SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brenerová Petra) "

Sökning: WFRF:(Brenerová Petra)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brenerová, Petra, et al. (författare)
  • Pure non-dioxin-like PCB congeners suppress induction of AhR-dependent endpoints in rat liver cells
  • 2016
  • Ingår i: Environmental Science and Pollution Research. - : Springer. - 0944-1344 .- 1614-7499. ; 23:3, s. 2099-2107
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative potencies of non-ortho-substituted coplanar polychlorinated biphenyl (PCB) congeners to activate the aryl hydrocarbon receptor (AhR) and to cause the AhR-dependent toxic events are essential for their risk assessment. Since some studies suggested that abundant non-dioxin-like PCB congeners (NDL-PCBs) may alter the AhR activation by PCB mixtures and possibly cause non-additive effects, we evaluated potential suppressive effects of NDL-PCBs on AhR activation, using a series of 24 highly purified NDL-PCBs. We investigated their impact on the model AhR agonist-induced luciferase reporter gene expression in rat hepatoma cells and on induction of CYP1A1/1B1 mRNAs and deregulation of AhR-dependent cell proliferation in rat liver epithelial cells. PCBs 128, 138, and 170 significantly suppressed AhR activation (with IC50 values from 1.4 to 5.6 mu M), followed by PCBs 28, 47, 52, and 180; additionally, PCBs 122, 153, and 168 showed low but still significant potency to reduce luciferase activity. Detection of CYP1A1 mRNA levels in liver epithelial cells largely confirmed these results for the most abundant NDL-PCBs, whereas the other AhR-dependent events (CYP1B1 mRNA expression, induction of cell proliferation in confluent cells) were less sensitive to NDL-PCBs, thus indicating a more complex regulation of these endpoints. The present data suggest that some NDL-PCBs could modulate overall dioxin-like effects in complex mixtures.
  •  
2.
  • Larsson, Malin, et al. (författare)
  • Consensus Toxicity Factors for Polychlorinated Dibenzo-p-dioxins, Dibenzofurans, and Biphenyls Combining in Silico Models and, Extensive in Vitro Screening of AhR-Mediated Effects in Human and Rodent Cells
  • 2015
  • Ingår i: Chemical Research in Toxicology. - : American Chemical Society (ACS). - 0893-228X .- 1520-5010. ; 28:4, s. 641-650
  • Tidskriftsartikel (refereegranskat)abstract
    • Consensus toxicity factors (CTFs) were developed as a novel approach to establish toxicity factors for risk assessment of dioxin-like compounds (DLCs). Eighteen polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs), and biphenyls (PCBs) with assigned World Health Organization toxic equivalency factors (WHO-TEFs) and two additional PCBs were screened in 17 human and rodent bioassays to assess their induction of aryl hydrocarbon receptor-related responses. For each bioassay and compound, relative effect potency values (REPs) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin were calculated and analyzed. The responses in the human and rodent cell bioassays generally differed. Most notably, the human cell models responded only weakly to PCBs, with 3,3',4,4',5-pentachlorobiphenyl (PCB126) being the only PCB that frequently evoked sufficiently strong responses in human cells to permit us to calculate REP values. Calculated REPs for PCB126 were more than 30 times lower than the WHO-TEF value for PCB126. CTFs were calculated using score and loading vectors from a principal component analysis to establish the ranking of the compounds and, by rescaling, also to provide numerical differences between the different congeners corresponding to the TEF scheme. The CTFs were based on rat and human bioassay data and indicated a significant deviation for PCBs but also for certain PCDD/Fs from the WHO-TEF values. The human CTFs for 2,3,4,7,8-pentachlorodibenzofuran, 1,2,3,4,7,8-hexachlorodibenzofuran, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, and 1,2,3,4,7,8,9-heptachlorodibenzofuran were up to 10 times greater than their WHO-TEF values. Quantitative structure-activity relationship models were used to predict CTFs for untested WHO-TEF compounds, suggesting that the WHO-TEF value for 1,2,3,7,8-pentachlorodibenzofuran could be underestimated by an order of magnitude for both human and rodent models. Our results indicate that the CTF approach provides a powerful tool for condensing data from batteries of screening tests using compounds with similar mechanisms of action, which can be used to improve risk assessment of DLCs.
  •  
3.
  • Strapáčová, Simona, et al. (författare)
  • Relative effective potencies of dioxin-like compounds in rodent and human lung cell models
  • 2018
  • Ingår i: Toxicology. - : Elsevier. - 0300-483X .- 1879-3185. ; 404–405, s. 33-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Toxicity of dioxin-like compounds (DLCs), such as polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls, is largely mediated via aryl hydrocarbon receptor (AhR) activation. AhR-mediated gene expression can be tissue-specific; however, the inducibility of AhR in the lungs, a major target of DLCs, remains poorly characterized. In this study, we developed relative effective potencies (REPs) for a series of DLCs in both rodent (MLE-12, RLE-6TN) and human (A549, BEAS-2B) lung and bronchial epithelial cell models, using expression of both canonical (CYP1A1, CYP1B1) and less well characterized (TIPARP, AHRR, ALDH3A1) AhR target genes. The use of rat, murine and human cell lines allowed us to determine both species-specific differences in sensitivity of responses to DLCs in lung cellular models and deviations from established WHO toxic equivalency factor values (TEF) values. Finally, expression of selected AhR target genes was determined in vivo, using lung tissues of female rats exposed to a single oral dose of DLCs and compared with the obtained in vitro data. All cell models were highly sensitive to DLCs, with murine MLE-12 cells being the most sensitive and human A549 cells being the least sensitive. Interestingly, we observed that four AhR target genes were more sensitive than CYP1A1 in lung cell models (CYP1B1, AHRR, TIPARP and/or ALDH3A1). We found some deviations, with strikingly low REPs for polychlorinated biphenyls PCBs 105, 167, 169 and 189 in rat RLE-6TN cells-derived REPs for a series of 20 DLCs evaluated in this study, as compared with WHO TEF values. For other DLCs, including PCBs 126, 118 and 156, REPs were generally in good accordance with WHO TEF values. This conclusion was supported by in vivo data obtained in rat lung tissue. However, we found that human lung REPs for 2,3,4,7,8-pentachlorodibenzofuran and PCB 126 were much lower than the respective rat lung REPs. Furthermore, PCBs 118 and 156 were almost inactive in these human cells. Our observations may have consequences for risk assessment. Given the differences observed between rat and human data sets, development of human-specific REP/TEFs, and the use of CYP1B1, AHRR, TIPARP and/or ALDH3A1 mRNA inducibility as sensitive endpoints, are recommended for assessment of relative effective potencies of DLCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy