SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brath M.) "

Sökning: WFRF:(Brath M.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brath, M., et al. (författare)
  • Retrieval of an ice water path over the ocean from ISMAR and MARSS millimeter and submillimeter brightness temperatures
  • 2018
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 11:1, s. 611-632
  • Tidskriftsartikel (refereegranskat)abstract
    • A neural-network-based retrieval method to determine the snow ice water path (SIWP), liquid water path (LWP), and integrated water vapor (IWV) from millimeter and submillimeter brightness temperatures, measured by using airborne radiometers (ISMAR and MARSS), is presented. The neural networks were trained by using atmospheric profiles from the ICON numerical weather prediction (NWP) model and by radiative transfer simulations using the Atmospheric Radiative Transfer Simulator (ARTS). The basic performance of the retrieval method was analyzed in terms of offset (bias) and the median fractional error (MFE), and the benefit of using submillimeter channels was studied in comparison to pure microwave retrievals. The retrieval is offset-free for SIWP > 0.01kgm -2 , LWP > 0:1kgm -2 , and IWV > 3kgm -2 . The MFE of SIWP decreases from 100% at SIWPD 0.01kgm -2 to 20% at SIWPD 1kgm -2 and the MFE of LWP from 100% at LWP D 0.05kgm -2 to 30% at LWPD 1kgm -2 . The MFE of IWV for IWV > 3kgm -2 is 5 to 8%. The SIWP retrieval strongly benefits from submillimeter channels, which reduce the MFE by a factor of 2, compared to pure microwave retrievals. The IWV and the LWP retrievals also benefit from submillimeter channels, albeit to a lesser degree. The retrieval was applied to ISMAR and MARSS brightness temperatures from FAAM flight B897 on 18 March 2015 of a precipitating frontal system west of the coast of Iceland. Considering the given uncertainties, the retrieval is in reasonable agreement with the SIWP, LWP, and IWV values simulated by the ICON NWP model for that flight. A comparison of the retrieved IWV with IWV from 12 dropsonde measurements shows an offset of 0:5kgm -2 and an RMS difference of 0:8kgm -2 , showing that the retrieval of IWV is highly effective even under cloudy conditions.
  •  
2.
  • Buehler, S.A., et al. (författare)
  • A New Halocarbon Absorption Model Based on HITRAN Cross-Section Data and New Estimates of Halocarbon Instantaneous Clear-Sky Radiative Forcing
  • 2022
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 14:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The article describes a new practical model for the infrared absorption of chlorofluorocarbons and other gases with dense spectra, based on high-resolution transmission molecular absorption database (HITRAN) absorption cross-sections. The model is very simple, consisting of frequency-dependent polynomial coefficients describing the pressure and temperature dependence of absorption. Currently it is implemented for the halocarbon species required by the Radiative Forcing Model Intercomparison Project. In cases where cross-section data is available at a range of different temperatures and pressures, this approach offers practical advantages compared to previously available options, and is traceable, since the polynomial coefficients follow directly from the laboratory spectra. The new model is freely available and has several important applications, notably in remote sensing and in developing advanced radiation schemes for global circulation models that include halocarbon absorption. For demonstration, the model is applied to the problem of computing instantaneous clear-sky halocarbon radiative efficiencies and present day radiative forcing. Results are in reasonable agreement with earlier assessments that were carried out with the less explicit Pinnock method, and thus broadly validate that method. Plain Language Summary Chlorofluorocarbons and other related gases have dense and complicated absorption spectra that can be measured in the laboratory. We bring such measurements to a form that can be used for simulations of the transfer of radiation through the atmosphere. Then we use the new model to calculate new estimates of the climate impact of these man-made gases. The results broadly validate earlier calculations that were done with a less explicit method.
  •  
3.
  •  
4.
  • Eriksson, Patrick, 1964, et al. (författare)
  • A general database of hydrometeor single scattering properties at microwave and sub-millimetre wavelengths
  • 2018
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516 .- 1866-3508. ; 10:3, s. 1301-1326
  • Tidskriftsartikel (refereegranskat)abstract
    • A main limitation today in simulations and inversions of microwave observations of ice hydrometeors (cloud ice, snow, hail, etc.) is the lack of data describing the interaction between electromagnetic waves and the particles. To improve the situation, the development of a comprehensive dataset of such scattering properties has been started. The database aims at giving a broad coverage in both frequency (1 to 886 GHz) and temperature (190 to 270 K), to support both passive and active current and planned measurements, and to provide data corresponding to the full Stokes vector. This first version of the database is restricted to totally random particle orientation. Data for 34 particle sets, i.e. habits, have been generated. About 17 of the habits can be classified as single crystals, three habits can be seen as heavily rimed particles, and the remaining habits are aggregates of different types, e.g. snow and hail. The particle sizes considered vary between the habits, but maximum diameters of 10 and 20 mm are typical values for the largest single crystal and aggregate particles, respectively, and the number of sizes per habit is at least 30. Particles containing liquid water are also inside the scope of the database, but this phase of water is so far only represented by a liquid sphere habit. The database is built upon the netCDF4 file format. Interfaces to browse, extract and convert data for selected radiative transfer models are provided in MATLAB and Python. The database and associated tools are publicly available from Zenodo (https://doi.org/10.5281/zenodo.1175572, Ekelund et al., 2018b), and https://doi.org/10.5281/zenodo.1175588, Mendrok et al., 2018, respectively). Planned extensions include non-spherical raindrops, melting particles and a second orientation case that can be denoted as azimuthally random.
  •  
5.
  •  
6.
  • Pfreundschuh, Simon, 1989, et al. (författare)
  • Synergistic radar and radiometer retrievals of ice hydrometeors
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:8, s. 4219-4245
  • Tidskriftsartikel (refereegranskat)abstract
    • Remote sensing observations at sub-millimeter wavelengths provide higher sensitivity to small hydrometeors and low water content than observations at millimeter wavelengths, which are traditionally used to observe clouds and precipitation. They are employed increasingly in field campaigns to study cloud microphysics and will be integrated into the global meteorological observing system to measure the global distribution of ice in the atmosphere with the launch of the Ice Cloud Imager (ICI) radiometer on board the second generation of European operational meteorological satellites (Metop-SG). Observations at these novel wavelengths provide valuable information not only on their own but also in combination with complementary observations at other wavelengths. This study investigates the potential of combining passive sub-millimeter radiometer observations with a hypothetical W-band cloud radar for the retrieval of frozen hydrometeors. An idealized cloud model is used to investigate the information content of the combined observations and establish their capacity to constrain the microphysical properties of ice hydrometeors. A synergistic retrieval algorithm for airborne observations is proposed and applied to simulated observations from a cloud-resolving model. Results from the synergistic retrieval are compared to equivalent radar- and passive-only implementations in order to assess the benefits of the synergistic sensor configuration. The impact of the assumed ice particle shape on the retrieval results is assessed for all retrieval implementations. We find that the combined observations better constrain the microphysical properties of ice hydrometeors, which reduces uncertainties in retrieved ice water content and particle number concentrations for suitable choices of the ice particle model. Analysis of the retrieval information content shows that, although the radar contributes the largest part of the information in the combined retrieval, the radiometer observations provide complementary information over a wide range of atmospheric states. Furthermore, the combined observations yield slightly improved retrievals of liquid cloud water in mixed-phase clouds, pointing towards another potential application of combined radar-radiometer observations.
  •  
7.
  • Pfreundschuh, Simon, 1989, et al. (författare)
  • Synergistic radar and sub-millimeter radiometer retrievals of ice hydrometeors in mid-latitude frontal cloud systems
  • 2022
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 15:3, s. 677-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate measurements of ice hydrometeors are required to improve the representation of clouds and precipitation in weather and climate models. In this study, a newly developed, synergistic retrieval algorithm that combines radar with passive millimeter and sub-millimeter observations is applied to observations of three frontally generated, mid-latitude cloud systems in order to validate the retrieval and assess its capabilities to constrain the properties of ice hydrometeors. To account for uncertainty in the assumed shapes of ice particles, the retrieval is run multiple times while the shape is varied. Good agreement with in situ measurements of ice water content and particle concentrations for particle maximum diameters larger than 200ĝ€¯μm is found for one of the flights for the large plate aggregate and the six-bullet rosette shapes. The variational retrieval fits the observations well, although small systematic deviations are observed for some of the sub-millimeter channels pointing towards issues with the sensor calibration or the modeling of gas absorption. For one of the flights the quality of the fit to the observations exhibits a weak dependency on the assumed ice particle shape, indicating that the employed combination of observations may provide limited information on the shape of ice particles in the observed clouds. Compared to a radar-only retrieval, the results show an improved sensitivity of the synergistic retrieval to the microphysical properties of ice hydrometeors at the base of the cloud. Our findings indicate that the synergy between active and passive microwave observations may improve remote-sensing measurements of ice hydrometeors and thus help to reduce uncertainties that affect currently available data products. Due to the increased sensitivity to their microphysical properties, the retrieval may also be a valuable tool to study ice hydrometeors in field campaigns. The good fits obtained to the observations increase confidence in the modeling of clouds in the Atmospheric Radiative Transfer Simulator and the corresponding single scattering database, which were used to implement the retrieval forward model. Our results demonstrate the suitability of these tools to produce realistic simulations for upcoming sub-millimeter sensors such as the Ice Cloud Image or the Arctic Weather Satellite.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy