clinical trial recruitment. Methods: This was a comparative diagnostic accuracy study in people with biopsy-confirmed NAFLD from 13 countries across Europe, recruited between Jan 6, 2010, and Dec 29, 2017, from the LITMUS metacohort of the prospective European NAFLD Registry. Adults (aged ≥18 years) with paired liver biopsy and serum samples were eligible; those with excessive alcohol consumption or evidence of other chronic liver diseases were excluded. The diagnostic accuracy of the biomarkers was expressed as the area under the receiver operating characteristic curve (AUC) with liver histology as the reference standard and compared with the Fibrosis-4 index for liver fibrosis (FIB-4) in the same subgroup. Target conditions were the presence of NASH with clinically significant fibrosis (ie, at-risk NASH; NAFLD Activity Score ≥4 and F≥2) or the presence of advanced fibrosis (F≥3), analysed in all participants with complete data. We identified thres holds for each biomarker for reducing the number of biopsy-based screen failures when recruiting people with both NASH and clinically significant fibrosis for future trials. Findings: Of 1430 participants with NAFLD in the LITMUS metacohort with serum samples, 966 (403 women and 563 men) were included after all exclusion criteria had been applied. 335 (35%) of 966 participants had biopsy-confirmed NASH and clinically significant fibrosis and 271 (28%) had advanced fibrosis. For people with NASH and clinically significant fibrosis, no single biomarker or multimarker score significantly reached the predefined AUC 0·80 acceptability threshold (AUCs ranging from 0·61 [95% CI 0·54–0·67] for FibroScan controlled attenuation parameter to 0·81 [0·75–0·86] for SomaSignal), with accuracy mostly similar to FIB-4. Regarding detection of advanced fibrosis, SomaSignal (AUC 0·90 [95% CI 0·86–0·94]), ADAPT (0·85 [0·81–0·89]), and FibroScan liver stiffness measurement (0·83 [0·80–0·86]) reached acceptable accuracy. With 11 of 17 markers, histological screen failure rates could be reduced to 33% in trials if only people who were marker positive had a biopsy for evaluating eligibility. The best screening performance for NASH and clinically significant fibrosis was observed for SomaSignal (number needed to test [NNT] to find one true positive was four [95% CI 4–5]), then ADAPT (six [5–7]), MACK-3 (seven [6–8]), and PRO-C3 (nine [7–11]). Interpretation: None of the single markers or multimarker scores achieved the predefined acceptable AUC for replacing biopsy in detecting people with both NASH and clinically significant fibrosis. However, several biomarkers could be applied in a prescreening strategy in clinical trial recruitment. The performance of promising markers will be further evaluated in the ongoing prospective LITMUS study cohort. Funding: The Innovative Medicines Initiative 2 Joint Undertaking. © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
  •  
10.
  • Vali, Yasaman, et al. (author)
  • Enhanced liver fibrosis test for the non-invasive diagnosis of fibrosis in patients with NAFLD : A systematic review and meta-analysis
  • 2020
  • In: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 73:2, s. 252-262
  • Research review (peer-reviewed)abstract
    • BACKGROUND AND AIMS: The Enhanced Liver Fibrosis (ELF) test is a non-invasive biomarker, suggested as an appropriate test for advanced liver fibrosis in non-alcoholic fatty liver disease (NAFLD). This systematic review aimed to provide summary estimates of the accuracy of this test against biopsy.METHODS: In this systematic review, we searched MEDLINE, Embase, Web of Science and the Cochrane Library, for studies included NAFLD patients and undertook both liver biopsy as the reference standard and the ELF test. Two authors independently screened the references, extracted the data and assessed the quality of included studies. Due to the variation in reported thresholds, we used a multiple thresholds random effects model for meta-analysis (diagmeta R-package).RESULTS: The meta-analysis of 11 studies reporting advanced fibrosis and five studies reporting significant fibrosis showed sensitivity of >0.90 of the ELF test for excluding fibrosis at threshold of 7.7. However, as a diagnostic test at high thresholds, the test showed specificity and positive predictive value >0.80, only in very high-prevalence settings (>50%). Desiring specificity of 0.90 for advanced and significant fibrosis resulted in thresholds of 10.18 (sensitivity: 0.57) and 9.86 (sensitivity: 0.55), respectively.CONCLUSION: The ELF test showed high sensitivity but limited specificity to exclude advanced and significant fibrosis at low cutoffs. The diagnostic performance of the test at higher thresholds was found to be more limited in low prevalence settings. We conclude that clinicians should carefully consider the likely disease prevalence in their practice setting and adopt suitable test thresholds to achieve the desired test performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view