SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Braicovich Lucio) "

Sökning: WFRF:(Braicovich Lucio)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arpaia, Riccardo, 1985, et al. (författare)
  • Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high-Tc superconductor
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 365:6456, s. 906-910
  • Tidskriftsartikel (refereegranskat)abstract
    • Charge density modulations have been observed in all families of high–critical temperature (Tc) superconducting cuprates. Although they are consistently found in the underdoped region of the phase diagram and at relatively low temperatures, it is still unclear to what extent they influence the unusual properties of these systems. Using resonant x-ray scattering, we carefully determined the temperature dependence of charge density modulations in YBa2Cu3O7–d and Nd1+xBa2–xCu3O7–d for several doping levels. We isolated short-range dynamical charge density fluctuations in addition to the previously known quasi-critical charge density waves. They persist up to well above the pseudogap temperature T*, are characterized by energies of a few milli–electron volts, and pervade a large area of the phase diagram.
  •  
2.
  • Arpaia, Riccardo, 1985, et al. (författare)
  • Signature of quantum criticality in cuprates by charge density fluctuations
  • 2023
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that the recently discovered charge density fluctuations (CDF) possess the right properties to be associated to a quantum phase transition. Using resonant x-ray scattering, we studied the CDF in two families of cuprate superconductors across a wide doping range (up to p = 0.22). At p* ≈ 0.19, the putative QCP, the CDF intensity peaks, and the characteristic energy Δ is minimum, marking a wedge-shaped region in the phase diagram indicative of a quantum critical behavior, albeit with anomalies. These findings strengthen the role of charge order in explaining strange metal phenomenology and provide insights into high-temperature superconductivity.
  •  
3.
  • Braicovich, Lucio, et al. (författare)
  • Determining the electron-phonon coupling in superconducting cuprates by resonant inelastic x-ray scattering: Methods and results on Nd1+xBa2-xCu3O7-δ
  • 2020
  • Ingår i: Physical Review Research. - 2643-1564. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The coupling between lattice vibration quanta and valence electrons can induce charge-density modulations and decisively influence the transport properties of materials, e.g., leading to conventional superconductivity. In high-critical-temperature superconductors, where electronic correlation is the main actor, the actual role of electron-phonon coupling (EPC) is being intensely debated theoretically and investigated experimentally. We present an in-depth study of how the EPC strength can be obtained directly from resonant inelastic x-ray scattering (RIXS) data through the theoretical approach derived by Ament et al. [Europhys. Lett. 95, 27008 (2011)]. The role of the model parameters (e.g., phonon energy ω0, intermediate state lifetime 1/Γ, EPC matrix element M, and detuning energy Ω) is thoroughly analyzed, providing general relations among them that can be used to make quantitative estimates of the dimensionless EPC g=(M/ω0)2 without detailed microscopic modeling. We then apply these methods to very high-resolution Cu L3-edge RIXS spectra of three Nd1+xBa2−xCu3O7−δ films. For the insulating antiferromagnetic parent compound, the value of M as a function of the in-plane momentum transfer is obtained for Cu-O bond-stretching (breathing) and bond-bending (buckling) phonon branches. For the underdoped and the nearly optimally doped samples, the effects of Coulomb screening and of charge-density-wave correlations on M are assessed. In light of the anticipated further improvements of the RIXS experimental resolution, this work provides a solid framework for an exhaustive investigation of the EPC in cuprates and other quantum materials.
  •  
4.
  • Lu, Haiyu, et al. (författare)
  • Identification of a characteristic doping for charge order phenomena in Bi-2212 cuprates via RIXS
  • 2022
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 106:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying quantum critical points (QCPs) and their associated fluctuations may hold the key to unraveling the unusual electronic phenomena observed in cuprate superconductors. Recently, signatures of quantum fluctuations associated with charge order (CO) have been inferred from the anomalous enhancement of CO excitations that accompany the reduction of the CO order parameter in the superconducting state. To gain more insight into the interplay between CO and superconductivity, here we investigate the doping dependence of this phenomenon throughout the Bi-2212 cuprate phase diagram using resonant inelastic x-ray scattering (RIXS) at the Cu L3 edge. As doping increases, the CO wave vector decreases, saturating near a commensurate value of 0.25 reciprocal lattice unit beyond a characteristic doping pc, where the correlation length becomes shorter than the apparent periodicity (4a0). Such behavior is indicative of the fluctuating nature of the CO; the proliferation of CO excitations in the superconducting state also appears strongest at pc, consistent with expected behavior at a CO QCP. Intriguingly, pc appears to be near optimal doping, where the superconducting transition temperature Tc is maximal.
  •  
5.
  • Martinelli, L., et al. (författare)
  • Collective Nature of Orbital Excitations in Layered Cuprates in the Absence of Apical Oxygens
  • 2024
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 132:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the 3d orbital excitations in CaCuO2 (CCO), Nd2CuO4 (NCO), and La2CuO4 (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the dxy orbital clearly disperses, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen. We ascribe the origin of the dispersion as stemming from a substantial next-nearest-neighbor (NNN) orbital superexchange. Such an exchange leads to the liberation of the orbiton from its coupling to magnons, which is associated with the orbiton hopping between nearest neighbor copper sites. Finally, we show that the exceptionally large NNN orbital superexchange can be traced back to the absence of apical oxygens suppressing the charge transfer energy.
  •  
6.
  • Martinelli, Leonardo, et al. (författare)
  • Fractional Spin Excitations in the Infinite-Layer Cuprate CaCuO2
  • 2022
  • Ingår i: Physical Review X. - 2160-3308. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We use resonant inelastic x-ray scattering (RIXS) to investigate the magnetic dynamics of the infinite-layer cuprate CaCuO2. We find that close to the (1/2,0) point, the single magnon decays into a broad continuum of excitations accounting for about 80% of the total magnetic spectral weight. Polarization-resolved RIXS spectra reveal the overwhelming dominance of the spin-flip (Delta S = 1) character of this continuum with respect to the Delta S = 0 multimagnon contributions. Moreover, its incident-energy dependence is identical to that of the magnon, supporting a common physical origin. We propose that the continuum originates from the decay of the magnon into spinon pairs, and we relate it to the exceptionally high ring exchange J(c) similar to J(1) of CaCuO2. In the infinite-layer cuprates, long-range and multisite hopping integrals are very important, and they amplify the 2D quantum magnetism effects in spite of the 3D antiferromagnetic Neel order.
  •  
7.
  • Merzoni, Giacomo, et al. (författare)
  • Charge response function probed by resonant inelastic x-ray scattering: Signature of electronic gaps of YBa2Cu3O7-δ
  • 2024
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 109:18
  • Tidskriftsartikel (refereegranskat)abstract
    • In strongly correlated systems, the complete determination of the dynamical susceptibility χ(q,ω) is of special relevance because of the entwinement of the spin and charge components. Although resonant inelastic x-ray scattering (RIXS) spectra are directly related to both the charge [χc′′(q,ω)] and the spin [χs′′(q,ω)] contributions, only the latter has been extensively studied with RIXS so far. Here we show how to extract from RIXS spectra of high-Tc superconducting cuprates relevant properties of χc′′, such as the presence of the superconducting gap and of the pseudogap. In particular, we exploit the temperature dependence of the Cu L3 edge RIXS spectra of underdoped YBa2Cu3O7-δ at specific wave vectors q. The signature of the two gaps is given by the departure of the low-energy excitation continuum from the Bosonic thermal evolution. This approach can be immediately used to investigate systematically the nature of the pseudogap in cuprates, thereby taking advantage of the RIXS technique that does not suffer the limitations of surface-sensitive electron spectroscopies. Its extension to other interesting materials is foreseen.
  •  
8.
  • Peng, Y. Y., et al. (författare)
  • Doping dependence of the electron-phonon coupling in two families of bilayer superconducting cuprates
  • 2022
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 105:11
  • Tidskriftsartikel (refereegranskat)abstract
    • While electron-phonon coupling (EPC) is crucial for Cooper pairing in conventional superconductors, its role in high-Tc superconducting cuprates is debated. Using resonant inelastic x-ray scattering at the oxygen K edge, we study the EPC in Bi2Sr2CaCu2O8+δ (Bi2212) and Nd1+xBa2-xCu3O7-δ (NBCO) at different doping levels ranging from heavily underdoped (p=0.07) to overdoped (p=0.21). We analyze the data with a localized Lang-Firsov model that allows for the coherent excitations of two phonon modes. While electronic band dispersion effects are non-negligible, we are able to perform a study of the relative values of EPC matrix elements in these cuprate families. In the case of NBCO, the choice of the excitation energy allows us to disentangle modes related to the CuO chains and the CuO2 planes. Combining the results from the two families, we find the EPC strength decreases with doping at q∥=(-0.25,0) r.l.u., but has a nonmonotonic trend as a function of doping at smaller momenta. This behavior is attributed to the screening effect of charge carriers. We also find that the phonon intensity is enhanced in the vicinity of the charge-density-wave excitations while the extracted EPC strength appears to be less sensitive to their proximity. By performing a comparative study of two cuprate families, we are able to identify general trends in the EPC for the cuprates and provide experimental input to theories invoking a synergistic role for this interaction in d-wave pairing.
  •  
9.
  • Rossi, Matteo, et al. (författare)
  • Experimental Determination of Momentum-Resolved Electron-Phonon Coupling
  • 2019
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 123:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorption resonance. We apply it to the cuprate parent compound NdBa2Cu3O6 and find that the electronic coupling to the oxygen half-breathing phonon branch is strongest at the Brillouin zone boundary, where it amounts to ∼0.17 eV, in agreement with previous studies. In principle, this method is applicable to any absorption resonance suitable for RIXS measurements and will help to define the contribution of lattice vibrations to the peculiar properties of quantum materials.
  •  
10.
  • Seibold, Goetz, et al. (författare)
  • Strange metal behaviour from charge density fluctuations in cuprates
  • 2021
  • Ingår i: Communications Physics. - : Springer Science and Business Media LLC. - 2399-3650. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Besides the mechanism responsible for high critical temperature superconductivity, the grand unresolved issue of the cuprates is the occurrence of a strange metallic state above the so-called pseudogap temperature T-*. Even though such state has been successfully described within a phenomenological scheme, the so-called Marginal Fermi-Liquid theory, a microscopic explanation is still missing. However, recent resonant X-ray scattering experiments identified a new class of charge density fluctuations characterized by low characteristic energies and short correlation lengths, which are related to the well-known charge density waves. These fluctuations are present over a wide region of the temperature-vs-doping phase diagram and extend well above T-*. Here we investigate the consequences of charge density fluctuations on the electron and transport properties and find that they can explain the strange metal phenomenology. Therefore, charge density fluctuations are likely the long-sought microscopic mechanism underlying the peculiarities of the metallic state of cuprates. The strange metallic state of cuprates occurring in a broad region of their phase diagram outside the superconducting and pseudogapped regions remains a mystery. Here the authors consider the charge density fluctuations recently discovered in resonant X-ray experiments as a possible source of scattering and show that these fluctuations can account for the strange metallic behavior.
  •  
11.
  • Wahlberg, Eric, 1992, et al. (författare)
  • Restored strange metal phase through suppression of charge density waves in underdoped YBa2Cu3O7–δ
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 373:6562, s. 1506-1510
  • Tidskriftsartikel (refereegranskat)abstract
    • The normal state of optimally doped cuprates is dominated by the “strange metal” phase that shows a linear temperature (T) dependence of the resistivity persisting down to the lowest T. For underdoped cuprates, this behavior is lost below the pseudogap temperature T*, where charge density waves (CDWs), together with other intertwined local orders, characterize the ground state. We found that the T-linear resistivity of highly strained, ultrathin, underdoped YBa2Cu3O7–δ films is restored when the CDW amplitude, detected by resonant inelastic x-ray scattering, is suppressed. This observation suggests an intimate connection between the onset of CDWs and the departure from T-linear resistivity in underdoped cuprates. Our results illustrate the potential of using strain control to manipulate the ground state of quantum materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy