SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Braconnot P.) "

Sökning: WFRF:(Braconnot P.)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brierley, Chris M., et al. (författare)
  • Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:5, s. 1847-1872
  • Tidskriftsartikel (refereegranskat)abstract
    • The mid-Holocene (6000 years ago) is a standard time period for the evaluation of the simulated response of global climate models using palaeoclimate reconstructions. The latest mid-Holocene simulations are a palaeoclimate entry card for the Palaeoclimate Model Intercomparison Project (PMIP4) component of the current phase of the Coupled Model Intercomparison Project (CMIP6) - hereafter referred to as PMIP4-CMIP6. Here we provide an initial analysis and evaluation of the results of the experiment for the mid-Holocene. We show that state-of-the-art models produce climate changes that are broadly consistent with theory and observations, including increased summer warming of the Northern Hemisphere and associated shifts in tropical rainfall. Many features of the PMIP4-CMIP6 simulations were present in the previous generation (PMIP3-CMIP5) of simulations. The PMIP4-CMIP6 ensemble for the mid-Holocene has a global mean temperature change of -0.3 K, which is -0.2K cooler than the PMIP3-CMIP5 simulations predominantly as a result of the prescription of realistic greenhouse gas concentrations in PMIP4-CMIP6. Biases in the magnitude and the sign of regional responses identified in PMIP3-CMIP5, such as the amplification of the northern African monsoon, precipitation changes over Europe, and simulated aridity in mid-Eurasia, are still present in the PMIP4-CMIP6 simulations. Despite these issues, PMIP4-CMIP6 and the mid-Holocene provide an opportunity both for quantitative evaluation and derivation of emergent constraints on the hydrological cycle, feedback strength, and potentially climate sensitivity.
  •  
2.
  • Sherwood, S. C., et al. (författare)
  • An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence
  • 2020
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 58:4
  • Forskningsöversikt (refereegranskat)abstract
    • We assess evidence relevant to Earth's equilibrium climate sensitivity per doubling of atmospheric CO2, characterized by an effective sensitivity S. This evidence includes feedback process understanding, the historical climate record, and the paleoclimate record. An S value lower than 2 K is difficult to reconcile with any of the three lines of evidence. The amount of cooling during the Last Glacial Maximum provides strong evidence against values of S greater than 4.5 K. Other lines of evidence in combination also show that this is relatively unlikely. We use a Bayesian approach to produce a probability density function (PDF) for S given all the evidence, including tests of robustness to difficult-to-quantify uncertainties and different priors. The 66% range is 2.6-3.9 K for our Baseline calculation and remains within 2.3-4.5 K under the robustness tests; corresponding 5-95% ranges are 2.3-4.7 K, bounded by 2.0-5.7 K (although such high-confidence ranges should be regarded more cautiously). This indicates a stronger constraint on S than reported in past assessments, by lifting the low end of the range. This narrowing occurs because the three lines of evidence agree and are judged to be largely independent and because of greater confidence in understanding feedback processes and in combining evidence. We identify promising avenues for further narrowing the range in S, in particular using comprehensive models and process understanding to address limitations in the traditional forcing-feedback paradigm for interpreting past changes.
  •  
3.
  • Harrison, Sandy P., et al. (författare)
  • Development and testing scenarios for implementing land use and land cover changes during the Holocene in Earth system model experiments
  • 2020
  • Ingår i: Geoscientific Model Development. - : Copernicus Gesellschaft MBH. - 1991-959X .- 1991-9603. ; 13:2, s. 805-824
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic changes in land use and land cover (LULC) during the pre-industrial Holocene could have affected regional and global climate. Existing scenarios of LULC changes during the Holocene are based on relatively simple assumptions and highly uncertain estimates of population changes through time. Archaeological and palaeoenvironmental reconstructions have the potential to refine these assumptions and estimates. The Past Global Changes (PAGES) LandCover6k initiative is working towards improved reconstructions of LULC globally. In this paper, we document the types of archaeological data that are being collated and how they will be used to improve LULC reconstructions. Given the large methodological uncertainties involved, both in reconstructing LULC from the archaeological data and in implementing these reconstructions into global scenarios of LULC, we propose a protocol to evaluate the revised scenarios using independent pollen-based reconstructions of land cover and climate. Further evaluation of the revised scenarios involves carbon cycle model simulations to determine whether the LULC reconstructions are consistent with constraints provided by ice core records of CO2 evolution and modern-day LULC. Finally, the protocol outlines how the improved LULC reconstructions will be used in palaeoclimate simulations in the Palaeoclimate Modelling Intercomparison Project to quantify the magnitude of anthropogenic impacts on climate through time and ultimately to improve the realism of Holocene climate simulations.
  •  
4.
  • Jungclaus, Johann H., et al. (författare)
  • The PMIP4 contribution to CMIP6 - Part 3 : The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:11, s. 4005-4033
  • Tidskriftsartikel (refereegranskat)abstract
    • The pre-industrial millennium is among the periods selected by the Paleoclimate Model Intercomparison Project (PMIP) for experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and the fourth phase of the PMIP (PMIP4). The past1000 transient simulations serve to investigate the response to (mainly) natural forcing under background conditions not too different from today, and to discriminate between forced and internally generated variability on interannual to centennial timescales. This paper describes the motivation and the experimental set-ups for the PMIP4-CMIP6 past1000 simulations, and discusses the forcing agents orbital, solar, volcanic, and land use/land cover changes, and variations in greenhouse gas concentrations. The past1000 simulations covering the pre-industrial millennium from 850 Common Era (CE) to 1849 CE have to be complemented by historical simulations (1850 to 2014 CE) following the CMIP6 protocol. The external forcings for the past1000 experiments have been adapted to provide a seamless transition across these time periods. Protocols for the past1000 simulations have been divided into three tiers. A default forcing data set has been defined for the Tier 1 (the CMIP6 past1000) experiment. However, the PMIP community has maintained the flexibility to conduct coordinated sensitivity experiments to explore uncertainty in forcing reconstructions as well as parameter uncertainty in dedicated Tier 2 simulations. Additional experiments (Tier 3) are defined to foster collaborative model experiments focusing on the early instrumental period and to extend the temporal range and the scope of the simulations. This paper outlines current and future research foci and common analyses for collaborative work between the PMIP and the observational communities (reconstructions, instrumental data).
  •  
5.
  • Kageyama, Masa, et al. (författare)
  • The PMIP4 contribution to CMIP6-Part 1 : Overview and over-arching analysis plan
  • 2018
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 11:3, s. 1033-1057
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper is the first of a series of four GMD papers on the PMIP4-CMIP6 experiments. Part 2 (OttoBliesner et al., 2017) gives details about the two PMIP4-CMIP6 interglacial experiments, Part 3 (Jungclaus et al., 2017) about the last millennium experiment, and Part 4 (Kageyama et al., 2017) about the Last Glacial Maximum experiment. The mid-Pliocene Warm Period experiment is part of the Pliocene Model Intercomparison Project (PlioMIP) Phase 2, detailed in Haywood et al. (2016). The goal of the Paleoclimate Modelling Intercomparison Project (PMIP) is to understand the response of the climate system to different climate forcings for documented climatic states very different from the present and historical climates. Through comparison with observations of the environmental impact of these climate changes, or with climate reconstructions based on physical, chemical, or biological records, PMIP also addresses the issue of how well state-of-the-art numerical models simulate climate change. Climate models are usually developed using the present and historical climates as references, but climate projections show that future climates will lie well outside these conditions. Palaeoclimates very different from these reference states therefore provide stringent tests for state-of-the-art models and a way to assess whether their sensitivity to forcings is compatible with palaeoclimatic evidence. Simulations of five different periods have been designed to address the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6): the millennium prior to the industrial epoch (CMIP6 name: past1000); the mid-Holocene, 6000 years ago (midHolocene); the Last Glacial Maximum, 21 000 years ago (lgm); the Last Interglacial, 127 000 years ago (lig127k); and the mid-Pliocene Warm Period, 3.2 million years ago (midPliocene-eoi400). These climatic periods are well documented by palaeoclimatic and palaeoenvironmental records, with climate and environmental changes relevant for the study and projection of future climate changes. This paper describes the motivation for the choice of these periods and the design of the numerical experiments and database requests, with a focus on their novel features compared to the experiments performed in previous phases of PMIP and CMIP. It also outlines the analysis plan that takes advantage of the comparisons of the results across periods and across CMIP6 in collaboration with other MIPs.
  •  
6.
  • Kageyama, Masa, et al. (författare)
  • The PMIP4 contribution to CMIP6-Part 4 : Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:11, s. 4035-4055
  • Tidskriftsartikel (refereegranskat)abstract
    • The Last Glacial Maximum (LGM, 21 000 years ago) is one of the suite of paleoclimate simulations included in the current phase of the Coupled Model Intercomparison Project (CMIP6). It is an interval when insolation was similar to the present, but global ice volume was at a maximum, eustatic sea level was at or close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. The LGM has been a focus for the Paleoclimate Modelling Intercomparison Project (PMIP) since its inception, and thus many of the problems that might be associated with simulating such a radically different climate are well documented. The LGM state provides an ideal case study for evaluating climate model performance because the changes in forcing and temperature between the LGM and pre-industrial are of the same order of magnitude as those projected for the end of the 21st century. Thus, the CMIP6 LGM experiment could provide additional information that can be used to constrain estimates of climate sensitivity. The design of the Tier 1 LGM experiment (lgm) includes an assessment of uncertainties in boundary conditions, in particular through the use of different reconstructions of the ice sheets and of the change in dust forcing. Additional (Tier 2) sensitivity experiments have been designed to quantify feedbacks associated with land-surface changes and aerosol loadings, and to isolate the role of individual forcings. Model analysis and evaluation will capitalize on the relative abundance of paleoenvironmental observations and quantitative climate reconstructions already available for the LGM.
  •  
7.
  • Masson-Delmotte, V., et al. (författare)
  • Sensitivity of interglacial Greenland temperature and δ 18O : Ice core data, orbital and increased CO 2 climate simulations
  • 2011
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 7:3, s. 1041-1059
  • Tidskriftsartikel (refereegranskat)abstract
    • The sensitivity of interglacial Greenland temperature to orbital and CO 2 forcing is investigated using the NorthGRIP ice core data and coupled ocean-atmosphere IPSL-CM4 model simulations. These simulations were conducted in response to different interglacial orbital configurations, and to increased CO 2 concentrations. These different forcings cause very distinct simulated seasonal and latitudinal temperature and water cycle changes, limiting the analogies between the last interglacial and future climate. However, the IPSL-CM4 model shows similar magnitudes of Arctic summer warming and climate feedbacks in response to 2 × CO 2 and orbital forcing of the last interglacial period (126 000 years ago). The IPSL-CM4 model produces a remarkably linear relationship between TOA incoming summer solar radiation and simulated changes in summer and annual mean central Greenland temperature. This contrasts with the stable isotope record from the Greenland ice cores, showing a multi-millennial lagged response to summer insolation. During the early part of interglacials, the observed lags may be explained by ice sheet-ocean feedbacks linked with changes in ice sheet elevation and the impact of meltwater on ocean circulation, as investigated with sensitivity studies. A quantitative comparison between ice core data and climate simulations requires stability of the stable isotope - temperature relationship to be explored. Atmospheric simulations including water stable isotopes have been conducted with the LMDZiso model under different boundary conditions. This set of simulations allows calculation of a temporal Greenland isotope-temperature slope (0.3-0.4% per °C) during warmer-than-present Arctic climates, in response to increased CO 2, increased ocean temperature and orbital forcing. This temporal slope appears half as large as the modern spatial gradient and is consistent with other ice core estimates. It may, however, be model-dependent, as indicated by preliminary comparison with other models. This suggests that further simulations and detailed inter-model comparisons are also likely to be of benefit. Comparisons with Greenland ice core stable isotope data reveals that IPSL-CM4/LMDZiso simulations strongly underestimate the amplitude of the ice core signal during the last interglacial, which could reach +8-10 °C at fixed-elevation. While the model-data mismatch may result from missing positive feedbacks (e.g. vegetation), it could also be explained by a reduced elevation of the central Greenland ice sheet surface by 300-400 m.
  •  
8.
  • Otto-Bliesner, Bette L., et al. (författare)
  • The PMIP4 contribution to CMIP6-Part 2 : Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:11, s. 3979-4003
  • Tidskriftsartikel (refereegranskat)abstract
    • Two interglacial epochs are included in the suite of Paleoclimate Modeling Intercomparison Project (PMIP4) simulations in the Coupled Model Intercomparison Project (CMIP6). The experimental protocols for simulations of the mid-Holocene (midHolocene, 6000 years before present) and the Last Interglacial (lig127k, 127 000 years before present) are described here. These equilibrium simulations are designed to examine the impact of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the preindustrial period and the continental configurations were almost identical to modern ones. These simulations test our understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among large-scale and regional climate changes giving rise to phenomena such as land-sea contrast and high-latitude amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an opportunity, through carefully designed additional sensitivity experiments, to quantify the strength of atmosphere, ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic evaluation of model performance, and such comparisons will shed new light on the importance of external feedbacks (e.g., vegetation, dust) and the ability of state-of-the-art models to simulate climate changes realistically.
  •  
9.
  • Schmidt, G. A., et al. (författare)
  • Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0)
  • 2011
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 4:1, s. 33-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulations of climate over the Last Millennium (850-1850 CE) have been incorporated into the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). The drivers of climate over this period are chiefly orbital, solar, volcanic, changes in land use/land cover and some variation in greenhouse gas levels. While some of these effects can be easily defined, the reconstructions of solar, volcanic and land use-related forcing are more uncertain. We describe here the approach taken in defining the scenarios used in PMIP3, document the forcing reconstructions and discuss likely implications.
  •  
10.
  • Schmidt, G. A., et al. (författare)
  • Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0)
  • 2010
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X. ; 3:3, s. 1549-1586
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulations of climate over the Last Millennium (850-1850 CE) have been incorporated into the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). The drivers of climate over this period are chiefly orbital, solar, volcanic, changes in land use/land cover and some variation in greenhouse gas levels. While some of these effects can be easily defined, the reconstructions of solar, volcanic and land use-related forcing are more uncertain. We describe here the approach taken in defining the scenarios used in PMIP3, document the forcing reconstructions and discuss likely implications.
  •  
11.
  • Schmidt, G. A., et al. (författare)
  • Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1)
  • 2012
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 5:1, s. 185-191
  • Tidskriftsartikel (refereegranskat)abstract
    • We update the forcings for the PMIP3 experiments for the Last Millennium to include new assessments of historical land use changes and discuss new suggestions for calibrating solar activity proxies to total solar irradiance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy