SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Branca Rui M. M.) "

Sökning: WFRF:(Branca Rui M. M.)

  • Resultat 1-32 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Bentham, James, et al. (författare)
  • A century of trends in adult human height
  • 2016
  • Ingår i: eLIFE. - 2050-084X. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.522.7) and 16.5 cm (13.319.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries.
  •  
5.
  • Bentham, James, et al. (författare)
  • A century of trends in adult human height
  • 2016
  • Ingår i: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5–22.7) and 16.5 cm (13.3– 19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8– 144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries.
  •  
6.
  •  
7.
  • Abramsson, Mia L, et al. (författare)
  • Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The role of ionizable side chains in the electrospray ionization mass spectrometry of intact proteins remains hotly debated but has not been conclusively addressed because multiple chargeable sites are present in virtually all proteins. Using engineered soluble proteins, we show that ionizable side chains are completely dispensable for charging under native conditions, but if present, they are preferential protonation sites. The absence of ionizable side chains results in identical charge state distributions under native-like and denaturing conditions, whilst co-existing conformers can be distinguished using ion mobility separation. An excess of ionizable side chains, on the other hand, effectively modulates protein ion stability. We conclude that the sum of charges is governed solely by Coulombic terms, while their locations affect the stability of the protein in the gas phase.
  •  
8.
  • Abramsson, Mia L., et al. (författare)
  • Charge Engineering Reveals the Roles of Ionizable Side Chains in Electrospray Ionization Mass Spectrometry
  • 2021
  • Ingår i: JACS Au. - : American Chemical Society (ACS). - 2691-3704. ; 1:12, s. 2385-2393
  • Tidskriftsartikel (refereegranskat)abstract
    • In solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends on the presence and distribution of ionizable surface residues has been difficult to answer because multiple chargeable sites are present in virtually all proteins. Turning to protein engineering, we show that ionizable side chains are completely dispensable for charging under native conditions, but if present, they are preferential protonation sites. The absence of ionizable side chains results in identical charge state distributions under native-like and denaturing conditions, while coexisting conformers can be distinguished using ion mobility separation. An excess of ionizable side chains, on the other hand, effectively modulates protein ion stability. In fact, moving a single ionizable group can dramatically alter the gas-phase conformation of a protein ion. We conclude that although the sum of the charges is governed solely by Coulombic terms, their locations affect the stability of the protein in the gas phase.
  •  
9.
  • Branca, Rui M. M., et al. (författare)
  • HiRIEF LC-MSMS enables deep proteome coverage and unbiased proteogenomics
  • 2014
  • Ingår i: Nature Methods. - 1548-7091 .- 1548-7105. ; 11:1, s. 59-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a liquid chromatography-mass spectrometry (LC-MSMS)-based method permitting unbiased (gene prediction-independent) genome-wide discovery of protein-coding loci in higher eukaryotes. Using high-resolution isoelectric focusing (HiRIEF) at the peptide level in the 3.7-5.0 pH range and accurate peptide isoelectric point (pI) prediction, we probed the six-reading-frame translation of the human and mouse genomes and identified 98 and 52 previously undiscovered protein-coding loci, respectively. The method also enabled deep proteome coverage, identifying 13,078 human and 10,637 mouse proteins.
  •  
10.
  • Griese, Julia J., et al. (författare)
  • Direct observation of structurally encoded metal discrimination and ether bond formation in a heterodinuclear metalloprotein
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:43, s. 17189-17194
  • Tidskriftsartikel (refereegranskat)abstract
    • Although metallocofactors are ubiquitous in enzyme catalysis, how metal binding specificity arises remains poorly understood, especially in the case of metals with similar primary ligand preferences such as manganese and iron. The biochemical selection of manganese over iron presents a particularly intricate problem because manganese is generally present in cells at a lower concentration than iron, while also having a lower predicted complex stability according to the Irving-Williams series (Mn-II < Fe-II < Ni-II < Co-II < Cu-II > Zn-II). Here we show that a heterodinuclear Mn/Fe cofactor with the same primary protein ligands in both metal sites self-assembles from MnII and FeII in vitro, thus diverging from the Irving-Williams series without requiring auxiliary factors such as metallochaperones. Crystallographic, spectroscopic, and computational data demonstrate that one of the two metal sites preferentially binds FeII over MnII as expected, whereas the other site is nonspecific, binding equal amounts of both metals in the absence of oxygen. Oxygen exposure results in further accumulation of the Mn/Fe cofactor, indicating that cofactor assembly is at least a two-step process governed by both the intrinsic metal specificity of the protein scaffold and additional effects exerted during oxygen binding or activation. We further show that the mixed-metal cofactor catalyzes a two-electron oxidation of the protein scaffold, yielding a tyrosine-valine ether cross-link. Theoretical modeling of the reaction by density functional theory suggests a multistep mechanism including a valyl radical intermediate.
  •  
11.
  • Johansson, Henrik J., et al. (författare)
  • Breast cancer quantitative proteome and proteogenomic landscape
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • In the preceding decades, molecular characterization has revolutionized breast cancer (BC) research and therapeutic approaches. Presented herein, an unbiased analysis of breast tumor proteomes, inclusive of 9995 proteins quantified across all tumors, for the first time recapitulates BC subtypes. Additionally, poor-prognosis basal-like and luminal B tumors are further subdivided by immune component infiltration, suggesting the current classification is incomplete. Proteome-based networks distinguish functional protein modules for breast tumor groups, with co-expression of EGFR and MET marking ductal carcinoma in situ regions of normal-like tumors and lending to a more accurate classification of this poorly defined subtype. Genes included within prognostic mRNA panels have significantly higher than average mRNA-protein correlations, and gene copy number alterations are dampened at the protein-level; underscoring the value of proteome quantification for prognostication and phenotypic classification. Furthermore, protein products mapping to non-coding genomic regions are identified; highlighting a potential new class of tumor-specific immunotherapeutic targets.
  •  
12.
  • Kmiec, Beata, et al. (författare)
  • Organellar oligopeptidase (OOP) provides a complementary pathway for targeting peptide degradation in mitochondria and chloroplasts
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:40, s. E3761-E3769
  • Tidskriftsartikel (refereegranskat)abstract
    • Both mitochondria and chloroplasts contain distinct proteolytic systems for precursor protein processing catalyzed by the mitochondrial and stromal processing peptidases and for the degradation of targeting peptides catalyzed by presequence protease. Here, we have identified and characterized a component of the organellar proteolytic systems in Arabidopsis thaliana, the organellar oligopeptidase, OOP (At5g65620). OOP belongs to the M3A family of peptide-degrading metalloproteases. Using two independent in vivo methods, we show that the protease is dually localized to mitochondria and chloroplasts. Furthermore, we localized the OPP homolog At5g10540 to the cytosol. Analysis of peptide degradation by OOP revealed substrate size restriction from 8 to 23 aa residues. Short mitochondrial targeting peptides (presequence of the ribosomal protein L29 and presequence of 1-aminocyclopropane-1-carboxylic acid deaminase 1) and N- and C-terminal fragments derived from the presequence of the ATPase beta subunit ranging in size from 11 to 20 aa could be degraded. MS analysis showed that OOP does not exhibit a strict cleavage pattern but shows a weak preference for hydrophobic residues (F/L) at the P1 position. The crystal structures of OOP, at 1.8-1.9 angstrom, exhibit an ellipsoidal shape consisting of two major domains enclosing the catalytic cavity of 3,000 angstrom(3). The structural and biochemical data suggest that the protein undergoes conformational changes to allow peptide binding and proteolysis. Our results demonstrate the complementary role of OOP in targeting-peptide degradation in mitochondria and chloroplasts.
  •  
13.
  • Lehtiö, Janne, et al. (författare)
  • Proteogenomics of non-small cell lung cancer reveals molecular subtypes associated with specific therapeutic targets and immune-evasion mechanisms
  • 2021
  • Ingår i: Nature Cancer. - : Springer Science and Business Media LLC. - 2662-1347. ; 2:11, s. 1224-1242
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite major advancements in lung cancer treatment, long-term survival is still rare and a deeper understanding of molecular phenotypes would allow the identification of specific cancer dependencies and immune-evasion mechanisms. Here we performed in-depth mass-spectrometry-based proteogenomic analysis of 141 tumors representing all major histologies of non-small cell lung cancer (NSCLC). We identified six distinct proteome subtypes with striking differences in immune cell composition and subtype-specific expression of immune checkpoints. Unexpectedly, high neoantigen burden was linked to global hypomethylation and complex neoantigens mapped to genomic regions, such as endogenous retroviral elements and introns, in immune-cold subtypes. Further, we linked immune evasion with LAG-3 via STK11 mutation-dependent HNF1A activation and FGL1 expression. Finally, we develop a data-independent acquisition mass-spectrometry-based NSCLC subtype classification method, validate it in an independent cohort of 208 NSCLC cases and demonstrate its clinical utility by analyzing an additional cohort of 84 late-stage NSCLC biopsy samples.
  •  
14.
  • Teixeira, Pedro F., et al. (författare)
  • Mechanism of Peptide Binding and Cleavage by the Human Mitochondrial Peptidase Neurolysin
  • 2018
  • Ingår i: Journal of Molecular Biology. - : Academic Press. - 0022-2836 .- 1089-8638. ; 430:3, s. 348-362
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteolysis plays an important role in mitochondrial biogenesis, from the processing of newly imported precursor proteins to the degradation of mitochondrial targeting peptides. Disruption of peptide degradation activity in yeast, plant and mammalian mitochondria is known to have deleterious consequences for organism physiology, highlighting the important role of mitochondrial peptidases. In the present work, we show that the human mitochondrial peptidase neurolysin (hNLN) can degrade mitochondrial presequence peptides as well as other fragments up to 19 amino acids long. The crystal structure of hNLNE475Q in complex with the products of neurotensin cleavage at 2.7 Å revealed a closed conformation with an internal cavity that restricts substrate length and highlighted the mechanism of enzyme opening/closing that is necessary for substrate binding and catalytic activity. Analysis of peptide degradation in vitro showed that hNLN cooperates with presequence protease (PreP or PITRM1) in the degradation of long targeting peptides and amyloid-β peptide, Aβ1–40, associated with Alzheimer disease, particularly cleaving the hydrophobic fragment Aβ35–40. These findings suggest that a network of proteases may be required for complete degradation of peptides localized in mitochondria.
  •  
15.
  • Zhu, Yafeng, et al. (författare)
  • Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteogenomics enable the discovery of novel peptides (from unannotated genomic protein-coding loci) and single amino acid variant peptides (derived from single-nucleotide polymorphisms and mutations). Increasing the reliability of these identifications is crucial to ensure their usefulness for genome annotation and potential application as neoantigens in cancer immunotherapy. We here present integrated proteogenomics analysis workflow (IPAW), which combines peptide discovery, curation, and validation. IPAW includes the SpectrumAI tool for automated inspection of MS/MS spectra, eliminating false identifications of single-residue substitution peptides. We employ IPAW to analyze two proteomics data sets acquired from A431 cells and five normal human tissues using extended (pH range, 3-10) high-resolution isoelectric focusing (HiRIEF) pre-fractionation and TMT-based peptide quantitation. The IPAW results provide evidence for the translation of pseudogenes, lncRNAs, short ORFs, alternative ORFs, N-terminal extensions, and intronic sequences. Moreover, our quantitative analysis indicates that protein production from certain pseudogenes and lncRNAs is tissue specific.
  •  
16.
  • Fredolini, Claudia, et al. (författare)
  • Systematic assessment of antibody selectivity in plasma based on a resource of enrichment profiles
  • 2019
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a strong need for procedures that enable context and application dependent validation of antibodies. Here, we applied a magnetic bead assisted workflow and immunoprecipitation mass spectrometry (IP-MS/MS) to assess antibody selectivity for the detection of proteins in human plasma. A resource was built on 414 IP experiments using 157 antibodies (targeting 120 unique proteins) in assays with heat-treated or untreated EDTA plasma. For each protein we determined their antibody related degrees of enrichment using z-scores and their frequencies of identification across all IP assays. Out of 1,313 unique endogenous proteins, 426 proteins (33%) were detected in >20% of IPs, and these background components were mainly comprised of proteins from the complement system. For 45% (70/157) of the tested antibodies, the expected target proteins were enriched (z-score >= 3). Among these 70 antibodies, 59 (84%) co-enriched other proteins beside the intended target and mainly due to sequence homology or protein abundance. We also detected protein interactions in plasma, and for IGFBP2 confirmed these using several antibodies and sandwich immunoassays. The protein enrichment data with plasma provide a very useful and yet lacking resource for the assessment of antibody selectivity. Our insights will contribute to a more informed use of affinity reagents for plasma proteomics assays.
  •  
17.
  • Griese, Julia J., et al. (författare)
  • Ether cross-link formation in the R2-like ligand-binding oxidase
  • 2018
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 23:6, s. 879-886
  • Tidskriftsartikel (refereegranskat)abstract
    • R2-like ligand-binding oxidases contain a dinuclear metal cofactor which can consist either of two iron ions or one manganese and one iron ion, but the heterodinuclear Mn/Fe cofactor is the preferred assembly in the presence of Mn-II and Fe-II in vitro. We have previously shown that both types of cofactor are capable of catalyzing formation of a tyrosine-valine ether cross-link in the protein scaffold. Here we demonstrate that Mn/Fe centers catalyze cross-link formation more efficiently than Fe/Fe centers, indicating that the heterodinuclear cofactor is the biologically relevant one. We further explore the chemical potential of the Mn/Fe cofactor by introducing mutations at the cross-linking valine residue. We find that cross-link formation is possible also to the tertiary beta-carbon in an isoleucine, but not to the secondary beta-carbon or tertiary gamma-carbon in a leucine, nor to the primary beta-carbon of an alanine. These results illustrate that the reactivity of the cofactor is highly specific and directed.
  •  
18.
  • Griese, Julia J., et al. (författare)
  • Structural Basis for Oxygen Activation at a Heterodinuclear Manganese/Iron Cofactor
  • 2015
  • Ingår i: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 290:42, s. 25254-25272
  • Tidskriftsartikel (refereegranskat)abstract
    • Two recently discovered groups of prokaryotic di-metal carboxylate proteins harbor a heterodinuclear Mn/Fe cofactor. These are the class Ic ribonucleotide reductase R2 proteins and a group of oxidases that are found predominantly in pathogens and extremophiles, called R2-like ligand-binding oxidases (R2lox). We have recently shown that the Mn/Fe cofactor of R2lox self-assembles from Mn-II and Fe-II in vitro and catalyzes formation of a tyrosine-valine ether cross-link in the protein scaffold (Griese, J. J., Roos, K., Cox, N., Shafaat, H. S., Branca, R.M., Lehtio , J., Graslund, A., Lubitz, W., Siegbahn, P. E., and Hogbom, M. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 1718917194). Here, we present a detailed structural analysis of R2lox in the nonactivated, reduced, and oxidized resting Mn/Fe- and Fe/Fe-bound states, as well as the nonactivated Mn/Mn-bound state. X-ray crystallography and x-ray absorption spectroscopy demonstrate that the active site ligand configuration of R2lox is essentially the same regardless of cofactor composition. Both the Mn/Fe and the diiron cofactor activate oxygen and catalyze formation of the ether cross-link, whereas the dimanganese cluster does not. The structures delineate likely routes for gated oxygen and substrate access to the active site that are controlled by the redox state of the cofactor. These results suggest that oxygen activation proceeds via similar mechanisms at the Mn/Fe and Fe/Fe center and that R2lox proteins might utilize either cofactor in vivo based on metal availability.
  •  
19.
  • Kisgeropoulos, Effie C., et al. (författare)
  • Key Structural Motifs Balance Metal Binding and Oxidative Reactivity in a Heterobimetallic Mn/Fe Protein
  • 2020
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 142:11, s. 5338-5354
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterobimetallic Mn/Fe proteins represent a new cofactor paradigm in bioinorganic chemistry and pose countless outstanding questions. The assembly of the active site defies common chemical convention by contradicting the Irving-Williams series, while the scope of reactivity remains unexplored. In this work, the assembly and C-H bond activation process in the Mn/Fe R2-like ligand-binding oxidase (R2lox) protein is investigated using a suite of biophysical techniques, including time-resolved optical spectroscopy, global kinetic modeling, X-ray crystallography, electron paramagnetic resonance spectroscopy, protein electrochemistry, and mass spectrometry. Selective metal binding is found to be under thermodynamic control, with the binding sites within the apoprotein exhibiting greater Mn-II affinity than Fe-II affinity. The comprehensive analysis of structure and reactivity of wild-type R2lox and targeted primary and secondary sphere mutants indicate that the efficiency of C-H bond activation directly correlates with the Mn/Fe cofactor reduction potentials and is inversely related to divalent metal binding affinity. These findings suggest the R2lox active site is precisely tuned for achieving both selective heterobimetallic binding and high levels of reactivity and offer a mechanism to examine the means by which proteins achieve appropriate metal incorporation.
  •  
20.
  •  
21.
  • Kmiec, Beata, et al. (författare)
  • Accumulation of endogenous peptides triggers a pathogen stress response in Arabidopsis thaliana
  • 2018
  • Ingår i: The Plant Journal. - : Wiley. - 0960-7412 .- 1365-313X. ; 96:4, s. 705-715
  • Tidskriftsartikel (refereegranskat)abstract
    • The stepwise degradation of peptides to amino acids in plant mitochondria and chloroplasts is catalyzed by a network of oligopeptidases (presequence protease PreP, organellar oligopeptidase OOP) and aminopeptidases. In the present report, we show that the lack of oligopeptidase activity in Arabidopsis thaliana results in the accumulation of endogenous free peptides, mostly of chloroplastic origin (targeting peptides and degradation products). Using mRNA sequencing and deep coverage proteomics, allowing for the identification of 17 000 transcripts and 11 000 proteins, respectively, we uncover a peptide-stress response occurring in plants lacking PreP and OOP oligopeptidase activity. The peptide-stress response results in the activation of the classical plant defense pathways in the absence of pathogenic challenge. The constitutive activation of the pathogen-defense pathways imposes a strong growth penalty and a reduction of the plants reproductive fitness. Our results indicate that the absence of organellar oligopeptidases PreP1/2 and OOP results in the accumulation of peptides that are perceived as pathogenic effectors and activate the signaling pathways of plant-defense response.
  •  
22.
  • Kutin, Yury, et al. (författare)
  • Chemical flexibility of heterobimetallic Mn/Fe cofactors : R2lox and R2c proteins
  • 2019
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 294:48, s. 18372-18386
  • Tidskriftsartikel (refereegranskat)abstract
    • A heterobimetallic Mn/Fe cofactor is present in the R2 subunit of class Ic ribonucleotide reductases (R2c) and in R2-like ligand-binding oxidases (R2lox). Although the protein-derived metal ligands are the same in both groups of proteins, the connectivity of the two metal ions and the chemistry each cofactor performs are different: in R2c, a one-electron oxidant, the Mn/Fe dimer is linked by two oxygen bridges (?-oxo/?-hydroxo), whereas in R2lox, a two-electron oxidant, it is linked by a single oxygen bridge (?-hydroxo) and a fatty acid ligand. Here, we identified a second coordination sphere residue that directs the divergent reactivity of the protein scaffold. We found that the residue that directly precedes the N-terminal carboxylate metal ligand is conserved as a glycine within the R2lox group but not in R2c. Substitution of the glycine with leucine converted the resting-state R2lox cofactor to an R2c-like cofactor, a ?-oxo/?-hydroxo?bridged Mn-III/Fe-III dimer. This species has recently been observed as an intermediate of the oxygen activation reaction in WT R2lox, indicating that it is physiologically relevant. Cofactor maturation in R2c and R2lox therefore follows the same pathway, with structural and functional divergence of the two cofactor forms following oxygen activation. We also show that the leucine-substituted variant no longer functions as a two-electron oxidant. Our results reveal that the residue preceding the N-terminal metal ligand directs the cofactor's reactivity toward one- or two-electron redox chemistry, presumably by setting the protonation state of the bridging oxygens and thereby perturbing the redox potential of the Mn ion.
  •  
23.
  • Srinivas, Vivek, et al. (författare)
  • Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens
  • 2018
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 563:7731, s. 416-420
  • Tidskriftsartikel (refereegranskat)abstract
    • Ribonucleotide reductase (RNR) catalyses the only known de novo pathway for the production of all four deoxyribonucleotides that are required for DNA synthesis(1,2). It is essential for all organisms that use DNA as their genetic material and is a current drug target(3,4). Since the discovery that iron is required for function in the aerobic, class I RNR found in all eukaryotes and many bacteria, a dinuclear metal site has been viewed as necessary to generate and stabilize the catalytic radical that is essential for RNR activity(5-7). Here we describe a group of RNR proteins in Mollicutes-including Mycoplasma pathogens-that possess a metal-independent stable radical residing on a modified tyrosyl residue. Structural, biochemical and spectroscopic characterization reveal a stable 3,4-dihydroxyphenylalanine (DOPA) radical species that directly supports ribonucleotide reduction in vitro and in vivo. This observation overturns the presumed requirement for a dinuclear metal site in aerobic ribonucleotide reductase. The metal-independent radical requires new mechanisms for radical generation and stabilization, processes that are targeted by RNR inhibitors. It is possible that this RNR variant provides an advantage under metal starvation induced by the immune system. Organisms that encode this type of RNR-some of which are developing resistance to antibiotics-are involved in diseases of the respiratory, urinary and genital tracts. Further characterization of this RNR family and its mechanism of cofactor generation will provide insight into new enzymatic chemistry and be of value in devising strategies to combat the pathogens that utilize it. We propose that this RNR subclass is denoted class Ie.
  •  
24.
  • Teixeira, Pedro F., et al. (författare)
  • A multi-step peptidolytic cascade for amino acid recovery in chloroplasts
  • 2017
  • Ingår i: Nature Chemical Biology. - 1552-4450 .- 1552-4469. ; 13:1, s. 15-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Plastids (including chloroplasts) are subcellular sites for a plethora of proteolytic reactions, required in functions ranging from protein biogenesis to quality control. Here we show that peptides generated from pre-protein maturation within chloroplasts of Arabidopsis thaliana are degraded to amino acids by a multi-step peptidolytic cascade consisting of oligopeptidases and aminopeptidases, effectively allowing the recovery of single amino acids within these organelles.
  •  
25.
  • Gertow, Joanna, et al. (författare)
  • Altered Protein Composition of Subcutaneous Adipose Tissue in Chronic Kidney Disease
  • 2017
  • Ingår i: Kidney International Reports. - : Elsevier BV. - 2468-0249. ; 2:6, s. 1208-1218
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Loss of renal function is associated with high mortality from cardiovascular disease (CVD). Patients with chronic kidney disease (CKD) have altered circulating adipokine and nonesterified fatty acid concentrations and insulin resistance, which are features of disturbed adipose tissue metabolism. Because dysfunctional adipose tissue contributes to the development of CVD, we hypothesize that adipose tissue dysfunctionality in patients with CKD could explain, at least in part, their high rates of CVD. Therefore we characterized adipose tissue from patients with CKD, in comparison to healthy controls, to search for signs of dysfunctionality. Methods: Biopsy samples of subcutaneous adipose tissue from 16 CKD patients and 11 healthy controls were analyzed for inflammation, fibrosis, and adipocyte size. Protein composition was assessed using 2dimensional gel proteomics combined with multivariate analysis. Results: Adipose tissue of CKD patients contained significantly more CD68-positive cells, but collagen content did not differ. Adipocyte size was significantly smaller in CKD patients. Proteomic analysis of adipose tissue revealed significant differences in the expression of certain proteins between the groups. Proteins whose expression differed the most were a-1-microglobulin/ bikunin precursor (AMBP, higher in CKD) and vimentin (lower in CKD). Vimentin is a lipid droplet-associated protein, and changes in its expression may impair fatty acid storage/mobilization in adipose tissue, whereas high levels of AMBP may reflect oxidative stress. Discussion: These findings demonstrate that adipose tissue of CKD patients shows signs of inflammation and disturbed functionality, thus potentially contributing to the unfavorable metabolic profile and increased risk of CVD in these patients.
  •  
26.
  • Ivanova, Aneta, et al. (författare)
  • A Mitochondrial LYR Protein Is Required for Complex I Assembly
  • 2019
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 181:4, s. 1632-1650
  • Tidskriftsartikel (refereegranskat)abstract
    • Complex I biogenesis requires the expression of both nuclear and mitochondrial genes, the import of proteins, cofactor biosynthesis, and the assembly of at least 49 individual subunits. Assembly factors interact with subunits of Complex I but are not part of the final holocomplex. We show that in Arabidopsis (Arabidopsis thaliana), a mitochondrial matrix protein (EMB1793, At1g76060), which we term COMPLEX I ASSEMBLY FACTOR 1 (CIAF1), contains a LYR domain and is required for Complex I assembly. T-DNA insertion mutants of CIAF1 lack Complex I and the Supercomplex I+III. Biochemical characterization shows that the assembly of Complex I is stalled at 650 and 800 kD intermediates in mitochondria isolated from ciaf1 mutant lines.I. Yeast-two-hybrid interaction and complementation assays indicate that CIAF1 specifically interacts with the 23-kD TYKY-1 matrix domain subunit of Complex I and likely plays a role in Fe-S insertion into this subunit. These data show that CIAF1 plays an essential role in assembling the peripheral matrix arm Complex I subunits into the Complex I holoenzyme. A mitochondrial LYR protein is involved in the biogenesis of a matrix arm domain subunit of Complex I.
  •  
27.
  • Maugeri, Pearson T., et al. (författare)
  • Driving Protein Conformational Changes with Light : Photoinduced Structural Rearrangement in a Heterobimetallic Oxidase
  • 2018
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 140:4, s. 1471-1480
  • Tidskriftsartikel (refereegranskat)abstract
    • The heterobimetallic R2lox protein binds both manganese and iron ions in a site-selective fashion and activates oxygen, ultimately performing C-H bond oxidation to generate a tyrosine-valine crosslink near the active site. In this work, we demonstrate that, following assembly, R2lox undergoes photoinduced changes to the active site geometry and metal coordination motif. Through spectroscopic, structural, and mass spectrometric characterization, the photoconverted species is found to consist of a tyrosinate-bound iron center following light-induced decarboxylation of a coordinating glutamate residue and cleavage of the tyrosine-valine cross-link. This process occurs with high quantum efficiencies (Phi = 3%) using violet and near-ultraviolet light, suggesting that the photodecarboxylation is initiated via ligandto-metal charge transfer excitation. Site-directed mutagenesis and structural analysis suggest that the cross-linked tyrosine-162 is the coordinating residue. One primary product is observed following irradiation, indicating potential use of this class of proteins, which contains a putative substrate channel, for controlled photoinduced decarboxylation processes, with relevance for in vivo functionality of R2lox as well as application in environmental remediation.
  •  
28.
  • Muthusamy, Sarala Devi, et al. (författare)
  • Comparative proteomics reveals signature metabolisms of exponentially growing and stationary phase marine bacteria
  • 2017
  • Ingår i: Environmental Microbiology. - : Wiley-Blackwell. - 1462-2912 .- 1462-2920. ; 19:6, s. 2301-2319
  • Forskningsöversikt (refereegranskat)abstract
    • Much of the phenotype of a microorganism consists of its repertoire of metabolisms and how and when its proteins are deployed under different growth conditions. Hence, analyses of protein expression could provide important understanding of how bacteria adapt to different environmental settings. To characterize the flexibility of proteomes of marine bacteria, we investigated protein profiles of three important marine bacterial lineages - Oceanospirillaceae (Neptuniibacter caesariensis strain MED92), Roseobacter (Phaeobacter sp. MED193) and Flavobacteria (Dokdonia sp. MED134) - during transition from exponential to stationary phase. As much as 59-80% of each species' total proteome was expressed. Moreover, all three bacteria profoundly altered their expressed proteomes during growth phase transition, from a dominance of proteins involved in translation to more diverse proteomes, with a striking appearance of enzymes involved in different nutrient-scavenging metabolisms. Whereas the three bacteria shared several overarching metabolic strategies, they differed in important details, including distinct expression patterns of membrane transporters and proteins in carbon and phosphorous metabolism and storage compounds. These differences can be seen as signature metabolisms - metabolisms specific for lineages. These findings suggest that quantitative proteomics can inform about the divergent ecological strategies of marine bacteria in adapting to changes in environmental conditions.
  •  
29.
  • Pernemalm, Maria, et al. (författare)
  • Quantitative Proteomics Profiling of Primary Lung Adenocarcinoma Tumors Reveals Functional Perturbations in Tumor Metabolism
  • 2013
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 12:9, s. 3934-3943
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we have analyzed human primary lung adenocarcinoma tumors using global mass spectrometry to elucidate the biological mechanisms behind relapse post surgery. In total, we identified over 3000 proteins with high confidence. Supervised multivariate analysis was used to select 132 proteins separating the prognostic groups. Based on in-depth bioinformatics analysis, we hypothesized that the tumors with poor prognosis had a higher glycolytic activity and HIF activation. By measuring the bioenergetic cellular index of the tumors, we could detect a higher dependency of glycolysis among the tumors with poor prognosis. Further, we could also detect an up-regulation of HIF1 alpha mRNA expression in tumors with early relapse. Finally, we selected three proteins that were upregulated in the poor prognosis group (cathepsin D, ENO1, and VDAC1) to confirm that the proteins indeed originated from the tumor and not from a stromal or inflammatory component. Overall, these findings show how in-depth analysis of clinical material can lead to an increased understanding of the molecular mechanisms behind tumor progression.
  •  
30.
  • Qundos, Ulrika, et al. (författare)
  • Plasma levels of carnosine dipeptidase 1 decrease in prostate cancer patients with lymph node metastasis
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • There is a need for a better differentiation of aggressive tumors in prostate cancer to design a tailored treatment for each patient, preferably by a minimally invasive analysis of blood samples. In a previous study, we discovered a decrease of plasma levels of carnosine dipeptidase 1 (CNDP1) in association with aggressive prostate cancer. Now this relation has been investigated and characterized further by generating several new antibodies for extended analysis of CNDP1 in plasma. Multi-antibody sandwich assays were developed and applied to 1,214 samples from two Swedish cohorts that confirmed decreased levels of CNDP1 in plasma for patients with advanced disease. Therein, CNDP1 assays revealed superior differentiation for tumor N stages than clinical tPSA. Further investigations can now elucidate mechanisms behind decreasing levels of CNDP1 in plasma and primary in regards to lymph node metastasis.
  •  
31.
  • Teixeira, Pedro F., et al. (författare)
  • A Flowchart to Analyze Protease Activity in Plant Mitochondria
  • 2015
  • Ingår i: Plant Mitochondria. - New York, NY : Springer-Verlag New York. - 9781493926398 - 9781493926381 ; 1305, s. 123-30
  • Bokkapitel (refereegranskat)abstract
    • Proteases are one of the most abundant classes of enzymes and are involved in a plethora of biological processes in many cellular compartments, including the mitochondria. To understand the role of proteases is essential to determine their substrate repertoire, preferably in an in vivo setting. In this chapter we describe general guidelines to analyze protease activity using several strategies, from in-gel analysis to mass spectrometry mapping of the cleavage site(s) and fluorogenic probes that can easily be used in vivo. To exemplify this flowchart, we used the recently characterized organellar oligopeptidase of Arabidopsis (Arabidopsis thaliana), an enzyme that takes part in degradation of short peptides within mitochondria and chloroplasts.
  •  
32.
  • Teixeira, Pedro Filipe, et al. (författare)
  • In vitro oxidative inactivation of human presequence protease (hPreP)
  • 2012
  • Ingår i: Free Radical Biology & Medicine. - : Elsevier BV. - 0891-5849 .- 1873-4596. ; 53:11, s. 2188-2195
  • Tidskriftsartikel (refereegranskat)abstract
    • The mitochondrial peptidasome called presequence protease (Prep) is responsible for the degradation of presequences and other unstructured peptides including the amyloid-beta, peptide, whose accumulation may have deleterious effects on mitochondrial function. Recent studies showed that PreP activity is reduced in Alzheimer disease (AD) patients and AD mouse models compared to controls, which correlated with an enhanced reactive oxygen species production in mitochondria. In this study, we have investigated the effects of a biologically relevant oxidant, hydrogen peroxide (H2O2), on the activity of recombinant human PreP (hPreP). H2O2 inhibited hPreP activity in a concentration-dependent manner, resulting in oxidation of amino acid residues (detected by carbonylation) and lowered protein stability. Substitution of the evolutionarily conserved methionine 206 for leucine resulted in increased sensitivity of hPreP to oxidation, indicating a possible protective role of M2O6 as internal antioxidant. The activity of hPreP oxidized at low concentrations of H2O2 could be restored by methionine sulfoxide reductase A (MsrA), an enzyme that localizes to the mitochondrial matrix, suggesting that hPreP constitutes a substrate for MsrA. In summary, our in vitro results suggest a possible redox control of hPreP in the mitochondrial matrix and support the protective role of the conserved methionine 206 residue as an internal antioxidant.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-32 av 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy