SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bratanis Eleni) "

Search: WFRF:(Bratanis Eleni)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bahnan, Wael, et al. (author)
  • A human monoclonal antibody bivalently binding two different epitopes in streptococcal M protein mediates immune function
  • 2023
  • In: EMBO Molecular Medicine. - : EMBO. - 1757-4684 .- 1757-4676. ; 15:2, s. 1-21
  • Journal article (peer-reviewed)abstract
    • Group A streptococci have evolved multiple strategies to evade human antibodies, making it challenging to create effective vaccines or antibody treatments. Here, we have generated antibodies derived from the memory B cells of an individual who had successfully cleared a group A streptococcal infection. The antibodies bind with high affinity in the central region of the surface-bound M protein. Such antibodies are typically non-opsonic. However, one antibody could effectively promote vital immune functions, including phagocytosis and in vivo protection. Remarkably, this antibody primarily interacts through a bivalent dual-Fab cis mode, where the Fabs bind to two distinct epitopes in the M protein. The dual-Fab cis-binding phenomenon is conserved across different groups of M types. In contrast, other antibodies binding with normal single-Fab mode to the same region cannot bypass the M protein's virulent effects. A broadly binding, protective monoclonal antibody could be a candidate for anti-streptococcal therapy. Our findings highlight the concept of dual-Fab cis binding as a means to access conserved, and normally non-opsonic regions, regions for protective antibody targeting.
  •  
2.
  • Bratanis, Eleni, et al. (author)
  • A novel broad-spectrum elastase-like serine protease from the predatory bacterium bdellovibrio bacteriovorus facilitates elucidation of site-specific IgA glycosylation pattern
  • 2019
  • In: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 10:MAY
  • Journal article (peer-reviewed)abstract
    • The increased interest in predatory bacteria due to their ability to kill antibiotic resistant bacteria has also highlighted their inherent plethora of hydrolytic enzymes, and their potential as natural sources of novel therapeutic agents and biotechnological tools. Here, we have identified and characterized a novel protease from the predatory bacterium Bdellovibrio bacteriovorus: BspE (Bdellovibrio elastase-like serine protease). Mapping preferential sites of proteolytic activity showed a single proteolytic cleavage site of native plasma IgA (pIgA) in the Fc-tail; as well as in the secretory component (SC) of secretory IgA (SIgA). Proteolysis of other native immunoglobulins and plasma proteins was either absent (IgG1 and 2, IgM, albumin and orosomucoid) or unspecific with multiple cleavage sites (IgG3 and 4, IgE, IgD). BspE displayed a broad activity against most amino acid bonds in shorter peptides and denatured proteins, with a slight preference for hydrolysis C-terminal of Y, V, F, S, L, R, P, E, and K. BspE autoproteolysis results in numerous cleavage products sustaining activity for more than 6 h. The enzymatic activity remained stable at pH 5.0-9.0 but was drastically reduced in the presence of MnCl2 and completely inhibited by ZnCl2. The hydrolysis of pIgA was subsequently utilized for the specific glycan characterization of the released pIgA Fc-tail (Asn459). Besides contributing to the basic knowledge of Bdellovibrio biology and proteases, we propose that BspE could be used as a potential tool to investigate the importance, and biological function of the pIgA Fc-tail.
  •  
3.
  • Bratanis, Eleni (author)
  • Bacterial antibody hydrolyzing enzymes – as bacterial virulence factors and biotechnological tools
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • Antibodies are an essential part of the human immune system, and antibody mediated immunity has been an area of interest for many researchers for almost a century. An accumulation of knowledge regarding antibody structure, glycosylation and receptor interactions has contributed to the current understanding of antibody mediated immunity. It has more recently become evident how bacteria and other microorganisms evade host recognition and eradication through specific antibody degradation or modification. The importance of antibody glycosylation and how glycan modification can fine-tune the elicited immune response has also contributed to the development of antibody-based drugs with improved clinical efficacy. In turn these insights have paved the way and created a need for the development of biotechnological methods and tools to specifically engineer antibodies with defined properties, for analysis to ensure quality and safety, and for improved antibody purification.This thesis highlights the importance of glycosylation for antibody function and presents different aspects and applications of antibody modifications by bacteria. We show, for the first time, activity of the IgG-specific Streptococcal endoglycosidase EndoS during Streptococcus pyogenes infection, clearly demonstrating that EndoS contributes to S. pyogenes pathogenesis and bacterial survival in the context of adaptive immunity. Further this thesis presents the use of bacterial enzymes as antibody modifying tools and their potential as binding reagents for selective antibody purification. The identification and characterization of two novel proteases, BspK and BspE exhibiting unique IgG and IgA cleavage profiles respectively, from Bdellovibrio bacteriovorus highlights the potential of using Bdellovibrio as a source for the identification of novel enzymes with biotechnological applications. Finally, I present the development of a novel method for selective antibody purification, using the inactive variants of the bacterial enzymes EndoS and EndoS2, ensuring the purification of native, correctly folded and modified antibodies.
  •  
4.
  • Bratanis, Eleni, et al. (author)
  • Biotechnological Potential of Bdellovibrio and Like Organisms and Their Secreted Enzymes
  • 2020
  • In: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 11
  • Research review (peer-reviewed)abstract
    • Bdellovibrio and like organisms (BALOs) are obligate predatory bacteria that selectively prey on a broad range of Gram-negative bacteria, including multidrug-resistant human pathogens. Due to their unique lifestyle, they have been long recognized as a potential therapeutic and biocontrol agent. Research on BALOs has rapidly grown over the recent decade, resulting in many publications concerning molecular details of bacterial predation as well as applications thereof in medicine and biotechnology. This review summarizes the current knowledge on biotechnological potential of obligate predatory bacteria and their secreted enzymes.
  •  
5.
  • Bratanis, Eleni, et al. (author)
  • BspK, a serine protease from the predatory bacterium Bdellovibrio bacteriovorus with utility for analysis of therapeutic antibodies
  • 2017
  • In: Applied and Environmental Microbiology. - 0099-2240. ; 83:4
  • Journal article (peer-reviewed)abstract
    • The development of therapeutic and diagnostic antibodies is a rapidly growing field of research, being the fastest expanding group of products on the pharmaceutical market, and appropriate quality controls are crucial for their application. We have identified and characterized the serine protease termed BspK (Bdellovibrio serine protease K) from Bdellovibrio bacteriovorus and here show its activity on antibodies. Mutation of the serine residue at position 230 rendered the protease inactive. Further investigations of BspK enzymatic characteristics revealed autoproteolytic activity, resulting in numerous cleavage products. Two of the autoproteolytic cleavage sites in the BspK fusion protein were investigated in more detail and corresponded to cleavage after K28 and K210 in the N- and C-terminal parts of BspK, respectively. Further, BspK displayed stable enzymatic activity on IgG within the pH range of 6.0 to 9.5 and was inhibited in the presence of ZnCl2. BspK demonstrated preferential hydrolysis of human IgG1 compared to other immunoglobulins and isotypes, with hydrolysis of the heavy chain at position K226 generating two separate Fab fragments and an intact IgG Fc domain. Finally, we show that BspK preferentially cleaves its substrates C-terminally to lysines similar to the protease LysC. However, BspK displays a unique cleavage profile compared to several currently used proteases on the market.
  •  
6.
  • Izadi, Arman, et al. (author)
  • The hinge-engineered IgG1-IgG3 hybrid subclass IgGh47 potently enhances Fc-mediated function of anti-streptococcal and SARS-CoV-2 antibodies
  • 2024
  • In: Nature Communications. - 2041-1723. ; 15, s. 1-22
  • Journal article (peer-reviewed)abstract
    • Streptococcus pyogenes can cause invasive disease with high mortality despite adequate antibiotic treatments. To address this unmet need, we have previously generated an opsonic IgG1 monoclonal antibody, Ab25, targeting the bacterial M protein. Here, we engineer the IgG2-4 subclasses of Ab25. Despite having reduced binding, the IgG3 version promotes stronger phagocytosis of bacteria. Using atomic simulations, we show that IgG3’s Fc tail has extensive movement in 3D space due to its extended hinge region, possibly facilitating interactions with immune cells. We replaced the hinge of IgG1 with four different IgG3-hinge segment subclasses, IgGhxx. Hinge-engineering does not diminish binding as with IgG3 but enhances opsonic function, where a 47 amino acid hinge is comparable to IgG3 in function. IgGh47 shows improved protection against S. pyogenes in a systemic infection mouse model, suggesting that IgGh47 has promise as a preclinical therapeutic candidate. Importantly, the enhanced opsonic function of IgGh47 is generalizable to diverse S. pyogenes strains from clinical isolates. We generated IgGh47 versions of anti-SARS-CoV-2 mAbs to broaden the biological applicability, and these also exhibit strongly enhanced opsonic function compared to the IgG1 subclass. The improved function of the IgGh47 subclass in two distant biological systems provides new insights into antibody function.
  •  
7.
  • Mohanty, Tirthankar, et al. (author)
  • A pharmacoproteomic landscape of organotypic intervention responses in Gram-negative sepsis
  • 2023
  • In: Nature Communications. - 2041-1723. ; 14, s. 1-17
  • Journal article (peer-reviewed)abstract
    • Sepsis is the major cause of mortality across intensive care units globally, yet details of accompanying pathological molecular events remain unclear. This knowledge gap has resulted in ineffective biomarker development and suboptimal treatment regimens to prevent and manage organ dysfunction/damage. Here, we used pharmacoproteomics to score time-dependent treatment impact in a murine Escherichia coli sepsis model after administering beta-lactam antibiotic meropenem (Mem) and/or the immunomodulatory glucocorticoid methylprednisolone (Gcc). Three distinct proteome response patterns were identified, which depended on the underlying proteotype for each organ. Gcc enhanced some positive proteome responses of Mem, including superior reduction of the inflammatory response in kidneys and partial restoration of sepsis-induced metabolic dysfunction. Mem introduced sepsis-independent perturbations in the mitochondrial proteome that Gcc counteracted. We provide a strategy for the quantitative and organotypic assessment of treatment effects of candidate therapies in relationship to dosing, timing, and potential synergistic intervention combinations during sepsis.
  •  
8.
  • Nägeli, Andreas, et al. (author)
  • Streptococcus pyogenes evades adaptive immunity through specific IgG glycan hydrolysis
  • 2019
  • In: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 216:7, s. 1615-1629
  • Journal article (peer-reviewed)abstract
    • Streptococcus pyogenes (Group A streptococcus; GAS) is a human pathogen causing diseases from uncomplicated tonsillitis to life-threatening invasive infections. GAS secretes EndoS, an endoglycosidase that specifically cleaves the conserved N-glycan on IgG antibodies. In vitro, removal of this glycan impairs IgG effector functions, but its relevance to GAS infection in vivo is unclear. Using targeted mass spectrometry, we characterized the effects of EndoS on host IgG glycosylation during the course of infections in humans. Substantial IgG glycan hydrolysis occurred at the site of infection and systemically in the severe cases. We demonstrated decreased resistance to phagocytic killing of GAS lacking EndoS in vitro and decreased virulence in a mouse model of invasive infection. This is the first described example of specific bacterial IgG glycan hydrolysis during infection and thereby verifies the hypothesis that EndoS modifies antibodies in vivo. This mechanisms of immune evasion could have implications for treatment of severe GAS infections and for future efforts at vaccine development.
  •  
9.
  • Toledo, Alejandro Gomez, et al. (author)
  • Pathogen-driven degradation of endogenous and therapeutic antibodies during streptococcal infections
  • 2023
  • In: Nature Communications. - 2041-1723. ; 14, s. 1-16
  • Journal article (peer-reviewed)abstract
    • Group A streptococcus (GAS) is a major bacterial pathogen responsible for both local and systemic infections in humans. The molecular mechanisms that contribute to disease heterogeneity remain poorly understood. Here we show that the transition from a local to a systemic GAS infection is paralleled by pathogen-driven alterations in IgG homeostasis. Using animal models and a combination of sensitive proteomics and glycoproteomics readouts, we documented the progressive accumulation of IgG cleavage products in plasma, due to extensive enzymatic degradation triggered by GAS infection in vivo. The level of IgG degradation was modulated by the route of pathogen inoculation, and mechanistically linked to the combined activities of the bacterial protease IdeS and the endoglycosidase EndoS, upregulated during infection. Importantly, we show that these virulence factors can alter the structure and function of exogenous therapeutic IgG in vivo. These results shed light on the role of bacterial virulence factors in shaping GAS pathogenesis, and potentially blunting the efficacy of antimicrobial therapies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view