SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brinkmalm A.) "

Sökning: WFRF:(Brinkmalm A.)

  • Resultat 1-39 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alic, I., et al. (författare)
  • Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26:10, s. 5766-5788
  • Tidskriftsartikel (refereegranskat)abstract
    • A population of more than six million people worldwide at high risk of Alzheimer's disease (AD) are those with Down Syndrome (DS, caused by trisomy 21 (T21)), 70% of whom develop dementia during lifetime, caused by an extra copy of beta-amyloid-(A beta)-precursor-protein gene. We report AD-like pathology in cerebral organoids grown in vitro from non-invasively sampled strands of hair from 71% of DS donors. The pathology consisted of extracellular diffuse and fibrillar A beta deposits, hyperphosphorylated/pathologically conformed Tau, and premature neuronal loss. Presence/absence of AD-like pathology was donor-specific (reproducible between individual organoids/iPSC lines/experiments). Pathology could be triggered in pathology-negative T21 organoids by CRISPR/Cas9-mediated elimination of the third copy of chromosome 21 gene BACE2, but prevented by combined chemical beta and gamma-secretase inhibition. We found that T21 organoids secrete increased proportions of A beta-preventing (A beta 1-19) and A beta-degradation products (A beta 1-20 and A beta 1-34). We show these profiles mirror in cerebrospinal fluid of people with DS. We demonstrate that this protective mechanism is mediated by BACE2-trisomy and cross-inhibited by clinically trialled BACE1 inhibitors. Combined, our data prove the physiological role of BACE2 as a dose-sensitive AD-suppressor gene, potentially explaining the dementia delay in similar to 30% of people with DS. We also show that DS cerebral organoids could be explored as pre-morbid AD-risk population detector and a system for hypothesis-free drug screens as well as identification of natural suppressor genes for neurodegenerative diseases.
  •  
2.
  • Woo, M. S., et al. (författare)
  • 14-3-3 ζ/δ-reported early synaptic injury in Alzheimer's disease is independently mediated by sTREM2
  • 2023
  • Ingår i: Journal of Neuroinflammation. - 1742-2094. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer's disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears.Methods We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta (zeta/delta) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages.Results14-3-3 zeta/delta was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 zeta/delta correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss.ConclusionsOur results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation.
  •  
3.
  • De Kort, A. M., et al. (författare)
  • Decreased Cerebrospinal Fluid Amyloid beta 38, 40, 42, and 43 Levels in Sporadic and Hereditary Cerebral Amyloid Angiopathy
  • 2023
  • Ingår i: Annals of neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 93:6, s. 1173-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Vascular amyloid beta (A beta) accumulation is the hallmark of cerebral amyloid angiopathy (CAA). The composition of cerebrospinal fluid (CSF) of CAA patients may serve as a diagnostic biomarker of CAA. We studied the diagnostic potential of the peptides A beta 38, A beta 40, A beta 42, and A beta 43 in patients with sporadic CAA (sCAA), hereditary Dutch-type CAA (D-CAA), and Alzheimer disease (AD).Methods: A beta peptides were quantified by immunoassays in a discovery group (26 patients with sCAA and 40 controls), a validation group (40 patients with sCAA, 40 patients with AD, and 37 controls), and a group of 22 patients with D-CAA and 54 controls. To determine the diagnostic accuracy, the area under the curve (AUC) was calculated using a receiver operating characteristic curve with 95% confidence interval (CI).Results: We found decreased levels of all A beta peptides in sCAA patients and D-CAA patients compared to controls. The difference was most prominent for A beta 42 (AUC of sCAA vs controls for discovery: 0.90, 95% CI = 0.82-0.99; for validation: 0.94, 95% CI = 0.89-0.99) and A beta 43 (AUC of sCAA vs controls for discovery: 0.95, 95% CI = 0.88-1.00; for validation: 0.91, 95% CI = 0.83-1.0). All A beta peptides except A beta 43 were also decreased in sCAA compared to AD (CSF A beta 38: AUC = 0.82, 95% CI = 0.71-0.93; CSF A beta 40: AUC = 0.88, 95% CI = 0.80-0.96; CSF A beta 42: AUC = 0.79, 95% CI = 0.66-0.92).Interpretation: A combined biomarker panel of CSF A beta 38, A beta 40, A beta 42, and A beta 43 has potential to differentiate sCAA from AD and controls, and D-CAA from controls. ANN NEUROL 2023
  •  
4.
  • Gracias, J., et al. (författare)
  • Cerebrospinal fluid concentration of complement component 4A is increased in first episode schizophrenia
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia risk has been associated with the complement component 4 (C4) genes. Here the authors show that C4A is elevated in individuals with schizophrenia. Postsynaptic density is reduced in schizophrenia, and risk variants increasing complement component 4A (C4A) gene expression are linked to excessive synapse elimination. In two independent cohorts, we show that cerebrospinal fluid (CSF) C4A concentration is elevated in patients with first-episode psychosis (FEP) who develop schizophrenia (FEP-SCZ: median 0.41 fmol/ul [CI = 0.34-0.45], FEP-non-SCZ: median 0.29 fmol/ul [CI = 0.22-0.35], healthy controls: median 0.28 [CI = 0.24-0.33]). We show that the CSF elevation of C4A in FEP-SCZ exceeds what can be expected from genetic risk variance in the C4 locus, and in patient-derived cellular models we identify a mechanism dependent on the disease-associated cytokines interleukin (IL)-1beta and IL-6 to selectively increase neuronal C4A mRNA expression. In patient-derived CSF, we confirm that IL-1beta correlates with C4A controlled for genetically predicted C4A RNA expression (r = 0.39; CI: 0.01-0.68). These results suggest a role of C4A in early schizophrenia pathophysiology.
  •  
5.
  • Rodrigues, M., et al. (författare)
  • Structure-specific amyloid precipitation in biofluids
  • 2022
  • Ingår i: Nature Chemistry. - : Springer Science and Business Media LLC. - 1755-4330 .- 1755-4349. ; 14, s. 1045-1053
  • Tidskriftsartikel (refereegranskat)abstract
    • The composition of soluble toxic protein aggregates formed in vivo is currently unknown in neurodegenerative diseases, due to their ultra-low concentration in human biofluids and their high degree of heterogeneity. Here we report a method to capture amyloid-containing aggregates in human biofluids in an unbiased way, a process we name amyloid precipitation. We use a structure-specific chemical dimer, a Y-shaped, bio-inspired small molecule with two capture groups, for amyloid precipitation to increase affinity. Our capture molecule for amyloid precipitation (CAP-1) consists of a derivative of Pittsburgh Compound B (dimer) to target the cross beta-sheets of amyloids and a biotin moiety for surface immobilization. By coupling CAP-1 to magnetic beads, we demonstrate that we can target the amyloid structure of all protein aggregates present in human cerebrospinal fluid, isolate them for analysis and then characterize them using single-molecule fluorescence imaging and mass spectrometry. Amyloid precipitation enables unbiased determination of the molecular composition and structural features of the in vivo aggregates formed in neurodegenerative diseases.
  •  
6.
  • Toft, A., et al. (författare)
  • Endo-lysosomal protein concentrations in CSF from patients with frontotemporal dementia caused by CHMP2B mutation
  • 2023
  • Ingår i: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Wiley. - 2352-8729. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • IntroductionIncreasing evidence implicates proteostatic dysfunction as an early event in the development of frontotemporal dementia (FTD). This study aimed to explore potential cerebrospinal fluid (CSF) biomarkers associated with the proteolytic systems in genetic FTD caused by CHMP2B mutation. MethodsCombining solid-phase extraction and parallel reaction monitoring mass spectrometry, a panel of 47 peptides derived from 20 proteins was analyzed in CSF from 31 members of the Danish CHMP2B-FTD family. ResultsCompared with family controls, mutation carriers had significantly higher levels of complement C9, lysozyme and transcobalamin II, and lower levels of ubiquitin, cathepsin B, and amyloid precursor protein. DiscussionLower CSF ubiquitin concentrations in CHMP2B mutation carriers indicate that ubiquitin levels relate to the specific disease pathology, rather than all-cause neurodegeneration. Increased lysozyme and complement proteins may indicate innate immune activation. Altered levels of amyloid precursor protein and cathepsins have previously been associated with impaired lysosomal proteolysis in FTD. HighlightsCSF markers of proteostasis were explored in CHMP2B-mediated frontotemporal dementia (FTD).31 members of the Danish CHMP2B-FTD family were included.We used solid-phase extraction and parallel reaction monitoring mass spectrometry.Six protein levels were significantly altered in CHMP2B-FTD compared with controls.Lower CSF ubiquitin levels in patients suggest association with disease mechanisms.
  •  
7.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • Targeting synaptic pathology with a novel affinity mass spectrometry approach.
  • 2014
  • Ingår i: Molecular & cellular proteomics : MCP. - 1535-9484. ; 13:10, s. 2584-92
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a novel strategy for studying synaptic pathology by concurrently measuring levels of four SNARE complex proteins from individual brain tissue samples. This method combines affinity purification and mass spectrometry and can be applied directly for studies of SNARE complex proteins in multiple species or modified to target other key elements in neuronal function. We use the technique to demonstrate altered levels of presynaptic proteins in Alzheimer disease patients and prion-infected mice.
  •  
8.
  • Brockmann, K., et al. (författare)
  • Association between CSF alpha-synuclein seeding activity and genetic status in Parkinson's disease and dementia with Lewy bodies
  • 2021
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinicopathological heterogeneity in Lewy-body diseases (LBD) highlights the need for pathology-driven biomarkers in-vivo. Misfolded alpha-synuclein (alpha-Syn) is a lead candidate based on its crucial role in disease pathophysiology. Real-time quaking-induced conversion (RT-QuIC) analysis of CSF has recently shown high sensitivity and specificity for the detection of misfolded alpha-Syn in patients with Parkinson's disease (PD) and dementia with Lewy bodies (DLB). In this study we performed the CSF RT-QuIC assay in 236 PD and 49 DLB patients enriched for different genetic forms with mutations in GBA, parkin, PINK1, DJ1, and LRRK2. A subgroup of 100 PD patients was also analysed longitudinally. We correlated kinetic seeding parameters of RT-QuIC with genetic status and CSF protein levels of molecular pathways linked to alpha-Syn proteostasis. Overall, 85% of PD and 86% of DLB patients showed positive RT-QuIC alpha-Syn seeding activity. Seeding profiles were significantly associated with mutation status across the spectrum of genetic LBD. In PD patients, we detected positive alpha-Syn seeding in 93% of patients carrying severe GBA mutations, in 78% with LRRK2 mutations, in 59% carrying heterozygous mutations in recessive genes, and in none of those with bi-allelic mutations in recessive genes. Among PD patients, those with severe GBA mutations showed the highest seeding activity based on RT-QuIC kinetic parameters and the highest proportion of samples with 4 out of 4 positive replicates. In DLB patients, 100% with GBA mutations showed positive alpha-Syn seeding compared to 79% of wildtype DLB. Moreover, we found an association between alpha-Syn seeding activity and reduced CSF levels of proteins linked to alpha-Syn proteostasis, specifically lysosome-associated membrane glycoprotein 2 and neurosecretory protein VGF. These findings highlight the value of alpha-Syn seeding activity as an in-vivo marker of Lewy-body pathology and support its use for patient stratification in clinical trials targeting alpha-Syn.
  •  
9.
  • Camporesi, Elena, et al. (författare)
  • Quantification of the trans-synaptic partners neurexin-neuroligin in CSF of neurodegenerative diseases by parallel reaction monitoring mass spectrometry
  • 2022
  • Ingår i: Ebiomedicine. - : Elsevier BV. - 2352-3964. ; 75
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Synaptic proteins are increasingly studied as biomarkers for synaptic dysfunction and loss, which are early and central events in Alzheimer's disease (AD) and strongly correlate with the degree of cognitive decline. In this study, we specifically investigated the synaptic binding partners neurexin (NRXN) and neuroligin (Nlgn) proteins, to assess their biomarker's potential. Methods: we developed a parallel reaction monitoring mass spectrometric method for the simultaneous quantification of NRXNs and Nlgns in cerebrospinal fluid (CSF) of neurodegenerative diseases, focusing on AD. Specifically, NRXN-1α, NRXN-1β, NRXN-2α, NRXN-3α and Nlgn1, Nlgn2, Nlgn3 and Nlgn4 proteins were targeted. Findings: The proteins were investigated in a clinical cohort including CSF from controls (n=22), mild cognitive impairment (MCI) due to AD (n=44), MCI due to other conditions (n=46), AD (n=77) and a group of non-AD dementia (n=28). No difference in levels of NRXNs and Nlgns was found between AD (both at dementia and MCI stages) or controls or the non-AD dementia group for any of the targeted proteins. NRXN and Nlgn proteins correlated strongly with each other, but only a weak correlation with the AD core biomarkers and the synaptic biomarkers neurogranin and growth-associated protein 43, was found, possibly reflecting different pathogenic processing at the synapse. Interpretation: we conclude that NRXN and Nlgn proteins do not represent suitable biomarkers for synaptic pathology in AD. The panel developed here could aid in future investigations of the potential involvement of NRXNs and Nlgns in synaptic dysfunction in other disorders of the central nervous system. Funding: a full list of funding can be found under the acknowledgments section. © 2021 The Author(s)
  •  
10.
  • Casaletto, K. B., et al. (författare)
  • Tripartite Relationship Among Synaptic, Amyloid, and Tau Proteins An In Vivo and Postmortem Study
  • 2021
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 97:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To test the hypothesis that fundamental relationships along the amyloid, tau, and neurodegeneration (A/T/N) cascade depend on synaptic integrity in older adults in vivo and postmortem. Methods The 2 independent observational, cross-sectional cohorts included (1) in vivo community-dwelling, clinically normal adults from the University of California, San Francisco Memory and Aging Center who completed lumbar puncture and MRI (exclusion criteria, Clinical Dementia Rating score >0) and (2) postmortem decedents from the Rush Memory and Aging Project (exclusion criteria, inability to sign informed consent). In vivo measures included CSF synaptic proteins (synaptotagmin-1, synaptosome associated protein-25, neurogranin, and growth associated protein-43), beta-amyloid (A beta(42/40)), tau phosphorylated at amino acid 181 (ptau(181)), and MRI gray matter volume (GMV). Postmortem measures captured brain tissue levels of presynaptic proteins (complexin-I, complexin-II, vesicle associated membrane protein (VAMP), and SNARE complex) and neuritic plaque and neurofibrillary tangle (NFT) counts. Regression models tested statistical moderation of synaptic protein levels along the A/T/N cascade (synaptic proteins x amyloid on tau, and synaptic proteins x tau on GMV). Results Sixty-eight in vivo older adults (age 71 years, 43% female) and 633 decedents (age 90 years, 68% female, 34% clinically normal) were included. Each in vivo CSF synaptic protein moderated the relationship between A beta(42/40) and ptau(181) (-0.23 < beta < -0.12, p < 0.05) and the relationship between ptau(181) and GMV (-0.49
  •  
11.
  • Gkanatsiou, Eleni, et al. (författare)
  • Amyloid pathology and synaptic loss in pathological aging
  • 2021
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 159:2, s. 258-272
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory dysfunction and cognitive decline. Pathological aging (PA) describes patients who are amyloid-positive but cognitively unimpaired at time of death. Both AD and PA contain amyloid plaques dominated by amyloid beta (A beta) peptides. In this study, we investigated and compared synaptic protein levels, amyloid plaque load, and A beta peptide patterns between AD and PA. Two cohorts of post-mortem brain tissue were investigated. In the first, consisting of controls, PA, AD, and familial AD (FAD) individuals, synaptic proteins extracted with tris(hydroxymethyl)aminomethane-buffered saline (TBS) were analyzed. In the second, consisting of tissue from AD and PA patients from three different regions (occipital lobe, frontal lobe, and cerebellum), a two-step extraction was performed. Five synaptic proteins were extracted using TBS, and from the remaining portion A beta peptides were extracted using formic acid. Subsequently, immunoprecipitation with several antibodies targeting different proteins/peptides was performed for both fractions, which were subsequently analyzed by mass spectrometry. The levels of synaptic proteins were lower in AD (and FAD) compared with PA (and controls), confirming synaptic loss in AD patients. The amyloid plaque load was increased in AD compared with PA, and the relative amount of A beta 40 was higher in AD while for A beta 42 it was higher in PA. In AD loss of synaptic function was associated with increased plaque load and increased amounts of A beta 40 compared with PA cases, suggesting that synaptic function is preserved in PA cases even in the presence of A beta.
  •  
12.
  • Montoliu-Gaya, Laia, et al. (författare)
  • Mass spectrometric simultaneous quantification of tau species in plasma shows differential associations with amyloid and tau pathologies
  • 2023
  • Ingår i: Nature Aging. - 2662-8465. ; 3:6, s. 661-669
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood phosphorylated tau (p-tau) biomarkers, at differing sites, demonstrate high accuracy to detect Alzheimer & apos;s disease (AD). However, knowledge on the optimal marker for disease identification across the AD continuum and the link to pathology is limited. This is partly due to heterogeneity in analytical methods. In this study, we employed an immunoprecipitation mass spectrometry method to simultaneously quantify six phosphorylated (p-tau181, p-tau199, p-tau202, p-tau205, p-tau217 and p-tau231) and two non-phosphorylated plasma tau peptides in a total of 214 participants from the Paris Lariboisiere and Translational Biomarkers of Aging and Dementia cohorts. Our results indicate that p-tau217, p-tau231 and p-tau205 are the plasma tau forms that best reflect AD-related brain changes, although with distinct emergences along the disease course and correlations with AD features-amyloid and tau. These findings support the differential association of blood p-tau variants with AD pathology, and our method offers a potential tool for disease staging in clinical trials. A mass spectrometric analysis of plasma tau species identifies phosphorylated tau peptides p-tau217, p-tau231 and p-tau205 with distinct correlations with amyloid and tau pathologies and emergences along the AD continuum.
  •  
13.
  • Montoliu-Gaya, Laia, et al. (författare)
  • Optimal blood tau species for the detection of Alzheimer's disease neuropathology: an immunoprecipitation mass spectrometry and autopsy study.
  • 2024
  • Ingår i: Acta neuropathologica. - 1432-0533. ; 147:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma-to-autopsy studies are essential for validation of blood biomarkers and understanding their relation to Alzheimer's disease (AD) pathology. Few such studies have been done on phosphorylated tau (p-tau) and those that exist have made limited or no comparison of the different p-tau variants. This study is the first to use immunoprecipitation mass spectrometry (IP-MS) to compare the accuracy of eight different plasma tau species in predicting autopsy-confirmed AD. The sample included 123 participants (AD=69, non-AD=54) from the Boston University Alzheimer's disease Research Center who had an available ante-mortem plasma sample and donated their brain. Plasma samples proximate to death were analyzed by targeted IP-MS for six different tryptic phosphorylated (p-tau-181, 199, 202, 205, 217, 231), and two non-phosphorylated tau (195-205, 212-221) peptides. NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Binary logistic regressions tested the association between each plasma peptide and autopsy-confirmed AD status. Area under the receiver operating curve (AUC) statistics were generated using predicted probabilities from the logistic regression models. Odds Ratio (OR) was used to study associations between the different plasma tau species and CERAD and Braak classifications. All tau species were increased in AD compared to non-AD, but p-tau217, p-tau205 and p-tau231 showed the highest fold-changes. Plasma p-tau217 (AUC=89.8), p-tau231 (AUC=83.4), and p-tau205 (AUC=81.3) all had excellent accuracy in discriminating AD from non-AD brain donors, even among those with CDR<1). Furthermore, p-tau217, p-tau205 and p-tau231 showed the highest ORs with both CERAD (ORp-tau217=15.29, ORp-tau205=5.05 and ORp-tau231=3.86) and Braak staging (ORp-tau217=14.29, ORp-tau205=5.27 and ORp-tau231=4.02) but presented increased levels at different amyloid and tau stages determined by neuropathological examination. Our findings support plasma p-tau217 as the most promising p-tau species for detecting AD brain pathology. Plasma p-tau231 and p-tau205 may additionally function as markers for different stages of the disease.
  •  
14.
  • Nilsson, Johanna, 1993, et al. (författare)
  • Cerebrospinal fluid biomarker panel of synaptic dysfunction in Alzheimer's disease and other neurodegenerative disorders
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:5, s. 1775-1784
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Synaptic degeneration is a key part of the pathophysiology of neurodegenerative diseases, and biomarkers reflecting the pathological alterations are greatly needed. Method Seventeen synaptic proteins were quantified in a pathology-confirmed cerebrospinal fluid cohort of patients with Alzheimer's disease (AD; n = 63), frontotemporal lobar degeneration (FTLD; n = 53), and Lewy body spectrum of disorders (LBD; n = 21), as well as healthy controls (HC; n = 48). Results Comparisons revealed four distinct patterns: markers decreased across all neurodegenerative conditions compared to HC (the neuronal pentraxins), markers increased across all neurodegenerative conditions (14-3-3 zeta/delta), markers selectively increased in AD compared to other neurodegenerative conditions (neurogranin and beta-synuclein), and markers selectively decreased in LBD and FTLD compared to HC and AD (AP2B1 and syntaxin-1B). Discussion Several of the synaptic proteins may serve as biomarkers for synaptic dysfunction in AD, LBD, and FTLD. Additionally, differential patterns of synaptic protein alterations seem to be present across neurodegenerative diseases. Highlights A panel of synaptic proteins were quantified in the cerebrospinal fluid using mass spectrometry. We compared Alzheimer's disease, frontotemporal degeneration, and Lewy body spectrum of disorders. Pathology was confirmed by autopsy or familial mutations. We discovered synaptic biomarkers for synaptic degeneration and cognitive decline. We found differential patterns of synaptic proteins across neurodegenerative diseases.
  •  
15.
  • Nilsson, Johanna, 1993, et al. (författare)
  • Quantification of SNAP-25 with mass spectrometry and Simoa: a method comparison in Alzheimer's disease
  • 2022
  • Ingår i: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Synaptic dysfunction and degeneration are central to Alzheimer's disease (AD) and have been found to correlate strongly with cognitive decline. Thus, studying cerebrospinal fluid (CSF) biomarkers reflecting synaptic degeneration, such as the presynaptic protein synaptosomal-associated protein 25 (SNAP-25), is of importance to better understand the AD pathophysiology. Methods We compared a newly developed Single molecule array (Simoa) immunoassay for SNAP-25 with an in-house immunoprecipitation mass spectrometry (IP-MS) method in a well-characterized clinical cohort (n = 70) consisting of cognitively unimpaired (CU) and cognitively impaired (CI) individuals with and without A beta pathology (A beta+ and A beta-). Results A strong correlation (Spearman's rank correlation coefficient (r(s)) > 0.88; p < 0.0001) was found between the Simoa and IP-MS methods, and no statistically significant difference was found for their clinical performance to identify AD pathophysiology in the form of A beta pathology. Increased CSF SNAP-25 levels in CI A beta+ compared with CU A beta- (Simoa, p <= 0.01; IP-MS, p <= 0.05) and CI A beta- (Simoa, p <= 0.01; IP-MS, p <= 0.05) were observed. In independent blood samples (n = 32), the Simoa SNAP-25 assay was found to lack analytical sensitivity for quantification of SNAP-25 in plasma. Conclusions These results indicate that the Simoa SNAP-25 method can be used interchangeably with the IP-MS method for the quantification of SNAP-25 in CSF. Additionally, these results confirm that CSF SNAP-25 is increased in relation to amyloid pathology in the AD continuum.
  •  
16.
  • Schilling, S., et al. (författare)
  • Differential effects of familial Alzheimer's disease-causing mutations on amyloid precursor protein (APP) trafficking, proteolytic conversion, and synaptogenic activity
  • 2023
  • Ingår i: Acta Neuropathologica Communications. - 2051-5960. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The amyloid precursor protein (APP) is a key player in Alzheimer`s disease (AD) and the precursor of the A beta peptide, which is generated by consecutive cleavages of beta- and gamma-secretases. Familial Alzheimer's disease (FAD) describes a hereditary subgroup of AD that represents a low percentage of AD cases with an early onset of the disease. Different APP FAD mutations are thought to have qualitatively different effects on its proteolytic conversion. However, few studies have explored the pathogenic and putative physiological differences in more detail. Here, we compared different FAD mutations, located at the beta- (Swedish), alpha- (Flemish, Arctic, Iowa) or gamma-secretase (Iberian) cleavage sites. We examined heterologous expression of APP WT and FAD mutants in non-neuronal cells and their impact on presynaptic differentiation in contacting axons of co-cultured neurons. To decipher the underlying molecular mechanism, we tested the subcellular localization, the endocytosis rate and the proteolytic processing in detail by immunoprecipitation-mass spectrometry. Interestingly, we found that only the Iberian mutation showed altered synaptogenic function. Furthermore, the APP Iowa mutant shows significantly decreased alpha-secretase processing which is in line with our results that APP carrying the Iowa mutation was significantly increased in early endosomes. However, most interestingly, immunoprecipitation-mass spectrometry analysis revealed that the amino acid substitutions of APP FAD mutants have a decisive impact on their processing reflected in altered A beta profiles. Importantly, N-terminally truncated A beta peptides starting at position 5 were detected preferentially for APP Flemish, Arctic, and Iowa mutants containing amino acid substitutions around the alpha-secretase cleavage site. The strongest change in the ratio of A beta 40/A beta 42 was observed for the Iberian mutation while APP Swedish showed a substantial increase in A beta 1-17 peptides. Together, our data indicate that familial AD mutations located at the alpha-, beta-, and gamma-secretase cleavage sites show considerable differences in the underlying pathogenic mechanisms.
  •  
17.
  • van den Berg, E., et al. (författare)
  • Cerebrospinal Fluid Panel of Synaptic Proteins in Cerebral Amyloid Angiopathy and Alzheimer's Disease
  • 2023
  • Ingår i: Journal of Alzheimers Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 92:2, s. 467-475
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) share pathogenic pathways related to amyloid-beta deposition. Whereas AD is known to affect synaptic function, such an association for CAA remains yet unknown. Objective: We therefore aimed to investigate synaptic dysfunction in CAA. Methods: Multiple reaction monitoring mass spectrometry was used to quantify cerebrospinal fluid (CSF) concentrations of 15 synaptic proteins in CAA and AD patients, and age- and sex-matched cognitively unimpaired controls. Results: We included 25 patients with CAA, 49 patients with AD, and 25 controls. Only neuronal pentraxin-2 levels were decreased in the CSF of CAA patients compared with controls (p = 0.04). CSF concentrations of 12 other synaptic proteins were all increased in AD compared with CAA or controls (all p= 0.01) and were unchanged between CAA and controls. Synaptic protein concentrations in the subgroup ofCAApatients positive forADbiomarkers (CAA/ATN+; n = 6) were similar to AD patients, while levels in CAA/ATN- (n = 19) were comparable with those in controls. A regression model including all synaptic proteins differentiated CAA from AD at high accuracy levels (area under the curve 0.987). Conclusion: In contrast to AD, synaptic CSF biomarkers were found to be largely unchanged in CAA. Moreover, concomitant AD pathology in CAA is associated with abnormal synaptic protein levels. Impaired synaptic function in AD was confirmed in this independent cohort. Our findings support an apparent differential involvement of synaptic dysfunction in CAA and AD and may reflect distinct pathological mechanisms.
  •  
18.
  •  
19.
  • Ashton, Nicholas J., et al. (författare)
  • Plasma p-tau231: a new biomarker for incipient Alzheimer's disease pathology.
  • 2021
  • Ingår i: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 141:5, s. 709-724
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantification of phosphorylated tau in biofluids, either cerebrospinal fluid (CSF) or plasma, has shown great promise in detecting Alzheimer's disease (AD) pathophysiology. Tau phosphorylated at threonine 231 (p-tau231) is one such biomarker in CSF but its usefulness as a blood biomarker is currently unknown. Here, we developed an ultrasensitive Single molecule array (Simoa) for the quantification of plasma p-tau231 which was validated in four independent cohorts (n=588) in different settings, including the full AD continuum and non-AD neurodegenerative disorders. Plasma p-tau231 was able to identify patients with AD and differentiate them from amyloid-β negative cognitively unimpaired (CU) older adults with high accuracy (AUC=0.92-0.94). Plasma p-tau231 also distinguished AD patients from patients with non-AD neurodegenerative disorders (AUC=0.93), as well as from amyloid-β negative MCI patients (AUC=0.89). In a neuropathology cohort, plasma p-tau231 in samples taken on avergae 4.2years prior to post-mortem very accurately identified AD neuropathology in comparison to non-AD neurodegenerative disorders (AUC=0.99), this is despite all patients being given an AD dementia diagnosis during life. Plasma p-tau231 was highly correlated with CSF p-tau231, tau pathology as assessed by [18F]MK-6240 positron emission tomography (PET), and brain amyloidosis by [18F]AZD469 PET. Remarkably, the inflection point of plasma p-tau231, increasing as a function of continuous [18F]AZD469 amyloid-β PET standardized uptake value ratio, was shown to be earlier than standard thresholds of amyloid-β PET positivity and the increase of plasma p-tau181. Furthermore, plasma p-tau231 was significantly increased in amyloid-β PET quartiles 2-4, whereas CSF p-tau217 and plasma p-tau181 increased only at quartiles 3-4 and 4, respectively. Finally, plasma p-tau231 differentiated individuals across the entire Braak stage spectrum, including Braak staging from Braak 0 through Braak I-II, which was not observed for plasma p-tau181. To conclude, this novel plasma p-tau231 assay identifies the clinicalstages of ADand neuropathology equally well as plasma p-tau181, but increases earlier, already with subtle amyloid-β deposition, prior to the threshold for amyloid-β PET positivity has been attained, and also in response to early brain tau deposition. Thus, plasma p-tau231 is a promising novel biomarker of emerging AD pathology with the potential to facilitate clinical trials to identify vulnerable populations below PET threshold of amyloid-β positivity or apparent entorhinal tau deposition.
  •  
20.
  • Blennow, Kaj, et al. (författare)
  • Cerebrospinal fluid tau fragment correlates with tau PET : a candidate biomarker for tangle pathology
  • 2020
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 143:2, s. 650-660
  • Tidskriftsartikel (refereegranskat)abstract
    • To date, there is no validated fluid biomarker for tau pathology in Alzheimer's disease, with contradictory results from studies evaluating the correlation between phosphorylated tau in CSF with tau PET imaging. Tau protein is subjected to proteolytic processing into fragments before being secreted to the CSF. A recent study suggested that tau cleavage after amino acid 368 by asparagine endopeptidase (AEP) is upregulated in Alzheimer's disease. We used immunoprecipitation followed by mass spectrometric analyses to evaluate the presence of tau368 species in CSF. A novel Simoa® assay for quantification of tau368 in CSF was developed, while total tau (t-tau) was measured by ELISA and the presence of tau368 in tangles was evaluated using immunohistochemistry. The diagnostic utility of tau368 was first evaluated in a pilot study (Alzheimer's disease = 20, control = 20), then in a second cohort where the IWG-2 biomarker criteria were applied (Alzheimer's disease = 37, control = 45), and finally in a third cohort where the correlation with 18F-GTP1 tau PET was evaluated (Alzheimer's disease = 38, control = 11). The tau368/t-tau ratio was significantly decreased in Alzheimer's disease (P < 0.001) in all cohorts. Immunohistochemical staining demonstrated that tau fragments ending at 368 are present in tangles. There was a strong negative correlation between the CSF tau368/t-tau ratio and 18F-GTP1 retention. Our data suggest that tau368 is a tangle-enriched fragment and that the CSF ratio tau368/t-tau reflects tangle pathology. This novel tau biomarker could be used to improve diagnosis of Alzheimer's disease and to facilitate the development of drug candidates targeting tau pathology. Furthermore, future longitudinal studies will increase our understanding of tau pathophysiology in Alzheimer's disease and other tauopathies.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • García-Ayllón, María-Salud, et al. (författare)
  • CSF Presenilin-1 complexes are increased in Alzheimer's disease.
  • 2013
  • Ingår i: Acta neuropathologica communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 1:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Presenilin-1 (PS1) is the active component of the amyloid precursor protein cleaving γ-secretase complex. PS1 protein is a transmembrane protein containing multiple hydrophobic regions which presence in cerebrospinal fluid (CSF) has not been measured to date. This study assesses whether PS1 and other components of the γ-secretase complex are present in CSF.
  •  
25.
  • Garcia-Ayllon, M. S., et al. (författare)
  • Plasma ACE2 species are differentially altered in COVID-19 patients
  • 2021
  • Ingår i: FASEB Journal. - 0892-6638. ; 35:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies are needed to identify useful biomarkers to assess the severity and prognosis of COVID-19 disease, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus. Here, we examine the levels of various plasma species of the SARS-CoV-2 host receptor, the angiotensin-converting enzyme 2 (ACE2), in patients at different phases of the infection. Human plasma ACE2 species were characterized by immunoprecipitation and western blotting employing antibodies against the ectodomain and the C-terminal domain, using a recombinant human ACE2 protein as control. In addition, changes in the cleaved and full-length ACE2 species were also examined in serum samples derived from humanized K18-hACE2 mice challenged with a lethal dose of SARS-CoV-2. ACE2 immunoreactivity was present in human plasma as several molecular mass species that probably comprise truncated (70 and 75 kDa) and full-length forms (95, 100, 130, and 170 kDa). COVID-19 patients in the acute phase of infection (n = 46) had significantly decreased levels of ACE2 full-length species, while a truncated 70-kDa form was marginally higher compared with non-disease controls (n = 26). Levels of ACE2 full-length species were in the normal range in patients after a recovery period with an interval of 58-70 days (n = 29), while the 70-kDa species decreased. Levels of the truncated ACE2 species served to discriminate between individuals infected by SARS-CoV-2 and those infected with influenza A virus (n = 17). In conclusion, specific plasma ACE2 species are altered in patients with COVID-19 and these changes normalize during the recovery phase. Alterations in ACE2 species following SARS-CoV-2 infection warrant further investigation regarding their potential usefulness as biomarkers for the disease process and to asses efficacy during vaccination.
  •  
26.
  • Gobom, Johan, et al. (författare)
  • Antibody-free measurement of cerebrospinal fluid tau phosphorylation across the Alzheimer's disease continuum.
  • 2022
  • Ingår i: Molecular neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease is characterized by an abnormal increase of phosphorylated tau (pTau) species in the CSF. It has been suggested that emergence of different pTau forms may parallel disease progression. Therefore, targeting multiple specific pTau forms may allow for a deeper understanding of disease evolution and underlying pathophysiology. Current immunoassays measure pTau epitopes separately and may capture phosphorylated tau fragments of different length depending on the non-pTau antibody used in the assay sandwich pair, which bias the measurement.We developed the first antibody-free mass spectrometric method to simultaneously measure multiple phosphorylated epitopes in CSF tau: pT181, pS199, pS202, pT205, pT217, pT231, and pS396. The method was first evaluated in biochemically defined Alzheimer's disease and control CSF samples (n=38). All seven pTau epitopes clearly separated Alzheimer's disease from non-AD (p<0.001, AUC=0.84-0.98). We proceeded with clinical validation of the method in the TRIAD (n=165) and BioFINDER-2 cohorts (n=563), consisting of patients across the full Alzheimer's disease continuum, including also young controls (<40years), as well as patients with frontotemporal dementia and other neurodegenerative disorders.Increased levels of all phosphorylated epitopes were found in Alzheimer's disease dementia and Aβ positron emission tomography-positive patients with mild cognitive impairment compared with Aβ-negative controls. For Alzheimer's disease dementia compared with Aβ-negative controls, the best biomarker performance was observed for pT231 (TRIAD: AUC=98.73%, fold change=7.64; BioFINDER-2: AUC=91.89%, fold change=10.65), pT217 (TRIAD: AUC=99.71%, fold change=6.33; BioFINDER-2: AUC=98.12%, fold change=8.83) and pT205 (TRIAD: AUC=99.07%, fold change=5.34; BioFINDER-2: AUC=93.51%, fold change=3.92). These phospho-epitopes also discriminated between Aβ-positive and Aβ-negative cognitively unimpaired individuals: pT217 (TRIAD: AUC=83.26, fold change=2.39; BioFINDER-2: AUC=91.05%, fold change=3.29), pT231 (TRIAD: AUC=86.25, fold change=3.80; BioFINDER-2: AUC=78.69%, fold change=3.65) and pT205 (TRIAD: AUC=71.58, fold change=1.51; BioFINDER-2: AUC=71.11%, fold change=1.70).While an increase was found for all pTau species examined, the highest fold change in Alzheimer's disease was found for pT231, pT217 and pT205. Simultaneous antibody-free measurement of pTau epitopes by mass spectrometry avoids possible bias caused by differences in antibody affinity for modified or processed forms of tau, provides insights into tau pathophysiology and may facilitate clinical trials on tau-based drug candidates.
  •  
27.
  • Hanbouch, L., et al. (författare)
  • Specific Mutations in the Cholesterol-Binding Site of APP Alter Its Processing and Favor the Production of Shorter, Less Toxic A beta Peptides
  • 2022
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 59, s. 7056-7073
  • Tidskriftsartikel (refereegranskat)abstract
    • Excess brain cholesterol is strongly implicated in the pathogenesis of Alzheimer's disease (AD). Here we evaluated how the presence of a cholesterol-binding site (CBS) in the transmembrane and juxtamembrane regions of the amyloid precursor protein (APP) regulates its processing. We generated nine point mutations in the APP gene, changing the charge and/or hydrophobicity of the amino-acids which were previously shown as part of the CBS. Most mutations triggered a reduction of amyloid-beta peptides A beta 40 and A beta 42 secretion from transiently transfected HEK293T cells. Only the mutations at position 28 of A beta in the APP sequence resulted in a concomitant significant increase in the production of shorter A beta peptides. Mass spectrometry (MS) confirmed the predominance of A beta x-33 and A beta x-34 with the APP(K28A) mutant. The enzymatic activity of alpha-, beta-, and gamma-secretases remained unchanged in cells expressing all mutants. Similarly, subcellular localization of the mutants in early endosomes did not differ from the APP(WT) protein. A transient increase of plasma membrane cholesterol enhanced the production of A beta 40 and A beta 42 by APP(WT), an effect absent in APP(K28A) mutant. Finally, WT but not CBS mutant A beta derived peptides bound to cholesterol-rich exosomes. Collectively, the present data revealed a major role of juxtamembrane amino acids of the APP CBS in modulating the production of toxic A beta species. More generally, they underpin the role of cholesterol in the pathophysiology of AD.
  •  
28.
  • Höglund, Kina, 1976, et al. (författare)
  • Cerebrospinal fluid neurogranin in an inducible mouse model of neurodegeneration : A translatable marker of synaptic degeneration
  • 2020
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 134
  • Tidskriftsartikel (refereegranskat)abstract
    • Synapse impairment is thought to be an early event in Alzheimer's disease (AD); dysfunction and loss of synapses are linked to cognitive symptoms that precede neuronal loss and neurodegeneration. Neurogranin (Ng) is a somatodendritic protein that has been shown to be reduced in brain tissue but increased in the cerebrospinal fluid (CSF) of AD patients compared to age-matched controls. High levels of CSF Ng have been shown to reflect a more rapid AD progression. To gauge the translational value of Ng as a biomarker, we developed a new, highly sensitive, digital enzyme-linked immunosorbent assay (ELISA) on the Simoa platform to measure Ng in both mouse and human CSF. We investigated and confirmed that Ng levels are increased in the CSF of patients with AD compared to controls. In addition, we explored how Ng is altered in the brain and CSF of transgenic mice that display progressive neuronal loss and synaptic degeneration following the induction of p25 overexpression. In this model, we found that Ng levels increased in CSF when neurodegeneration was induced, peaking after 2 weeks, while they decreased in brain. Our data suggest that CSF Ng is a biomarker of synaptic degeneration with translational value.
  •  
29.
  • Karikari, Thomas, et al. (författare)
  • Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility
  • 2022
  • Ingår i: Nature Reviews Neurology. - : Springer Science and Business Media LLC. - 1759-4758 .- 1759-4766. ; 18, s. 400-418
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent technological advances have enabled the detection of specific forms of phosphorylated tau in blood. Here, the authors summarize the performance of blood phosphorylated tau biomarkers in the context of Alzheimer disease and highlight related ethical, analytical and clinical challenges. Well-authenticated biomarkers can provide critical insights into the biological basis of Alzheimer disease (AD) to enable timely and accurate diagnosis, estimate future burden and support therapeutic trials. Current cerebrospinal fluid and molecular neuroimaging biomarkers fulfil these criteria but lack the scalability and simplicity necessary for widespread application. Blood biomarkers of adequate effectiveness have the potential to act as first-line diagnostic and prognostic tools, and offer the possibility of extensive population screening and use that is not limited to specialized centres. Accelerated progress in our understanding of the biochemistry of brain-derived tau protein and advances in ultrasensitive technologies have enabled the development of AD-specific phosphorylated tau (p-tau) biomarkers in blood. In this Review we discuss how new information on the molecular processing of brain p-tau and secretion of specific fragments into biofluids is informing blood biomarker development, enabling the evaluation of preanalytical factors that affect quantification, and informing harmonized protocols for blood handling. We also review the performance of blood p-tau biomarkers in the context of AD and discuss their potential contexts of use for clinical and research purposes. Finally, we highlight outstanding ethical, clinical and analytical challenges, and outline the steps that need to be taken to standardize inter-laboratory and inter-assay measurements.
  •  
30.
  • Karikari, Thomas, et al. (författare)
  • Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts.
  • 2020
  • Ingår i: The Lancet. Neurology. - 1474-4465 .- 1474-4422. ; 19:5, s. 422-433
  • Tidskriftsartikel (refereegranskat)abstract
    • CSF and PET biomarkers of amyloid β and tau accurately detect Alzheimer's disease pathology, but the invasiveness, high cost, and poor availability of these detection methods restrict their widespread use as clinical diagnostic tools. CSF tau phosphorylated at threonine 181 (p-tau181) is a highly specific biomarker for Alzheimer's disease pathology. We aimed to assess whether blood p-tau181 could be used as a biomarker for Alzheimer's disease and for prediction of cognitive decline and hippocampal atrophy.We developed and validated an ultrasensitive blood immunoassay for p-tau181. Assay performance was evaluated in four clinic-based prospective cohorts. The discovery cohort comprised patients with Alzheimer's disease and age-matched controls. Two validation cohorts (TRIAD and BioFINDER-2) included cognitively unimpaired older adults (mean age 63-69 years), participants with mild cognitive impairment (MCI), Alzheimer's disease, and frontotemporal dementia. In addition, TRIAD included healthy young adults (mean age 23 years) and BioFINDER-2 included patients with other neurodegenerative disorders. The primary care cohort, which recruited participants in Montreal, Canada, comprised control participants from the community without a diagnosis of a neurological condition and patients referred from primary care physicians of the Canadian National Health Service for specialist care. Concentrations of plasma p-tau181 were compared with established CSF and PET biomarkers and longitudinal measurements using Spearman correlation, area under the curve (AUC), and linear regression analyses.We studied 37 individuals in the discovery cohort, 226 in the first validation cohort (TRIAD), 763 in the second validation cohort (BioFINDER-2), and 105 in the primary care cohort (n=1131 individuals). In all cohorts, plasma p-tau181 showed gradual increases along the Alzheimer's disease continuum, from the lowest concentrations in amyloid β-negative young adults and cognitively unimpaired older adults, through higher concentrations in the amyloid β-positive cognitively unimpaired older adults and MCI groups, to the highest concentrations in the amyloid β-positive MCI and Alzheimer's disease groups (p<0·001, Alzheimer's disease vs all other groups). Plasma p-tau181 distinguished Alzheimer's disease dementia from amyloid β-negative young adults (AUC=99·40%) and cognitively unimpaired older adults (AUC=90·21-98·24% across cohorts), as well as other neurodegenerative disorders, including frontotemporal dementia (AUC=82·76-100% across cohorts), vascular dementia (AUC=92·13%), progressive supranuclear palsy or corticobasal syndrome (AUC=88·47%), and Parkinson's disease or multiple systems atrophy (AUC=81·90%). Plasma p-tau181 was associated with PET-measured cerebral tau (AUC=83·08-93·11% across cohorts) and amyloid β (AUC=76·14-88·09% across cohorts) pathologies, and 1-year cognitive decline (p=0·0015) and hippocampal atrophy (p=0·015). In the primary care cohort, plasma p-tau181 discriminated Alzheimer's disease from young adults (AUC=100%) and cognitively unimpaired older adults (AUC=84·44%), but not from MCI (AUC=55·00%).Blood p-tau181 can predict tau and amyloid β pathologies, differentiate Alzheimer's disease from other neurodegenerative disorders, and identify Alzheimer's disease across the clinical continuum. Blood p-tau181 could be used as a simple, accessible, and scalable test for screening and diagnosis of Alzheimer's disease.Alzheimer Drug Discovery Foundation, European Research Council, Swedish Research Council, Swedish Alzheimer Foundation, Swedish Dementia Foundation, Alzheimer Society Research Program.
  •  
31.
  • Lennol, M. P., et al. (författare)
  • Apolipoprotein E imbalance in the cerebrospinal fluid of Alzheimer's disease patients
  • 2022
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The purpose of this study was to examine the levels of cerebrospinal fluid (CSF) apolipoprotein E (apoE) species in Alzheimer's disease (AD) patients. Methods: We analyzed two CSF cohorts of AD and control individuals expressing different APOE genotypes. Moreover, CSF samples from the TgF344-AD rat model were included. Samples were run in native- and SDS-PAGE under reducing or non-reducing conditions (with or without beta-mercaptoethanol). Immunoprecipitation combined with mass spectrometry or western blotting analyses served to assess the identity of apoE complexes. Results: In TgF344-AD rats expressing a unique apoE variant resembling human apoE4, a similar to 35-kDa apoE monomer was identified, increasing at 16.5 months compared with wild-types. In humans, apoE isoforms form disulfide-linked dimers in CSF, except apoE4, which lacks a cysteine residue. Thus, controls showed a decrease in the apoE dimer/monomer quotient in the APOE epsilon 3/epsilon 4 group compared with epsilon 3/epsilon 3 by native electrophoresis. A major contribution of dimers was found in APOE epsilon 3/epsilon 4 AD cases, and, unexpectedly, dimers were also found in epsilon 4/epsilon 4 AD cases. Under reducing conditions, two apoE monomeric glycoforms at 36 kDa and at 34 kDa were found in all human samples. In AD patients, the amount of the 34-kDa species increased, while the 36-kDa/34-kDa quotient was lower compared with controls. Interestingly, under reducing conditions, a similar to 100-kDa apoE complex, the identity of which was confirmed by mass spectrometry, also appeared in human AD individuals across all APOE genotypes, suggesting the occurrence of aberrantly resistant apoE aggregates. A second independent cohort of CSF samples validated these results. Conclusion: These results indicate that despite the increase in total apoE content the apoE protein is altered in AD CSF, suggesting that function may be compromised.
  •  
32.
  • Lerche, S., et al. (författare)
  • CSF Protein Level of Neurotransmitter Secretion, Synaptic Plasticity, and Autophagy in PD and DLB
  • 2021
  • Ingår i: Movement Disorders. - : Wiley. - 0885-3185 .- 1531-8257. ; 36:11, s. 2595-2604
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Molecular pathways associated with alpha-synuclein proteostasis have been detected in genetic studies and in cell models and include autophagy, ubiquitin-proteasome system, mitochondrial homeostasis, and synaptic plasticity. However, we lack biomarkers that are representative for these pathways in human biofluids. Objective The objective of this study was to evaluate CSF protein profiles of pathways related to alpha-synuclein proteostasis. Methods We assessed CSF protein profiles associated with neurotransmitter secretion, synapse plasticity, and autophagy in 2 monocentric cohorts with alpha-synucleinopathy (385 PD patients and 67 DLB patients). We included 80 PD patients and 17 DLB patients with variants in the glucocerebrosidase gene to serve as proxy for accelerated alpha-synuclein pathology with pronounced clinical trajectories. Results (1) Proteins associated with neurotransmitter secretion, synaptic plasticity, and endolysosomal autophagy were lower in PD and DLB patients compared with healthy controls. (2) These patterns were more pronounced in DLB than in PD patients, accentuated by GBA variant status in both entities. (3) CSF levels of these proteins were positively associated with CSF levels of total alpha-synuclein, with lower levels of proteostasis proteins related to lower levels of total alpha-synuclein. (4) These findings could be confirmed longitudinally. PD patients with low CSF profiles of proteostasis proteins showed lower CSF levels of alpha-synuclein longitudinally compared with PD patients with a normal proteostasis profile. Conclusion CSF proteins associated with neurotransmitter secretion, synaptic plasticity, and endolysosomal autophagy might serve as biomarkers related to alpha-synuclein proteostasis in PD and DLB. (c) 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
  •  
33.
  • Lopez-Font, Inmaculada, et al. (författare)
  • Decreased circulating ErbB4 ectodomain fragments as a read-out of impaired signaling function in amyotrophic lateral sclerosis.
  • 2019
  • Ingår i: Neurobiology of disease. - : Elsevier BV. - 1095-953X .- 0969-9961. ; 124:April, s. 428-438
  • Tidskriftsartikel (refereegranskat)abstract
    • ErbB4 is a transmembrane receptor tyrosine kinase that binds to neuregulins to activate signaling. Proteolytic cleavage of ErbB4 results in release of soluble fragments of ErbB4 into the interstitial fluid. Disruption of the neuregulin-ErbB4 pathway has been suggested to be involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). This study assesses whether soluble proteolytic fragments of the ErbB4 ectodomain (ecto-ErbB4) can be detected in cerebrospinal fluid (CSF) and plasma, and if the levels are altered in ALS. Immunoprecipitation combined with mass spectrometry or western blotting analyses confirmed the presence of ecto-ErbB4 in human CSF. Several anti-ErbB4-reactive bands, including a 55kDa fragment, were detected in CSF. The bands were generated in the presence of neuregulin-1 (Nrg1) and were absent in plasma from ErbB4 knockout mice. Ecto-ErbB4 levels were decreased in CSF from ALS patients (n=20) and ALS with concomitant frontotemporal dementia patients (n=10), compared to age-matched controls (n=13). A similar decrease was found for the short ecto-ErbB4 fragments in plasma of the same subjects. Likewise, the 55-kDa ecto-ErbB4 fragments were decreased in the plasma of the two transgenic mouse models of ALS (SOD1G93A and TDP-43A315T). Intracellular ErbB4 fragments were decreased in the frontal cortex from SOD1G93A mice, indicating a reduction in Nrg-dependent induction of ErbB4 proteolytic processing, and suggesting impaired signaling. Accordingly, overexpression of Nrg1 induced by an adeno-associated viral vector increased the levels of the ecto-ErbB4 fragment in the SOD1G93A mice. We conclude that the determination of circulating ecto-ErbB4 fragments could be a tool to evaluate the impairment of the ErbB4 pathway and may be a useful biomarker in ALS.
  •  
34.
  • Mc Donald, J. M., et al. (författare)
  • The aqueous phase of Alzheimer's disease brain contains assemblies built from similar to 4 and similar to 7 kDa A beta species
  • 2015
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 11:11, s. 1286-1305
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Much knowledge about amyloid beta (A beta) aggregation and toxicity has been acquired using synthetic peptides and mouse models, whereas less is known about soluble Ab in human brain. Methods: We analyzed aqueous extracts from multiple A beta brains using an array of techniques. Results: Brains can contain at least four different A beta assembly forms including: (i) monomers, (ii) a similar to 7kDa Ab species, and larger species (iii) from similar to 30-150 kDa, and (iv)>160 kDa. High molecular weight species are by far the most prevalent and appear to be built from similar to 7 kDa A beta species. The similar to 7 kDa A beta species resist denaturation by chaotropic agents and have a higher A beta 42/A beta 40 ratio than monomers, and are unreactive with antibodies to Asp1 of Ab or APP residues N-terminal of Asp1. Discussion: Further analysis of brain-derived similar to 7 kDa Ab species, the mechanism by which they assemble and the structures they form should reveal therapeutic and diagnostic opportunities. (C) 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
  •  
35.
  • Nilsson, Jonas, 1970, et al. (författare)
  • Synthetic standard aided quantification and structural characterization of amyloid-beta glycopeptides enriched from cerebrospinal fluid of Alzheimer's disease patients
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • An early pathological hallmark of Alzheimer's disease (AD) is amyloid-beta (A beta) deposits in the brain, which largely consist of up to 43 amino acids long A beta peptides derived from the amyloid precursor protein (APP). We previously identified a series of sialylated Tyr-10 O-glycosylated A beta peptides, 15-20 residues long, from human cerebrospinal fluid (CSF) and observed a relative increase of those in AD vs non-AD patients. We report here on the synthesis and use of an isotopically double-labeled A beta 1-15 glycopeptide, carrying the core 1Gal beta 3GalNAc alpha 1-O-Tyr-10 structure, to (1) identify by HCD LC-MS/MS the definite glycan core 1 structure of immunopurified and desialylated A beta glycopeptides in human CSF and to (2) establish a LC-MS/MS quantification method for desialylated A beta 1-15 (and A beta-17) glycopeptides and to (3) compare the concentrations of these A beta glycopeptides in CSF from 20 AD patients and 20 healthy controls. Although we unambiguously identified the core 1 structures and Tyr-10 attachment sites of the glycopeptides, we did not observe any quantitative differences, determined through both peptide and oxonium ion fragments, of the desialylated A beta 1-15 or A beta 1-17 glycopeptides between the AD and non-AD group. The new quantitative glycoproteomic approach described, using double-labeled glycopeptide standards, will undoubtedly facilitate future studies of glycopeptides as clinical biomarkers but should also embrace sialylated A beta standards to reveal specific sialylation patterns of individual A beta glycopeptides in AD patients and controls.
  •  
36.
  • Saloner, R., et al. (författare)
  • Combined Effects of Synaptic and Axonal Integrity on Longitudinal Gray Matter Atrophy in Cognitively Unimpaired Adults
  • 2022
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 99:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives Synaptic dysfunction and degeneration is a predominant feature of brain aging, and synaptic preservation buffers against Alzheimer disease (AD) protein-related brain atrophy. We tested whether CSF synaptic protein concentrations similarly moderate the effects of axonal injury, indexed by CSF neurofilament light [NfL]), on brain atrophy in clinically normal adults. Methods Clinically normal older adults enrolled in the observational Hillblom Aging Network study at the UCSF Memory and Aging Center completed baseline lumbar puncture and longitudinal brain MRI (mean scan [follow-up] = 2.6 [3.7 years]). CSF was assayed for synaptic proteins (synaptotagmin-1, synaptosomal-associated protein 25 [SNAP-25], neurogranin, growth-associated protein 43 [GAP-43]), axonal injury (NfL), and core AD biomarkers (ptau(181)/A beta(42) ratio; reflecting AD proteinopathy). Ten bilateral temporoparietal gray matter region of interest (ROIs) shown to be sensitive to clinical AD were summed to generate a composite temporoparietal ROI. Linear mixed-effects models tested statistical moderation of baseline synaptic proteins on baseline NfL-related temporoparietal trajectories, controlling for ptau(181)/A beta(42) ratios. Results Forty-six clinically normal older adults (mean age = 70 years; 43% female) were included. Synaptic proteins exhibited small to medium correlations with NfL (r range: 0.10-0.36). Higher baseline NfL, but not ptau(181)/A beta(42) ratios, predicted steeper temporoparietal atrophy (NfL x time: beta = -0.08, p < 0.001; ptau(181)/A beta(42) x time: beta = -0.02, p = 0.31). SNAP-25, neurogranin, and GAP-43 significantly moderated NfL-related atrophy trajectories (-0.07 <= beta's >= -0.06, p's < 0.05) such that NfL was associated with temporoparietal atrophy at high (more abnormal) but not low (more normal) synaptic protein concentrations. At high NfL concentrations, atrophy trajectories were 1.5-4.5 times weaker when synaptic protein concentrations were low (beta range: -0.21 to -0.07) than high (beta range: -0.33 to -0.30). Discussion The association between baseline CSF NfL and longitudinal temporoparietal atrophy is accelerated by synaptic dysfunction and buffered by synaptic integrity. Beyond AD proteins, concurrent examination of in vivo axonal and synaptic biomarkers may improve detection of neural alterations that precede overt structural changes in AD-sensitive brain regions.
  •  
37.
  • Swift, I. J., et al. (författare)
  • Differential patterns of lysosomal dysfunction are seen in the clinicopathological forms of primary progressive aphasia
  • 2024
  • Ingår i: Journal of Neurology. - 0340-5354. ; 271:3, s. 1277-1285
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing evidence implicates endo-lysosomal dysfunction in frontotemporal dementia (FTD). 18 proteins were quantified using a mass spectrometry assay panel in the cerebrospinal fluid of 36 people with the language variant of FTD, primary progressive aphasia (PPA) (including 13 with non-fluent variant (nfvPPA), 11 with semantic variant (svPPA), and 12 with logopenic variant (lvPPA)) and 19 healthy controls. The concentrations of the cathepsins (B, D, F, L1, and Z) as well as AP-2 complex subunit beta, ganglioside GM2 activator, beta-hexosaminidase subunit beta, tissue alpha l-fucosidase, and ubiquitin were decreased in nfvPPA compared with controls. In contrast, the concentrations of amyloid beta A4 protein, cathepsin Z, and dipeptidyl peptidase 2 were decreased in svPPA compared with controls. No proteins were abnormal in lvPPA. These results indicate a differential alteration of lysosomal proteins in the PPA variants, suggesting those with non-Alzheimer's pathologies are more likely to show abnormal lysosomal function.
  •  
38.
  • Vrillon, A., et al. (författare)
  • Plasma neuregulin 1 as a synaptic biomarker in Alzheimer's disease: a discovery cohort study
  • 2022
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Synaptic dysfunction is an early core feature of Alzheimer's disease (AD), closely associated with cognitive symptoms. Neuregulin 1 (NRG1) is a growth and differentiation factor with a key role in the development and maintenance of synaptic transmission. Previous reports have shown that changes in cerebrospinal fluid (CSF) NRG1 concentration are associated with cognitive status and biomarker evidence of AD pathology. Plasma biomarkers reflecting synaptic impairment would be of great clinical interest. Objective To measure plasma NRG1 concentration in AD patients in comparison with other neurodegenerative disorders and neurological controls (NC) and to study its association with cerebrospinal fluid (CSF) core AD and synaptic biomarkers. Methods This retrospective study enrolled 127 participants including patients with AD at mild cognitive impairment stage (AD-MCI, n = 27) and at dementia stage (n = 35), non-AD dementia (n = 26, A beta-negative), non-AD MCI (n = 19), and neurological controls (n=20). Plasma and CSF NRG1, as well as CSF core AD biomarkers (A beta 42/A beta 40 ratio, phospho-tau, and total tau), were measured using ELISA. CSF synaptic markers were measured using ELISA for GAP-43 and neurogranin and through immunoprecipitation mass spectrometry for SNAP-25. Results Plasma NRG1 concentration was higher in AD-MCI and AD dementia patients compared with neurological controls (respectively P = 0.005 and P < 0.001). Plasma NRG1 differentiated AD MCI patients from neurological controls with an area under the curve of 88.3%, and AD dementia patients from NC with an area under the curve of 87.3%. Plasma NRG1 correlated with CSF NRG1 (beta = 0.372, P = 0.0056, adjusted on age and sex). Plasma NRG1 was associated with AD CSF core biomarkers in the whole cohort and in A beta-positive patients (beta = -0.197-0.423). Plasma NRG1 correlated with CSF GAP-43, neurogranin, and SNAP-25 (beta = 0.278-0.355). Plasma NRG1 concentration correlated inversely with MMSE in the whole cohort and in A beta-positive patients (all, beta = -0.188, P = 0.038; A beta+: beta = -0.255, P = 0.038). Conclusion Plasma NRG1 concentration is increased in AD patients and correlates with CSF core AD and synaptic biomarkers and cognitive status. Thus, plasma NRG1 is a promising non-invasive biomarker to monitor synaptic impairment in AD.
  •  
39.
  • Weber, Tobias A, et al. (författare)
  • γ-Secretase modulators show selectivity for γ-secretase-mediated amyloid precursor protein intramembrane processing.
  • 2022
  • Ingår i: Journal of cellular and molecular medicine. - : Wiley. - 1582-4934 .- 1582-1838. ; 26:3, s. 880-892
  • Tidskriftsartikel (refereegranskat)abstract
    • The aggregation of β-amyloid peptide 42 results in the formation of toxic oligomers and plaques, which plays a pivotal role in Alzheimer's disease pathogenesis. Aβ42 is one of several Aβ peptides, all of Aβ30 to Aβ43 that are produced as a result of γ-secretase-mediated regulated intramembrane proteolysis of the amyloid precursor protein. γ-Secretase modulators (GSMs) represent a promising class of Aβ42-lowering anti-amyloidogenic compounds for the treatment of AD. Gamma-secretase modulators change the relative proportion of secreted Aβ peptides, while sparing the γ-secretase-mediated processing event resulting in the release of the cytoplasmic APP intracellular domain. In this study, we have characterized how GSMs affect the γ-secretase cleavage of three γ-secretase substrates, E-cadherin, ephrin type A receptor 4 (EphA4) and ephrin type B receptor 2 (EphB2), which all are implicated in important contexts of cell signalling. By using a reporter gene assay, we demonstrate that the γ-secretase-dependent generation of EphA4 and EphB2 intracellular domains is unaffected by GSMs. We also show that γ-secretase processing of EphA4 and EphB2 results in the release of several Aβ-like peptides, but that only the production of Aβ-like proteins from EphA4 is modulated by GSMs, but with an order of magnitude lower potency as compared to Aβ modulation. Collectively, these results suggest that GSMs are selective for γ-secretase-mediated Aβ production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-39 av 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy