SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brandell Richard Rosenquist) "

Sökning: WFRF:(Brandell Richard Rosenquist)

  • Resultat 1-43 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Agathangelidis, Andreas, et al. (författare)
  • Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia : a molecular classification with implications for targeted therapies
  • 2012
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 119:19, s. 4467-4475
  • Tidskriftsartikel (refereegranskat)abstract
    • Mounting evidence indicates that grouping of chronic lymphocytic leukemia (CLL) into distinct subsets with stereotyped BCRs is functionally and prognostically relevant. However, several issues need revisiting, including the criteria for identification of BCR stereotypy and its actual frequency as well as the identification of "CLL-biased" features in BCR Ig stereotypes. To this end, we examined 7596 Ig VH (IGHV-IGHD-IGHJ) sequences from 7424 CLL patients, 3 times the size of the largest published series, with an updated version of our purpose-built clustering algorithm. We document that CLL may be subdivided into 2 distinct categories: one with stereotyped and the other with nonstereotyped BCRs, at an approximate ratio of 1: 2, and provide evidence suggesting a different ontogeny for these 2 categories. We also show that subset-defining sequence patterns in CLL differ from those underlying BCR stereotypy in other B-cell malignancies. Notably, 19 major subsets contained from 20 to 213 sequences each, collectively accounting for 943 sequences or one-eighth of the cohort. Hence, this compartmentalized examination of VH sequences may pave the way toward a molecular classification of CLL with implications for targeted therapeutic interventions, applicable to a significant number of patients assigned to the same subset.
  •  
3.
  • Baecklund, Fredrik, et al. (författare)
  • A comprehensive evaluation of the role of genetic variation in follicular lymphoma survival
  • 2014
  • Ingår i: BMC Medical Genetics. - : Springer Science and Business Media LLC. - 1471-2350. ; 15, s. 113-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Survival in follicular lymphoma (FL) is highly variable, even within prognostic groups defined by tumor grade and the Follicular Lymphoma International Prognostic Index. Studies suggest that germline single nucleotide polymorphisms (SNPs) may hold prognostic information but further investigation is needed. Methods: We explored the association between SNPs and FL outcome using two approaches: 1) Two independent genome-wide association studies (GWAS) of similar to 300.000 SNPs followed by a meta-analysis encompassing 586 FL patients diagnosed in Denmark/Sweden 1999-2002 and in the United States 2001-2006; and 2) Investigation of 22 candidate-gene variants previously associated with FL outcome in the Danish/Swedish cohort (N = 373). We estimated time to lymphoma-specific death (approach 1 and 2) and lymphoma progression (approach 2) with hazard ratios (HR) and 95% confidence intervals (CI) in a multivariable Cox regression model. Results: In the GWAS meta-analysis, using a random effects model, no variants were associated with lymphoma-specific death at a genome-wide significant level (p < 5.0x10(-8)). The strongest association was observed for tightly linked SNPs on 17q24 near the ABCA10 and ABCA6 genes (rs10491178 HRrandom = 3.17, 95% CI 2.09-4.79, prandom = 5.24x10(-8)). The ABCA10 and ABCA6 genes belong to a family of genes encoding for ABC transporter proteins, implicated in multidrug resistance. In line with a previous study, rs2466571 in CD46 (HR = 0.73, 95% CI 0.58-0.91, p = 0.006) showed nominal association with lymphoma progression, as did two highly linked SNPs in IL8 (rs4073 HR = 0.78, 95% CI 0.62-0.97, p = 0.02; rs2227307 HR = 0.75, 95% CI 0.60-0.94, p = 0.01) previously associated with overall survival. Conclusions: The results suggest a possible role for multidrug resistance in FL survival and add to the evidence that genetic variation in CD46 and IL8 may have prognostic implications in FL. Our findings need further confirmation in other independent populations or in a larger multicenter GWAS.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Baliakas, Panagiotis, et al. (författare)
  • Not all IGHV3-21 chronic lymphocytic leukemias are equal: prognostic considerations.
  • 2015
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 125:5, s. 856-859
  • Tidskriftsartikel (refereegranskat)abstract
    • An unresolved issue in chronic lymphocytic leukemia (CLL) is whether IGHV3-21 gene usage, in general, or the expression of stereotyped B-cell receptor immunoglobulin defining subset #2 (IGHV3-21/IGLV3-21), in particular, determines outcome for IGHV3-21-utilizing cases. We reappraised this issue in 8593 CLL patients of whom 437 (5%) used the IGHV3-21 gene with 254/437 (58%) classified as subset #2. Within subset #2, immunoglobulin heavy variable (IGHV)-mutated cases predominated, whereas non-subset #2/IGHV3-21 was enriched for IGHV-unmutated cases (P = .002). Subset #2 exhibited significantly shorter time-to-first-treatment (TTFT) compared with non-subset #2/IGHV3-21 (22 vs 60 months, P = .001). No such difference was observed between non-subset #2/IGHV3-21 vs the remaining CLL with similar IGHV mutational status. In conclusion, IGHV3-21 CLL should not be axiomatically considered a homogeneous entity with adverse prognosis, given that only subset #2 emerges as uniformly aggressive, contrasting non-subset #2/IGVH3-21 patients whose prognosis depends on IGHV mutational status as the remaining CLL.
  •  
8.
  •  
9.
  • Baliakas, Panagiotis, et al. (författare)
  • Prognostic indices in chronic lymphocytic leukaemia : where do we stand how do we proceed?
  • 2016
  • Ingår i: Journal of Internal Medicine. - : Wiley. - 0954-6820 .- 1365-2796. ; 279:4, s. 347-357
  • Forskningsöversikt (refereegranskat)abstract
    • The remarkable clinical heterogeneity in chronic lymphocytic leukaemia (CLL) has highlighted the need for prognostic and predictive algorithms that can be employed in clinical practice to assist patient management and therapy decisions. Over the last 20 years, this research field has been rewarding and many novel prognostic factors have been identified, especially at the molecular genetic level. Whilst detection of recurrent cytogenetic aberrations and determination of the immunoglobulin heavy variable gene somatic hypermutation status have an established role in outcome prediction, next-generation sequencing has recently revealed novel mutated genes with clinical relevance (e.g. NOTCH1, SF3B1 and BIRC3). Efforts have been made to combine variables into prognostic indices; however, none has been universally adopted. Although a unifying model for all groups of patients and in all situations is appealing, this may prove difficult to attain. Alternatively, focused efforts on patient subgroups in the same clinical context and at certain clinically relevant 'decision points', that is at diagnosis and at initiation of first-line or subsequent treatments, may provide a more accurate approach. In this review, we discuss the advantages and disadvantages as well as the clinical applicability of three recently proposed prognostic models, the MD Anderson nomogram, the integrated cytogenetic and mutational model and the CLL-international prognostic index. We also consider future directions taking into account novel aspects of the disease, such as the tumour microenvironment and the dynamics of (sub)clonal evolution. These aspects are particularly relevant in view of the increasing number of new targeted therapies that have recently emerged.
  •  
10.
  • Baliakas, Panagiotis, 1977- (författare)
  • Reappraising prognosis in chronic lymphocytic leukemia
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Chronic lymphocytic leukemia (CLL) exhibits remarkable clinical heterogeneity likely reflecting the underlying biological heterogeneity. The genetic landscape of CLL has been recently enriched with mutations within a number of genes proposed as novel prognostic markers. Mounting evidence also supports the pivotal role of the clonotypic B-cell receptor immunoglobulin (BcR IG) in the natural history of CLL. Interestingly, almost 30% of all CLL patients can be assigned to different patient subsets, each defined by expression of a distinct stereotyped BcR IG. Whether stereotyped subsets exhibit distinct clinical behavior is still an issue of debate. The aim of this thesis was to evaluate the prognostic relevance of recurrent gene mutations and to assess the clinicobiological associations and clinical impact of BcR IG stereotypy in CLL. In a cohort of 3490 patients, NOTCH1, SF3B1 and TP53 mutations were enriched within clinically aggressive cases carrying unmutated IGHV genes (U-CLL), frequently co-occurring with trisomy 12, del(11q) and del(17p), respectively. Of note, SF3B1 mutations increased in parallel with increasing timespan between diagnosis and mutational screening. NOTCH1 mutations, SF3B1 mutations and TP53 abnormalities (TP53abs, deletions and/or mutations) correlated with shorter time-to-first-treatment among early stage cases, while in multivariate analysis, only SF3B1 mutations and TP53abs retained independent significance. In a series of 8593 CLL patients, stereotyped subsets showed marked differences in demographics, clinical presentation, cytogenetic aberrations and gene mutational spectrum. Patients within a specific subset generally followed similar clinical courses, whereas patients in different stereotyped subsets—even when displaying similar IG somatic hypermutation status— experienced significantly different clinical outcome. In particular, subset #2 (IGHV3-21/IGLV3-21), the largest overall, was found to exhibit (i) a remarkably high incidence of SF3B1 mutations (44%), alluding to subset-biased acquisition of genomic aberrations, in the context of particular antigenic stimulation; and, (ii) a dismal clinical outcome, distinct from the remaining IGHV3-21 CLL. Our findings strongly support the adverse clinical impact of SF3B1 mutations in CLL in addition to TP53abs. BcR IG stereotypy also emerges as prognostically relevant, further highlighting that an immunogenetic sub-classification of CLL based on BcR IG configuration could refine patient risk stratification. 
  •  
11.
  • Bergh, Ann-Charlotte, 1980- (författare)
  • Importance of microenvironment and antigen in the regulation of growth and survival of CLL cells
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Chronic lymphocytic leukemia (CLL) cells rapidly die when put in culture implying that microenvironmental signals delivered by accessory cells confer CLL cells with a growth advantage. Recent findings show that CLL cells are antigen experienced and antigen binding play a critical role in the pathogenesis of the disease. The overall aim of this thesis was to study the influence of the microenvironment and antigen binding in CLL.In paper I, we studied the influence of the small redox-regulatory molecule thioredoxin (Trx) on CLL cell survival and proliferation. We found Trx to be highly expressed in CLL lymph nodes (LNs), secreted from stromal cells surrounding proliferating CLL cells in proliferation centers, indicating growth promoting properties. Secreted Trx was also shown to protect CLL cells from apoptosis.In paper II, oxidized LDL was added to subset #1 CLL cells. However, in contrast to our hypothesis, we could not observe activation and proliferation of CLL cells. Instead subset #1 CLL cells were unresponsive/anergic through the B cell receptor (BcR). This anergic state could however be overcome by “wash out” of bound antigen or addition of toll-like receptor 9 stimulation in some patients.Gene expression profiles differ between groups of CLL patients and in peripheral blood (PB) and LN compartment, due to different microenvironments. However, it is not known whether these differences also apply for DNA methylation. In paper III, we identified various genes that were alternatively methylated between IGHV mutated (M) and unmutated (UM) groups. For example prognostic genes, CLLU1 and LPL, genes involved in B cell signaling, IBTK, as well as numerous TGF-β and NF-κB/TNF pathway genes.The intensity and duration of BcR signals are fine-tuned by enhancing or inhibitory coreceptors. SHP-1 inhibits BcR-signals by dephosphorylation. In paper IV, we compared the expression and activity of SHP-1 in CLL cells from LN with matched PB samples. However, in contrast to our hypothesis, SHP-1 activity/phosphorylation status in PB and LN, did not differ significantly.This thesis, add another piece to the puzzle, on how the microenvironment and antigens influence CLL pathogenesis. Since great variations among individuals are seen, further studies in different groups of patients are necessary to elucidate the importance of antigen for the development of CLL.
  •  
12.
  • Bhoi, Sujata (författare)
  • Prognostic markers and DNA methylation profiling in lymphoid malignancies
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In recent years, great progress has been achieved towards identifying novel biomarkers in lymphoid malignancies, including chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), at the genomic, transcriptomic and epigenomic level for accurate risk-stratification and prediction of treatment response. In paper I, we validated the prognostic relevance of a recently proposed RNA-based marker in CLL, UGT2B17, and analyzed its expression levels in 253 early-stage patients. Besides confirming its prognostic impact in multivariate analysis, we could identify 30% of IGHV-mutated CLL (M-CLL) cases with high expression and poor outcome, which otherwise lacked any other poor-prognostic marker. In paper II, we investigated the prognostic impact of a previously reported 5 CpG signature that divides CLL patients into three clinico-biological subgroups, namely naive B-cell-like CLL (n-CLL), memory B-cell-like CLL (m-CLL) and intermediate CLL (i-CLL), in 135 CLL patients using pyrosequencing. We validated the signature as an independent marker in multivariate analysis and further reported that subset #2 cases were predominantly classified as i-CLL, although displaying a similar outcome as n-CLL. In paper III, we investigated the methylation status and expression level of miR26A1 in both CLL (n=70) and MCL (n=65) cohorts. High miR26A1 methylation was associated with IGHV-unmutated (U-CLL) and shorter overall survival (OS) in CLL, while it was uniformly hypermethylated in MCL. Furthermore, overexpression of miR26A1 resulted in significant downregulation of EZH2 that in turn led to increased apoptosis. In paper IV, we performed DNA methylation profiling in 176 CLL cases assigned to one of 8 major stereotyped subsets (#1-8) in relation to non-subset CLL (n=325) and different normal B-cell subpopulations. Principal component analysis of subset vs. non-subset CLL revealed that U-CLL and M-CLL subsets generally clustered with n-CLL and m-CLL, respectively, indicating common cellular origins. In contrast, subset #2 emerged as the first defined member of the i-CLL subgroup, which in turn alludes to a distinct cellular origin for subset #2 and i-CLL patients. Altogether, this thesis confirms the prognostic significance of RNA and epigenetic-based markers in CLL, provides insight into the mechanism of miRNA deregulation in lymphoid malignancies and further unravels the DNA methylation landscape in stereotyped subsets of CLL. 
  •  
13.
  • Chigrinova, Ekaterina, et al. (författare)
  • Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome
  • 2013
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 122:15, s. 2673-2682
  • Tidskriftsartikel (refereegranskat)abstract
    • Richter syndrome (RS) occurs in up to 15% of patients with chronic lymphocytic leukemia (CLL). Although RS, usually represented by the histologic transformation to a diffuse large B-cell lymphoma (DLBCL), is associated with a very poor outcome, especially when clonally related to the preexisting CLL, the mechanisms leading to RS have not been clarified. To better understand the pathogenesis of RS, we analyzed a series of cases including 59 RS, 28 CLL phase of RS, 315 CLL, and 127 de novo DLBCL. RS demonstrated a genomic complexity intermediate between CLL and DLBCL. Cell-cycle deregulation via inactivation of TP53 and of CDKN2A was a main mechanism in the histologic transformation from CLL phase, being present in approximately one half of the cases, and affected the outcome of the RS patients. A second major subgroup was characterized by the presence of trisomy 12 and comprised one third of the cases. Although RS shared some of the lesions seen in de novo DLBCL, its genomic profile was clearly separate. The CLL phase preceding RS had not a generalized increase in genomic complexity compared with untransformed CLL, but it presented clear differences in the frequency of specific genetic lesions.
  •  
14.
  • Gunnarsson, Rebeqa, et al. (författare)
  • Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia
  • 2011
  • Ingår i: Haematologica. - : Ferrata Storti Foundation (Haematologica). - 1592-8721 .- 0390-6078. ; 96:8, s. 1161-1169
  • Tidskriftsartikel (refereegranskat)abstract
    • Background High-resolution genomic microarrays enable simultaneous detection of copy-number aberrations such as the known recurrent aberrations in chronic lymphocytic leukemia [del(11q), del(13q), del(17p) and trisomy 12], and copy-number neutral loss of heterozygosity. Moreover, comparison of genomic profiles from sequential patients' samples allows detection of clonal evolution. Design and Methods We screened samples from 369 patients with newly diagnosed chronic lymphocytic leukemia from a population-based cohort using 250K single nucleotide polymorphism-arrays. Clonal evolution was evaluated in 59 follow-up samples obtained after 5-9 years. Results At diagnosis, copy-number aberrations were identified in 90% of patients; 70% carried known recurrent alterations, including del(13q) (55%), trisomy 12 (10.5%), del(11q) (10%), and del(17p) (4%). Additional recurrent aberrations were detected on chromosomes 2 (1.9%), 4 (1.4%), 8 (1.6%) and 14 (1.6%). Thirteen patients (3.5%) displayed recurrent copy-number neutral loss of heterozygosity on 13q, of whom 11 had concurrent homozygous del(13q). Genomic complexity and large 13q deletions correlated with inferior outcome, while the former was linked to poor-prognostic aberrations. In the follow-up study, clonal evolution developed in 8/24 (33%) patients with unmutated IGHV, and in 4/25 (16%) IGHV-mutated and treated patients. In contrast, untreated patients with mutated IGHV (n=10) did not acquire additional aberrations. The most common secondary event, del(13q), was detected in 6/12 (50%) of all patients with acquired alterations. Interestingly, aberrations on, for example, chromosome 6q, 8p, 9p and 10q developed exclusively in patients with unmutated IGHV. Conclusions Whole-genome screening revealed a high frequency of genomic aberrations in newly diagnosed chronic lymphocytic leukemia. Clonal evolution was associated with other markers of aggressive disease and commonly included the known recurrent aberrations.
  •  
15.
  •  
16.
  • Jakobsen Falk, Ingrid, et al. (författare)
  • Decreased survival in normal karyotype AML with single-nucleotide polymorphisms in genes encoding the AraC metabolizing enzymes cytidine deaminase and 5'-nucleotidase
  • 2013
  • Ingår i: American Journal of Hematology. - : John Wiley & Sons. - 0361-8609 .- 1096-8652. ; 88:12, s. 1001-1006
  • Tidskriftsartikel (refereegranskat)abstract
    • De novo acute myeloid leukemia with normal karyotype (NK-AML) comprises a large group of patients with no common cytogenetic alterations and with a large variation in treatment response. Single-nucleotide polymorphisms (SNPs) in genes related to the metabolism of the nucleoside analogue AraC, the backbone in AML treatment, might affect drug sensitivity and treatment outcome. Therefore, SNPs may serve as prognostic biomarkers aiding clinicians in individualized treatment decisions, with the aim of improving patient outcomes. We analyzed polymorphisms in genes encoding cytidine deaminase (CDA 79A>C rs2072671 and −451C>T rs532545), 5′-nucleotidase (cN-II 7A>G rs10883841), and deoxycytidine kinase (DCK 3′UTR 948T>C rs4643786) in 205 de novo NK-AML patients. In FLT3-internal tandem duplication (ITD)-positive patients, the CDA 79C/C and −451T/T genotypes were associated with shorter overall survival compared to other genotypes (5 vs. 24 months, P < 0.001 and 5 vs. 23 months, P = 0.015, respectively), and this was most pronounced in FLT3-ITD-positive/NPM1-positive patients. We observed altered in vitro sensitivity to topoisomerase inhibitory drugs, but not to nucleoside analogues, and a decrease in global DNA methylation in cells carrying both CDA variant alleles. A shorter survival was also observed for the cN-II variant allele, but only in FLT3-ITD-negative patients (25 vs. 31 months, P = 0.075). Our results indicate that polymorphisms in genes related to nucleoside analog drug metabolism may serve as prognostic markers in de novo NK-AML
  •  
17.
  • Jakobsen Falk, Ingrid, et al. (författare)
  • Impact of ABCB1 single nucleotide polymorphisms 1236C>T and 2677G>T on overall survival in FLT3 wild-type de novo AML patients with normal karyotype
  • 2014
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 167:5, s. 671-680
  • Tidskriftsartikel (refereegranskat)abstract
    • Drug resistance is a clinically relevant problem in the treatment of acute myeloid leukaemia (AML). We have previously reported a relationship between single nucleotide polymorphisms (SNPs) of ABCB1, encoding the multi-drug transporter P-glycoprotein, and overall survival (OS) in normal karyotype (NK)-AML. Here we extended this material, enabling subgroup analysis based on FLT3 and NPM1 status, to further elucidate the influence of ABCB1 SNPs. De novo NK-AML patients (n = 201) were analysed for 1199G>A, 1236C>T, 2677G>T/A and 3435C>T, and correlations to outcome were investigated. FLT3 wild-type 1236C/C patients have significantly shorter OS compared to patients carrying the variant allele; medians 20 vs. 49 months, respectively, P = 0.017. There was also an inferior outcome in FLT3 wild-type 2677G/G patients compared to patients carrying the variant allele, median OS 20 vs. 35 months, respectively, P = 0.039. This was confirmed in Cox regression analysis. Our results indicate that ABCB1 1236C>T and 2677G>T may be used as prognostic markers to distinguish relatively high risk patients in the intermediate risk FLT3 wild-type group, which may contribute to future individualizing of treatment strategies.
  •  
18.
  • Kanduri, Meena, 1974, et al. (författare)
  • Distinct transcriptional control in major immunogenetic subsets of chronic lymphocytic leukemia exhibiting subset-biased global DNA methylation profiles.
  • 2012
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 7:12, s. 1435-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic lymphocytic leukemia (CLL) can be divided into prognostic subgroups based on the IGHV gene mutational status, and is further characterized by multiple subsets of cases with quasi-identical or stereotyped B cell receptors that also share clinical and biological features. We recently reported differential DNA methylation profiles in IGHV-mutated and IGHV-unmutated CLL subgroups. For the first time, we here explore the global methylation profiles of stereotyped subsets with different prognosis, by applying high-resolution methylation arrays on CLL samples from three major stereotyped subsets: the poor-prognostic subsets #1 (n = 15) and #2 (n = 9) and the favorable-prognostic subset #4 (n = 15). Overall, the three subsets exhibited significantly different methylation profiles, which only partially overlapped with those observed in our previous study according to IGHV gene mutational status. Specifically, gene ontology analysis of the differentially methylated genes revealed a clear enrichment of genes involved in immune response, such as B cell activation (e.g., CD80, CD86 and IL10), with higher methylation levels in subset #1 than subsets #2 and #4. Accordingly, higher expression of the co-stimulatory molecules CD80 and CD86 was demonstrated in subset #4 vs. subset #1, pointing to a key role for these molecules in the crosstalk of CLL subset #4 cells with the microenvironment. In summary, investigation of three prototypic, stereotyped CLL subsets revealed distinct DNA methylation profiles for each subset, which suggests subset-biased patterns of transcriptional control and highlights a key role for epigenetics during leukemogenesis.
  •  
19.
  •  
20.
  • Liljeholm, Maria, 1973- (författare)
  • Congenital Dyserythropoietic Anemia type III (CDA III) : diagnostics, genetics and morbidity
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The Congenital Dyserythropoietic Anemias (CDA) are rare hereditary hemolytic disorders with large bi- to multi-nucleated erythroblasts in the bone marrow. Hemolysis is negative in a direct antiglobulin test (DAT). Based on morphology and clinical picture, three major forms of CDAs, type I, II, and III have been defined. CDA III, dominantly inherited, constitutes the rarest type with a majority of cases belonging to a family in Västerbotten, Sweden. The genetic background of CDA I and CDA II has been linked to mutations in CDAN1 and SEC23B respectively. The mutation of CDA III has been linked to 15q22 in earlier studies.In this project we have defined the causative genetic lesion in two families with CDA III. The novel mutation KIF23 c.2747C>G (p.P916R) was shown to segregate with CDA III in the Swedish and American CDA III families and was absent in 356 healthy controls. KIF23 encodes mitotic kinesin-like protein 1 (MKLP1), which plays a central role in the last step of cytokinesis. RNAi-based knock-down and rescue experiments demonstrated that the p.P916R mutation causes cytokinesis failure in HeLa cells, resulting in increasing number of bi-nuclear cells, consistent with appearance of large multinucleated erythroblasts in CDA III patients. We conclude that CDA III is caused by a mutation in KIF23, encoding MKLP1, a conserved mitotic kinesin crucial for cytokinesis.Flow cytometry with eosin-5´-maleimide (EMA), anti-CD55 and anti-CD59 is commonly used when investigating non-autoimmune hemolytic anemias. Reduced fluorescence of EMA, typically detected in hereditary spherocytosis, is also seen in CDA II, while reduction of CD55 and CD59 characterizes paroxysmal nocturnal hemoglobinuria (PNH). We studied the flow cytometric profile of EMA, CD55, and CD59 on erythrocytes in CDA III. We found no abnormality of the erythrocyte membrane in CDA III and concluded that standard flow cytometry cannot be used to discriminate between CDA III and normal controls.In CDA I and CDA II a majority of patients, including those who are not transfusion dependent, suffer from iron overload, which, according to earlier studies, is not the case in CDA III. We found that individuals of the Västerbotten CDA III family carry mutations in the hemochromatosis (HFE) gene. Three CDA III patients with heterozygous or compound HFE mutations need treatment with phlebotomy due to iron overload. One of them carries heterozygous H63D mutation, which is not reported to lead to iron overload by itself in otherwise healthy individuals. We propose that molecular genetic testing of the HFE gene is indicated in all patients with CDA, including CDA III.
  •  
21.
  •  
22.
  • Malcovati, Luca, et al. (författare)
  • SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts
  • 2015
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 126:2, s. 233-241
  • Tidskriftsartikel (refereegranskat)abstract
    • Refractory anemia with ring sideroblasts (RARS) is a myelodysplastic syndrome (MDS) characterized by isolated erythroid dysplasia and 15% or more bone marrow ring sideroblasts. Ring sideroblasts are found also in other MDS subtypes, such as refractory cytopenia with multilineage dysplasia and ring sideroblasts (RCMD-RS). A high prevalence of somatic mutations of SF3B1 was reported in these conditions. To identify mutation patterns that affect disease phenotype and clinical outcome, we performed a comprehensive mutation analysis in 293 patients with myeloid neoplasm and 1% or more ring sideroblasts. SF3B1 mutations were detected in 129 of 159 cases (81%) of RARS or RCMD-RS. Among other patients with ring sideroblasts, lower prevalence of SF3B1 mutations and higher prevalence of mutations in other splicing factor genes were observed (P < .001). In multivariable analyses, patients with SF3B1 mutations showed significantly better overall survival (hazard ratio [HR], .37; P = .003) and lower cumulative incidence of disease progression (HR = 0.31; P = .018) compared with SF3B1-unmutated cases. The independent prognostic value of SF3B1 mutation was retained in MDS without excess blasts, as well as in sideroblastic categories (RARS and RCMD-RS). Among SF3B1-mutated patients, coexisting mutations in DNA methylation genes were associated with multilineage dysplasia (P = .015) but had no effect on clinical outcome. TP53 mutations were frequently detected in patients without SF3B1 mutation, and were associated with poor outcome. Thus, SF3B1 mutation identifies a distinct MDS subtype that is unlikely to develop detrimental subclonal mutations and is characterized by indolent clinical course and favorable outcome.
  •  
23.
  • Mansouri, Larry, et al. (författare)
  • Functional loss of IκBε leads to NF-κB deregulation in aggressive chronic lymphocytic leukemia.
  • 2015
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 212:6, s. 833-843
  • Tidskriftsartikel (refereegranskat)abstract
    • NF-κB is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-κB pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes IκBε, a negative regulator of NF-κB in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced IκBε protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that IκBε loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-κB deregulation during lymphomagenesis.
  •  
24.
  • Murray, Fiona, 1980- (författare)
  • Stereotyped B Cell Receptors in Chronic Lymphocytic Leukaemia : Implications for Antigen Selection in Leukemogenesis
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Biased immunoglobulin heavy variable (IGHV) gene usage and distinctive B-cell receptor (BCR) features have been reported in chronic lymphocytic leukaemia (CLL), which may reflect clonal selection by antigens during disease development. Furthermore, the IGHV gene mutation status distinguishes two clinical entities of CLL, where patients with unmutated IGHV genes have an inferior prognosis compared to those with mutated IGHV genes. Recently, one subgroup of CLL patients expressing the IGHV3-21 gene was found to display highly similar immunoglobulin (IG) gene features, even within the heavy chain complementarity-determining region 3 (HCDR3). Patients in this subgroup typically had a poor prognosis.In paper I, we aimed to identify further subgroups with restricted BCR features among 346 CLL cases. Six subsets were defined which carried virtually identical BCRs in terms of rearranged heavy and light chain (LC) IG genes and CDR3 length and composition. In paper II, we investigated 90 IGHV3-21 cases from diverse geographical locations. We confirmed the highly restricted HCDR3 characteristics in 56% of patients and a biased usage of the IGLV3-21 gene in 72% of cases. Survival analysis also confirmed the poor outcome of this group, irrespective of IGHV gene mutation status and geographical origin.Papers III and IV involved a large-scale analysis of IGH and IG kappa and lambda (IGK/L) gene rearrangements, to define subsets with ‘stereotyped’ BCRs and also to systematically examine the somatic hypermutation (SHM) features of the IG genes in CLL. We studied a cohort of 1967 IGH and 891 IGK/L gene sequences from 1939 patients from 6 European institutions. Over 5300 IGH and ~4700 IGK/L sequences from non-CLL B cells were used as a control data set. In total, 110 CLL stereotyped subsets were defined according to HCDR3 homology. Striking IGK/L gene biases were also evident within subsets, along with distinctive K/LCDR3 features, such as length and amino acid composition. At cohort level, the patterns of mutation appeared to be consistent with that of a canonical SHM mechanism. However, at a subgroup level, certain stereotyped subsets, e.g. IGHV3-21/IGLV3-21 and IGHV4-34/IGKV2-30 CLL, deviated from this pattern. Furthermore, recurrent ‘stereotyped’ mutations occurred in cases belonging to subsets with restricted HCDR3s, in both IGHV and IGK/LV genes, which were subset- and CLL-biased when compared to non-CLL B cells.In conclusion, our findings implicate antigen selection as a significant factor in the pathogenesis of CLL, particularly in cases carrying stereotyped BCRs. The presence of stereotyped mutations throughout the VH and VL domain also indicates involvement of IG regions other than the CDR3 in antigen recognition. Finally, biased IGK/L gene usage and specific K/LCDR3 features are strong indications that LCs are crucial in shaping the specificity of leukemic BCRs, in association with defined heavy chains.
  •  
25.
  • Pauly, Frida, et al. (författare)
  • Identification of B-cell lymphoma subsets by plasma protein profiling using recombinant antibody microarrays
  • 2014
  • Ingår i: Leukemia Research. - : Elsevier BV. - 0145-2126 .- 1873-5835. ; 38:6, s. 682-690
  • Tidskriftsartikel (refereegranskat)abstract
    • B-cell lymphoma (BCL) heterogeneity represents a key issue, often making the classification and clinical management of these patients challenging. In this pilot study, we outlined the first resolved view of BCL disease heterogeneity on the protein level by deciphering disease-associated plasma biomarkers, specific for chronic lymphocytic leukemia, diffuse large B-cell lymphoma, follicular lymphoma, and mantle cell lymphoma, using recombinant antibody microarrays targeting mainly immunoregulatory proteins. The results showed the BCLs to be heterogeneous, and revealed potential novel subgroups of each BCL. In the case of diffuse large B-cell lymphoma, we also indicated a link between the novel subgroups and survival.
  •  
26.
  •  
27.
  • Rosenquist Brandell, Richard, et al. (författare)
  • Prognostic markers and their clinical applicability in chronic lymphocytic leukemia : where do we stand?
  • 2013
  • Ingår i: Leukemia and Lymphoma. - : Informa UK Limited. - 1042-8194 .- 1029-2403. ; 54:11, s. 2351-2364
  • Forskningsöversikt (refereegranskat)abstract
    • Chronic lymphocytic leukemia (CLL) is a clinically and biologically heterogeneous disease where the majority of patients have an indolent disease course, while others may experience a far more aggressive disease, treatment failure and poor overall survival. During the last two decades, there has been an intense search to find novel biomarkers that can predict prognosis as well as guide treatment decisions. Two of the most reliable molecular prognostic markers, both of which are offered in routine diagnostics, are the immunoglobulin heavy chain variable (IGHV) gene mutational status and fluorescence in situ hybridization (FISH) detection of prognostically relevant genomic aberrations (e.g. 11q-, 13q-, +12 and 17p-). In addition to these markers, a myriad of additional biomarkers have been postulated as potential prognosticators in CLL, on the protein (e.g. CD38, ZAP70, TCL1), the RNA (e.g. LPL, CLLU1, micro-RNAs) and the genomic (e.g. TP53, NOTCH1, SF3B1 and BIRC3 mutations) level. Efforts are now being made to test these novel markers in larger patient cohorts as well as in prospective trials, with the ultimate goal to combine the "best" markers in a "CLL prognostic index" applicable for the individual patient. Although it is clear that these studies have significantly improved our knowledge regarding both prognostication and the biology of the disease, there is still an immediate need for recognizing biomarkers that can predict therapy response, and efforts should now focus on addressing this pertinent issue. In the present article, we review the extensive literature in the field of prognostic markers in CLL, focus on the most clinically relevant markers and discuss future directions regarding biomarkers in CLL.
  •  
28.
  • Sakthikumar, Sharadha (författare)
  • Characterizing the spectrum of somatic alterations in canine and human cancers
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cancers arise as a result of deleterious somatic alterations accumulating in the genome during the process of cell division. These alterations arise either via exposure to mutagens or due to errors occurring during DNA replication. In this thesis, a systematic exploration, from discovery to analyses of somatic alterations in three diverse cancers that affect dogs and humans, was undertaken.In Studies I and II, whole-exome sequencing of dogs affected by the cancers of osteosarcoma and hemangiosarcoma were done to delineate coding mutations that can contribute to their carcinogenesis. Besides, as these cancers mirror the corresponding human disease in clinical manifestation and histological features, a secondary objective was to confirm the molecular drivers found in the canines were also influencing factors in the human cancer(s).In the osteosarcoma investigations with three breeds, we found that tumors show a high frequency of somatic copy-number alterations, affecting key cancer genes. TP53 was the most frequently altered gene, akin to human osteosarcoma. The second most mutated gene, histone methyltransferase SETD2, has known epigenetic roles in multiple cancers but not in osteosarcoma. Our study highlights the strong genetic similarities between human and dog osteosarcoma, suggesting that canine disease may serve as an excellent model for developing treatment strategies in both species.In the hemangiosarcoma study in golden retrievers, putative driver alterations were identified in the tumor suppressor TP53 and in genes involved in the cell cycle regulating PI3K pathway, including PIK3CA and PIK3R1. Furthermore, we find several somatic alterations between the dog hemangiosarcoma and human angiosarcoma overlap, indicating we can use the canine model to apprise the infrequently occurring human disease.In Study III, we implemented whole-genome sequencing methodologies to define both coding and non-coding alterations in the glioblastoma cancer genome. We find the coding somatic alterations recapitulate what has been previously seen for the cancer, including driver alterations in the genes of EGFR, PTEN, and TP53. Significantly though, using the concept of evolutionary constraint, we find an enrichment of non-coding mutations in regulatory regions, around GBM-implicated genes. The mutated regions include splice sites, promoters, and transcription factor binding sites, suggesting the importance of regulatory mutations for the pathogenesis of glioblastoma.Overall, the insights garnered from the above exome- and genome-wide surveys provide novel insights into unraveling some of the complexities associated with somatic genomic alterations in cancer genomes. It also convincingly underscores the benefits of using sequencing technologies to comprehend complex biological diseases.
  •  
29.
  •  
30.
  • Strefford, J. C., et al. (författare)
  • Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia : the case of SF3B1 and subset #2
  • 2013
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 27:11, s. 2196-2199
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have revealed recurrent mutations of the NOTCH1, SF3B1 and BIRC3 genes in chronic lymphocytic leukemia (CLL), especially among aggressive, chemorefractory cases. Nevertheless, it is currently unknown whether their presence may differ in subsets of patients carrying stereotyped B-cell receptors and also exhibiting distinct prognoses. Here, we analyzed the mutation status of NOTCH1, SF3B1 and BIRC3 in three subsets with particularly poor prognosis, that is, subset # 1, # 2 and # 8, aiming to explore links between genetic aberrations and immune signaling. A remarkably higher frequency of SF3B1 mutations was revealed in subset # 2 (44%) versus subset # 1 and # 8 (4.6% and 0%, respectively; P<0.001). In contrast, the frequency of NOTCH1 mutations in subset # 2 was only 8%, lower than the frequency observed in either subset # 1 or # 8 (19% and 14%, respectively; P 0.04 for subset # 1 versus # 2). No associations were found for BIRC3 mutations that overall were rare. The apparent non-random association of certain mutations with stereotyped CLL subsets alludes to subset-biased acquisition of genomic aberrations, perhaps consistent with particular antigen/antibody interactions. These novel findings assist in unraveling specific mechanisms underlying clinical aggressiveness in poor-prognostic stereotyped subsets, with far-reaching implications for understanding their clonal evolution and implementing biologically oriented therapy.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  • Sutton, Lesley-Ann, et al. (författare)
  • Targeted next-generation sequencing in chronic lymphocytic leukemia : a high-throughput yet tailored approach will facilitate implementation in a clinical setting
  • 2015
  • Ingår i: Haematologica. - : Ferrata Storti Foundation (Haematologica). - 0390-6078 .- 1592-8721. ; 100:3, s. 370-376
  • Tidskriftsartikel (refereegranskat)abstract
    • Next- generation sequencing has revealed novel recurrent mutations in chronic lymphocytic leukemia, particularly in patients with aggressive disease. Here, we explored targeted re- sequencing as a novel strategy to assess the mutation status of genes with prognostic potential. To this end, we utilized HaloPlex targeted enrichment technology and designed a panel including nine genes: ATM, BIRC3, MYD88, NOTCH1, SF3B1 and TP53, which have been linked to the prognosis of chronic lymphocytic leukemia, and KLHL6, POT1 and XPO1, which are less characterized but were found to be recurrently mutated in various sequencing studies. A total of 188 chronic lymphocytic leukemia patients with poor prognostic features ( unmutated IGHV, n= 137; IGHV3- 21 subset # 2, n= 51) were sequenced on the HiSeq 2000 and data were analyzed using well- established bioinformatics tools. Using a conservative cutoff of 10% for the mutant allele, we found that 114/ 180 ( 63%) patients carried at least one mutation, with mutations in ATM, BIRC3, NOTCH1, SF3B1 and TP53 accounting for 149/ 177 ( 84%) of all mutations. We selected 155 mutations for Sanger validation ( variant allele frequency, 10- 99%) and 93% ( 144/ 155) of mutations were confirmed; notably, all 11 discordant variants had a variant allele frequency between 11- 27%, hence at the detection limit of conventional Sanger sequencing. Technical precision was assessed by repeating the entire HaloPlex procedure for 63 patients; concordance was found for 77/ 82 ( 94%) mutations. In summary, this study demonstrates that targeted next- generation sequencing is an accurate and reproducible technique potentially suitable for routine screening, eventually as a stand- alone test without the need for confirmation by Sanger sequencing.
  •  
35.
  • Sutton, Lesley-Ann, et al. (författare)
  • The complex interplay between cell-intrinsic and cell-extrinsic factors driving the evolution of chronic lymphocytic leukemia
  • 2015
  • Ingår i: Seminars in Cancer Biology. - : Elsevier BV. - 1044-579X .- 1096-3650. ; 34, s. 22-35
  • Forskningsöversikt (refereegranskat)abstract
    • With the advent of next-generation sequencing, the mutational landscape of chronic lymphocytic leukemia (CLL) was rapidly unraveled with the discovery of recurrently mutated genes affecting key signaling pathways. Although the majority of these mutations are relatively infrequent at diagnosis (at least at the population-level) they tend to accumulate as the disease progresses or at relapse. Besides TP53 aberrations, several of these newly mutated genes have consistently been linked to shorter time to progression/treatment and poor overall survival (e.g. NOTCH1, SF3B1, BIRC3). These findings coupled with the diverse (sub)clonal evolution trajectory followed by CLL cells, at least in treated patients, alludes to their role as major subclonal driver events for disease progression. Together with the dependence of CLL cells on B-cell receptor (BcR) signaling and antigen stimulation, this reveals a disease within which both cell-intrinsic and cell-extrinsic factors conspire to fuel leukemogenesis, and we have only recently begun to understand their intricate interplay. This was further highlighted with the efficiency of new targeted therapy interfering with the microenvironment and in particular with BcR signaling. Further investigations will now be paramount in order to individualize treatment, to define optimal combination therapies and to integrate molecular characterization for response prediction, in this, as yet, incurable disease.
  •  
36.
  •  
37.
  • Thorsélius, Mia, 1973- (författare)
  • Immunoglobulin Gene Analysis in Different B cell Lymphomas : With Focus on Cellular Origin and Antigen Selection
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • B cell lymphoma (BCL) comprises a biologically and clinically heterogeneous group of tumors deriving from different stages of B cell development. The immunoglobulin (Ig) variable heavy chain (VH) gene rearrangement is unique for each BCL and can be used to reveal cellular origin, to study signs of antigen selection and to quantify tumor cell load.The normal counterpart of mantle cell lymphoma (MCL) has been postulated to be a naïve B cell and in hairy cell leukemia (HCL) it is considered to be a post-germinal centre B cell. We analyzed the VH gene rearrangements in 110 MCLs and 32 HCLs by PCR amplification and sequencing. Most MCLs (84%) displayed VH genes lacking somatic hypermutation (SHM), thus correlating to a naïve cell origin, whereas a subgroup (16%) showed SHM, implying derivation from a more differentiated B cell. In HCL, a majority of cases (84%) displayed SHM with signs of intraclonal heterogeneity and 16% had unmutated VH genes, thus questioning the cell of origin in HCL. Biased usage of particular VH genes was detected in both HCL (VH3-30) and MCL (VH3-21 and VH4-34), which indicates that antigen selection may be involved in lymphoma development. Furthermore, VH3-21+ MCLs showed a highly restricted Vλ3-19 gene use and they also had a superior outcome compared to other MCLs.Rearrangement analysis of 67 VH3-21+ chronic lymphocytic leukemia (CLL) cases from three different countries verified, regardless of geographical origin, the short and highly homologous complementarity determining region 3s and the strikingly biased usage of the Vλ2-14 gene (75%), as previously reported in CLL. This further supports that antigen selection by a common antigenic epitope may have occurred in VH3-21+ CLLs. In an autologous transplantation study of 30 multiple myeloma patients, we quantified the tumor content in the autografts before and after stem cell selection using clone-specific PCR. We conclude that stem cell selection reduced the number of clonal cells linearly, but purging could not totally eliminate the tumor cells from the graft, thus increasing the risk of a relapse.Altogether, our data allowed us to define new BCL subsets and to gain insights into the potential role of antigen selection in BCL development as well as the monitoring of tumor cell load using Ig gene rearrangements analysis.
  •  
38.
  •  
39.
  • Vardi, Anna, et al. (författare)
  • Immunogenetic Studies of Chronic Lymphocytic Leukemia : Revelations and Speculations about Ontogeny and Clinical Evolution
  • 2014
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 74:16, s. 4211-4216
  • Forskningsöversikt (refereegranskat)abstract
    • Over the last decade, immunogenetic analysis of B-cell receptor immunoglobulins (BcR IG) has proved instrumental in dissecting chronic lymphocytic leukemia (CLL) pathogenesis. Initially, it was the finding that the level of somatic hypermutations in rearranged IG heavy-chain genes could define two CLL subtypes associated with a different clinical course that drew attention. As the years ensued, this not only continued to hold strong, but also revealed an unprecedented BcR restriction (aptly coined as "stereotypy"), thus cementing the idea that antigenic elements select the leukemic clones. With all this in mind, in the present review, we focus on the CLL BcR IG, a molecule that clearly lies at the heart of disease pathogenesis, and attempt to distil from past and emerging biologic knowledge the most relevant aspects in the context of the immunogenetics of CLL, while at the same time provoking questions that remain unanswered. We juxtapose CLL with mutated BcR IGs against CLL with unmutated BcR IGs due to their striking clinicobiologic differences; however, when considering ontogeny, common derivation of the two mutational subtypes cannot be excluded. The issue of stereotypy is intertwined throughout and we also raise the subject of isotype-switched CLL, which, despite its rarity, contributes intriguing ontogenetic hints.  
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  • Xochelli, Aliki, et al. (författare)
  • Molecular Evidence for Antigen Drive in the Natural History of Mantle Cell Lymphoma
  • 2015
  • Ingår i: American Journal of Pathology. - : Elsevier BV. - 0002-9440 .- 1525-2191. ; 185:6, s. 1740-1748
  • Tidskriftsartikel (refereegranskat)abstract
    • To further our understanding about antigen involvement in mantle cell Lymphoma (MCL), we analyzed the expression levels of activation-induced cytidine deaminase (AID), a key player in B-cell responses to antigen triggering, in 133 MCL cases; assessed the functionality of AID by evaluating in vivo class switch recombination in 52 MCL cases; and sought for indications of ongoing antigen interactions by exploring intraclonal diversification within 14 MCL cases. The AID full-length transcript and the most frequent splice variants (AID-Delta E4a, AID-Delta E) were detected in 128 (96.2%), 96 (72.2%), and 130 cases (97.7%), respectively. Higher AID full-Length transcript levels were significantly associated (P < 0.001) with Lack of somatic hypermutation within the clonotypic immunoglobulin heavy variable (IGHV) genes. Median AID transcript levels were higher in lymph node material compared to cases in which peripheral blood was analyzed, implying that clonal behavior is influenced by the microenvironment. Switched tumor-derived IGHV-IGHD-IGHJ transcripts were identified in 5 of 52 cases (9.6%), all of which displayed somatic hypermutation and AID-mRNA expression. Finally, although most cases exhibited low levels of intraclonal diversification, analysis of the mutational activity revealed a precise targeting of somatic hypermutation indicative of an active, ongoing interaction with antigen(s). Collectively, these findings strongly allude to antigen involvement in the natural history of MCL, further challenging the notion of antigen naivety.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-43 av 43
Typ av publikation
tidskriftsartikel (31)
doktorsavhandling (7)
forskningsöversikt (4)
annan publikation (1)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (22)
refereegranskat (21)
Författare/redaktör
Rosenquist, Richard ... (23)
Stamatopoulos, Kosta ... (16)
Rosenquist Brandell, ... (13)
Mansouri, Larry (11)
Sutton, Lesley-Ann (10)
Ghia, Paolo (10)
visa fler...
Pospisilova, Sarka (8)
Davi, Frederic (7)
Sutton, L. A. (7)
Baliakas, Panagiotis (7)
Juliusson, Gunnar (6)
Stamatopoulos, K (6)
Agathangelidis, Andr ... (6)
Langerak, Anton W. (6)
Belessi, Chrysoula (6)
Hadzidimitriou, A (5)
Anagnostopoulos, A (5)
Belessi, C (5)
Oscier, D. (5)
Hadzidimitriou, Anas ... (5)
Anagnostopoulos, Ach ... (5)
Cortese, Diego (5)
Smedby, Karin E. (4)
Pospisilova, S (4)
Chiorazzi, N (4)
Davi, F (4)
Ghia, P (4)
Agathangelidis, A (4)
Panagiotidis, P. (4)
Scarfo, Lydia (4)
Yan, Xiao-Jie (4)
Davis, Zadie (4)
Geisler, Christian (4)
Chiorazzi, Nicholas (4)
Geisler, C. (4)
Plevova, Karla (4)
Oscier, David (4)
Stalika, Evangelia (4)
Davis, Z (3)
Plevova, K. (3)
Chatzouli, M. (3)
Langerak, A. W. (3)
Cahill, Nicola (3)
Pedersen, Lone Bredo (3)
Hjalgrim, Henrik (3)
Xochelli, Aliki (3)
Panagiotidis, Panagi ... (3)
Strefford, Jonathan ... (3)
Boudjogra, Myriam (3)
Rossi, Davide (3)
visa färre...
Lärosäte
Uppsala universitet (40)
Karolinska Institutet (13)
Lunds universitet (9)
Göteborgs universitet (3)
Umeå universitet (3)
Linköpings universitet (3)
visa fler...
Kungliga Tekniska Högskolan (2)
visa färre...
Språk
Engelska (42)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (39)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy