SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brinkmalm Westman Ann) "

Sökning: WFRF:(Brinkmalm Westman Ann)

  • Resultat 1-50 av 55
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abramsson, Alexandra, 1973, et al. (författare)
  • Proteomics Profiling of Single Organs from Individual Adult Zebrafish.
  • 2010
  • Ingår i: Zebrafish. - : Mary Ann Liebert Inc. - 1557-8542 .- 1545-8547. ; 7:2, s. 161-168
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract The model organism zebrafish (Danio rerio) is extensively utilized in studies of developmental biology but is also being investigated in the context of a growing list of human age-related diseases. To facilitate such studies, we here present protein expression patterns of adult zebrafish organs, including blood, brain, fin, heart, intestine, liver, and skeletal muscle. Protein extracts were prepared from the different organs of two zebrafish and analyzed using liquid chromatography coupled to high-resolution tandem mass spectrometry. Zebrafish tissue was digested directly after minimal fractionation and cleaned up (the shotgun approach). Proteins were identified using Mascot software. In total, 1394 proteins were identified of which 644 were nonredundant. Of these, 373 demonstrated an organ-specific expression pattern and 57 had not been shown on protein level before. These data emphasize the need for increased research at the protein level to facilitate the selection of candidate proteins for targeted quantification and to refine systematic genetic network analysis in vertebrate development, biology, and disease.
  •  
2.
  • Brinkmalm, Gunnar, et al. (författare)
  • A Parallel Reaction Monitoring Mass Spectrometric Method for Analysis of Potential CSF Biomarkers for Alzheimer's Disease.
  • 2018
  • Ingår i: Proteomics. Clinical applications. - : Wiley. - 1862-8354 .- 1862-8346. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to develop and evaluate a parallel reaction monitoring mass spectrometry (PRM-MS) assay consisting of a panel of potential protein biomarkers in cerebrospinal fluid (CSF).Thirteen proteins were selected based on their association with neurodegenerative diseases and involvement in synaptic function, secretory vesicle function, or innate immune system. CSF samples were digested and two to three peptides per protein were quantified using stable isotope-labeled peptide standards.Coefficients of variation were generally below 15%. Clinical evaluation was performed on a cohort of 10 patients with Alzheimer's disease (AD) and 15 healthy subjects. Investigated proteins of the granin family exhibited the largest difference between the patient groups. Secretogranin-2 (p<0.005) and neurosecretory protein VGF (p<0.001) concentrations were lowered in AD. For chromogranin A, two of three peptides had significantly lowered AD concentrations (p<0.01). The concentrations of the synaptic proteins neurexin-1 and neuronal pentraxin-1, as well as neurofascin were also significantly lowered in AD (p<0.05). The other investigated proteins, β2-microglobulin, cystatin C, amyloid precursor protein, lysozyme C, neurexin-2, neurexin-3, and neurocan core protein, were not significantly altered.PRM-MS of protein panels is a valuable tool to evaluate biomarker candidates for neurodegenerative disorders.
  •  
3.
  • Brinkmalm, Gunnar, et al. (författare)
  • An online nano-LC-ESI-FTICR-MS method for comprehensive characterization of endogenous fragments from amyloid β and amyloid precursor protein in human and cat cerebrospinal fluid.
  • 2012
  • Ingår i: Journal of mass spectrometry : JMS. - : Wiley. - 1096-9888 .- 1076-5174. ; 47:5, s. 591-603
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid precursor protein (APP) is the precursor protein to amyloid β (Aβ), the main constituent of senile plaques in Alzheimer's disease (AD). Endogenous Aβ peptides reflect the APP processing, and greater knowledge of different APP degradation pathways is important to understand the mechanism underlying AD pathology. When one analyzes longer Aβ peptides by low-energy collision-induced dissociation tandem mass spectrometry (MS/MS), mainly long b-fragments are observed, limiting the possibility to determine variations such as amino acid variants or post-translational modifications (PTMs) within the N-terminal half of the peptide. However, by using electron capture dissociation (ECD), we obtained a more comprehensive sequence coverage for several APP/Aβ peptide species, thus enabling a deeper characterization of possible variants and PTMs. Abnormal APP/Aβ processing has also been described in the lysosomal storage disease Niemann-Pick type C and the major large animal used for studying this disease is cat. By ECD MS/MS, a substitution of Asp7 → Glu in cat Aβ was identified. Further, sialylated core 1 like O-glycans at Tyr10, recently discovered in human Aβ (a previously unknown glycosylation type), were identified also in cat cerebrospinal fluid (CSF). It is therefore likely that this unusual type of glycosylation is common for (at least) species belonging to the magnorder Boreoeutheria. We here describe a detailed characterization of endogenous APP/Aβ peptide species in CSF by using an online top-down MS-based method.
  •  
4.
  • Brinkmalm, Gunnar, et al. (författare)
  • Soluble amyloid precursor protein α and β in CSF in Alzheimer's disease.
  • 2013
  • Ingår i: Brain research. - : Elsevier BV. - 1872-6240 .- 0006-8993. ; 1513, s. 117-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral accumulation of amyloid β (Aβ) is a pathological hallmark of Alzheimer's disease (AD). Proteolytic processing of amyloid precursor protein (APP) by α- or β-secretase results in two soluble metabolites, sAPPα and sAPPβ, respectively. However, previous data have shown that both α- and β-secretase have multiple cleavage sites. The aim of this study was to characterize the C-termini of sAPPα and sAPPβ in cerebrospinal fluid (CSF) by mass spectrometry (MS) and to evaluate whether different combinations of these fragments better separate between AD patients and controls by comparing two different sAPP immunoassays. Methods: Using immunoprecipitation and high resolution MS, the APP species present in CSF were investigated. CSF levels of sAPPα and sAPPβ from patients with AD (n=43) and from non-demented controls (n=44) were measured using AlphaLISA and MSD immunoassays that employ different antibodies for C-terminal recognition of sAPPα. Results: Four different C-terminal forms of sAPP were identified, sAPPβ-M671, sAPPβ-Y681, sAPPα-Q686, and sAPPα-K687 (APP770 numbering). Neither immunoassay for the sAPP species could separate the two patient groups. The correlation (R(2)) between the two immunoassays was 0.41 for sAPPα and 0.45 for sAPPβ. Conclusion: Using high resolution MS, we show here for the first time that sAPPα in CSF ends at Q686 and K687. The findings also support the conclusion from several previous studies that sAPPα and sAPPβ levels are unaltered in AD.
  •  
5.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • A Mass Spectrometer´s Building Blocks
  • 2009
  • Ingår i: Mass Spectrometry: Instrumentation, Interpretation, and Applications. Eds. Rolf Ekman, Jerzy Silberring, Ann Westman-Brinkmalm, Agnieszka Kraj. - New York : Wiley. - 9780471713951 ; , s. 15-87
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • This chapter contains sections titled: * Ion Sources * Mass Analyzers * Detectors * References
  •  
6.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • Definitions and Explanations
  • 2009
  • Ingår i: Mass Spectrometry: Instrumentation, Interpretation, and Applications. Eds. Rolf Ekman, Jerzy Silberring, Ann Westman-Brinkmalm, Agnieszka Kraj. - New York : Wiley. - 9780471713951 ; , s. 3-13
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
  •  
7.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • Explorative and targeted neuroproteomics in Alzheimer's disease.
  • 2015
  • Ingår i: Biochimica et biophysica acta. - : Elsevier BV. - 0006-3002. ; 1854:7, s. 769-778
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is a progressive brain amyloidosis that injures brain regions involved in memory consolidation and other higher brain functions. Neuropathologically, the disease is characterized by accumulation of a 42 amino acid peptide called amyloid β (Aβ42) in extracellular senile plaques, intraneuronal inclusions of hyperphosphorylated tau protein in neurofibrillary tangles, and neuronal and axonal degeneration and loss. Biomarker assays capturing these pathologies have been developed for use on cerebrospinal fluid samples but there are additional molecular pathways that most likely contribute to the neurodegeneration and full clinical expression of AD. One way of learning more about AD pathogenesis is to identify novel biomarkers for these pathways and examine them in longitudinal studies of patients in different stages of the disease. Here, we discuss targeted proteomic approaches to study AD and AD-related pathologies in closer detail and explorative approaches to discover novel pathways that may contribute to the disease. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology.
  •  
8.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • Fluid-based proteomics targeted on pathophysiological processes and pathologies in neurodegenerative diseases.
  • 2019
  • Ingår i: Journal of neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 151:4, s. 417-434
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurodegenerative dementias constitute a broad group of diseases in which abnormally folded proteins accumulate in specific brain regions and result in tissue reactions that eventually cause neuronal dysfunction and degeneration. Depending on where in the brain this happens, symptoms appear which may be used to classify the disorders on clinical grounds. However, brain changes in neurodegenerative dementias start to accumulate many years prior to symptom onset and there is a poor correlation between the clinical picture and what pathology that is the most likely to cause it. Thus, novel drug candidates having disease-modifying effects that is targeting the underlying pathology and changes the course of the disease needs to be defined using objective biomarker-based measures since the clinical symptoms are often non-specific and overlap between different disorders. Furthermore, the treatment should ideally be initiated as soon as symptoms are evident or when biomarkers confirm an underlying pathology (pre-clinical phase of the disease) to reduce irreversible damage to, for example, neurons, synapses and axons. Clinical trials in the pre-clinical phase bring a greater importance to biomarkers since by definition the clinical effects are difficult or slow to discern in a population that is not yet clinically affected. Here, we discuss neuropathological changes that may underlie neurodegenerative dementias, including how they can be detected and quantified using currently available biofluid-based biomarkers and how more of them could be identified using targeted proteomics approaches.
  •  
9.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • Proteomics/peptidomics tools to find CSF biomarkers for neurodegenerative diseases.
  • 2009
  • Ingår i: Frontiers in bioscience : a journal and virtual library. - : IMR Press. - 1093-4715. ; 14, s. 1793-806
  • Forskningsöversikt (refereegranskat)abstract
    • Neurodegenerative diseases are characterized by premature neuronal loss in specific brain regions. During the past decades our knowledge on molecular mechanisms underlying neurodegeneration has increased immensely and resulted in promising drug candidates that might slow down or even stop the neuronal loss. These advances have put a strong focus on the development of diagnostic tools for early or pre-clinical detection of the disorders. In this review we discuss our experience in the field of neuroproteomics/peptidomics, with special focus on biomarker discovery studies that have been performed on CSF samples from well-defined patient and control populations.
  •  
10.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • Separation Methods
  • 2009
  • Ingår i: Mass Spectrometry: Instrumentation, Interpretation, and Applications. Eds. Rolf Ekman, Jerzy Silberring, Ann Westman-Brinkmalm, Agnieszka Kraj. - New York : Wiley. - 9780471713951 ; , s. 105-115
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • This chapter contains sections titled: * Chromatography * Electric-Field Driven Separations * References
  •  
11.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • SILAC zebrafish for quantitative analysis of protein turnover and tissue regeneration.
  • 2011
  • Ingår i: Journal of proteomics. - : Elsevier BV. - 1876-7737 .- 1874-3919. ; 75:2, s. 425-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Defective tissue regeneration is thought to contribute to several human diseases, including neurodegenerative disorders, heart failure and various lung diseases. Boosting the regenerative capacity has been suggested a possible therapeutic approach. Methods to metabolically label newly synthesized proteins in vivo with stable isotopic forms of amino acids holds promise for the study of protein turnover and tissue regeneration that are fundamental to the sustained life of all organisms. Here, we used the "stable isotope labeling with amino acids in cell culture" (SILAC) approach to explore normal protein turnover and tissue regeneration in adult zebrafish. The ratio of labeled and unlabeled proteins/peptides in specific organs of zebrafish fed a SILAC diet containing (13)C(6)-labeled lysine was determined by liquid chromatography and tandem mass spectrometry. Labeling was highest in tissues with high regenerative capacity, including intestine, liver, and fin, whereas brain and heart displayed the lowest labeling. Proteins with high degree of labeling were mainly involved in catalytic or transport activity pathways. The technique also verified increased protein synthesis during regeneration of the caudal fin following amputation. This newly developed SILAC zebrafish model constitutes a novel tool to analyze tissue regeneration in an animal model amenable to genetic and pharmacologic manipulation.
  •  
12.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer's disease
  • 2014
  • Ingår i: Molecular Neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Synaptic degeneration is an early pathogenic event in Alzheimer's disease, associated with cognitive impairment and disease progression. Cerebrospinal fluid biomarkers reflecting synaptic integrity would be highly valuable tools to monitor synaptic degeneration directly in patients. We previously showed that synaptic proteins such as synaptotagmin and synaptosomal-associated protein 25 (SNAP-25) could be detected in pooled samples of cerebrospinal fluid, however these assays were not sensitive enough for individual samples. Results: We report a new strategy to study synaptic pathology by using affinity purification and mass spectrometry to measure the levels of the presynaptic protein SNAP-25 in cerebrospinal fluid. By applying this novel affinity mass spectrometry strategy on three separate cohorts of patients, the value of SNAP-25 as a cerebrospinal fluid biomarker for synaptic integrity in Alzheimer's disease was assessed for the first time. We found significantly higher levels of cerebrospinal fluid SNAP-25 fragments in Alzheimer's disease, even in the very early stages, in three separate cohorts. Cerebrospinal fluid SNAP-25 differentiated Alzheimer's disease from controls with area under the curve of 0.901 (P < 0.0001). Conclusions: We developed a sensitive method to analyze SNAP-25 levels in individual CSF samples that to our knowledge was not possible previously. Our results support the notion that synaptic biomarkers may be important tools for early diagnosis, assessment of disease progression, and to monitor drug effects in treatment trials.
  •  
13.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • Tandem Mass Spectrometry
  • 2009
  • Ingår i: Mass Spectrometry: Instrumentation, Interpretation, and Applications. Eds. Rolf Ekman, Jerzy Silberring, Ann Westman-Brinkmalm, Agnieszka Kraj. - New York : Wiley. - 9780471713951 ; , s. 89-103
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • This chapter contains sections titled: * Tandem MS Analyzer Combinations * Ion Activation Methods * References
  •  
14.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • Targeting synaptic pathology with a novel affinity mass spectrometry approach.
  • 2014
  • Ingår i: Molecular & cellular proteomics : MCP. - 1535-9484. ; 13:10, s. 2584-92
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a novel strategy for studying synaptic pathology by concurrently measuring levels of four SNARE complex proteins from individual brain tissue samples. This method combines affinity purification and mass spectrometry and can be applied directly for studies of SNARE complex proteins in multiple species or modified to target other key elements in neuronal function. We use the technique to demonstrate altered levels of presynaptic proteins in Alzheimer disease patients and prion-infected mice.
  •  
15.
  • Duits, F. H., et al. (författare)
  • Synaptic proteins in CSF as potential novel biomarkers for prognosis in prodromal Alzheimer's disease
  • 2018
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We investigated whether a panel of 12 potential novel biomarkers consisting of proteins involved in synapse functioning and immunity would be able to distinguish patients with Alzheimer's disease (AD) and patients with mild cognitive impairment (MCI) from control subjects. Methods: We included 40 control subjects, 40 subjects with MCI, and 40 subjects with AD from the Amsterdam Dementia Cohort who were matched for age and sex (age 65 +/- 5 years, 19 [48%] women). The mean follow-up of patients with MCI was 3 years. Two or three tryptic peptides per protein were analyzed in cerebrospinal fluid using parallel reaction monitoring mass spectrometry. Corresponding stable isotope-labeled peptides were added and used as reference peptides. Multilevel generalized estimating equations (GEEs) with peptides clustered per subject and per protein (as within-subject variables) were used to assess differences between diagnostic groups. To assess differential effects of individual proteins, we included the diagnosis x protein interaction in the model. Separate GEE analyses were performed to assess differences between stable patients and patients with progressive MCI (MCI-AD). Results: There was a main effect for diagnosis (p < 0.01) and an interaction between diagnosis and protein (p < 0.01). Analysis stratified according to protein showed higher levels in patients with MCI for most proteins, especially in patients with MCI-AD. Chromogranin A, secretogranin II, neurexin 3, and neuropentraxin 1 showed the largest effect sizes; beta values ranged from 0.53 to 0.78 for patients with MCI versus control subjects or patients with AD, and from 0.67 to 0.98 for patients with MCI-AD versus patients with stable MCI. In contrast, neurosecretory protein VGF was lower in patients with AD than in patients with MCI (beta = -0.93 [SE 0.22]) and control subjects (beta = 0.46 [SE 0.19]). Conclusions: Our results suggest that several proteins involved in vesicular transport and synaptic stability are elevated in patients with MCI, especially in patients with MCI progressing to AD dementia. This may reflect early events in the AD pathophysiological cascade. These proteins may be valuable as disease stage or prognostic markers in an early symptomatic stage of the disease.
  •  
16.
  • Gobom, Johan, et al. (författare)
  • Alzheimer's Disease Biomarker Analysis Using Targeted Mass Spectrometry.
  • 2024
  • Ingår i: Molecular & cellular proteomics : MCP. - 1535-9484. ; 23:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is characterized by several neuropathological changes, mainly extracellular amyloid aggregates (plaques), intraneuronal inclusions of phosphorylated tau (tangles), as well as neuronal and synaptic degeneration, accompanied by tissue reactions to these processes (astrocytosis and microglial activation) that precede neuronal network disturbances in the symptomatic phase of the disease. A number of biomarkers for these brain tissue changes have been developed, mainly using immunoassays. In this review, we discuss how targeted mass spectrometry (TMS) can be used to validate and further characterize classes of biomarkers reflecting different AD pathologies, such as tau- and amyloid-beta pathologies, synaptic dysfunction, lysosomal dysregulation, and axonal damage, and the prospect of using TMS to measure these proteins in clinical research and diagnosis. TMS advantages and disadvantages in relation to immunoassays are discussed, and complementary aspects of the technologies are discussed.
  •  
17.
  • Halim, Adnan, et al. (författare)
  • Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid {beta}-peptides in human cerebrospinal fluid.
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 108:29, s. 11848-53
  • Tidskriftsartikel (refereegranskat)abstract
    • The proteolytic processing of human amyloid precursor protein (APP) into shorter aggregating amyloid β (Aβ)-peptides, e.g., Aβ1-42, is considered a critical step in the pathogenesis of Alzheimer's disease (AD). Although APP is a well-known membrane glycoprotein carrying both N- and O-glycans, nothing is known about the occurrence of released APP/Aβ glycopeptides in cerebrospinal fluid (CSF). We used the 6E10 antibody and immunopurified Aβ peptides and glycopeptides from CSF samples and then liquid chromatography-tandem mass spectrometry for structural analysis using collision-induced dissociation and electron capture dissociation. In addition to 33 unglycosylated APP/Aβ peptides, we identified 37 APP/Aβ glycopeptides with sialylated core 1 like O-glycans attached to Thr(-39, -21, -20, and -13), in a series of APP/AβX-15 glycopeptides, where X was -63, -57, -52, and -45, in relation to Asp1 of the Aβ sequence. Unexpectedly, we also identified a series of 27 glycopeptides, the Aβ1-X series, where X was 20 (DAEFRHDSGYEVHHQKLVFF), 19, 18, 17, 16, and 15, which were all uniquely glycosylated on Tyr10. The Tyr10 linked O-glycans were (Neu5Ac)(1-2)Hex(Neu5Ac)HexNAc-O- structures with the disialylated terminals occasionally O-acetylated or lactonized, indicating a terminal Neu5Acα2,8Neu5Ac linkage. We could not detect any glycosylation of the Aβ1-38/40/42 isoforms. We observed an increase of up to 2.5 times of Tyr10 glycosylated Aβ peptides in CSF in six AD patients compared to seven non-AD patients. APP/Aβ sialylated O-glycans, including that of a Tyr residue, the first in a mammalian protein, may modulate APP processing, inhibiting the amyloidogenic pathway associated with AD.
  •  
18.
  • Portelius, Erik, 1977, et al. (författare)
  • A novel pathway for amyloid precursor protein processing.
  • 2011
  • Ingår i: Neurobiology of aging. - : Elsevier BV. - 1558-1497 .- 0197-4580. ; 32:6, s. 1090-98
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid precursor protein (APP) can be proteolytically processed along two pathways, the amyloidogenic that leads to the formation of the 40-42 amino acid long Alzheimer-associated amyloid beta (Abeta) peptide and the non-amyloidogenic in which APP is cut in the middle of the Abeta domain thus precluding Abeta formation. Using immunoprecipitation and mass spectrometry we have shown that Abeta is present in cerebrospinal fluid (CSF) as several shorter isoforms in addition to Abeta1-40 and Abeta1-42. To address the question by which processing pathways these shorter isoforms arise, we have developed a cell model that accurately reflects the Abeta isoform pattern in CSF. Using this model, we determined changes in the Abeta isoform pattern induced by alpha-, beta-, and gamma-secretase inhibitor treatment. All isoforms longer than and including Abeta1-17 were gamma-secretase dependent whereas shorter isoforms were gamma-secretase independent. These shorter isoforms, including Abeta1-14 and Abeta1-15, were reduced by treatment with alpha- and beta-secretase inhibitors, which suggests the existence of a third and previously unknown APP processing pathway involving concerted cleavages of APP by alpha- and beta-secretase.
  •  
19.
  • Portelius, Erik, 1977, et al. (författare)
  • An Alzheimer's disease-specific beta-amyloid fragment signature in cerebrospinal fluid.
  • 2006
  • Ingår i: Neuroscience letters. - : Elsevier BV. - 0304-3940. ; 409:3, s. 215-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Pathogenic events in Alzheimer's disease (AD) involve an imbalance between the production and clearance of the neurotoxic beta-amyloid peptide (Abeta), especially the 42 amino acid peptide Abeta1-42. While much is known about the production of Abeta1-42, many questions remain about how the peptide is degraded. To investigate the degradation pattern, we developed a method based on immunoprecipitation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry that determines the Abeta degradation fragment pattern in cerebrospinal fluid (CSF). We found in total 18 C-terminally and 2 N-terminally truncated Abeta peptides and preliminary data indicated that there were differences in the detected Abeta relative abundance pattern between AD and healthy controls. Here, we provide direct evidence that an Abeta fragment signature consisting of Abeta1-16, Abeta1-33, Abeta1-39, and Abeta1-42 in CSF distinguishes sporadic AD patients from non-demented controls with an overall accuracy of 86%.
  •  
20.
  •  
21.
  • Portelius, Erik, 1977, et al. (författare)
  • Characterization of tau in cerebrospinal fluid using mass spectrometry.
  • 2008
  • Ingår i: Journal of proteome research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 7:5, s. 2114-20
  • Tidskriftsartikel (refereegranskat)abstract
    • The neurodegenerative disorder Alzheimer's disease (AD) is the most common cause of dementia in the elderly. The presence of neurofibrillary tangles, consisting of hyperphosphorylated tau protein, is one of the major neuropathologic characteristics of the disease, making this protein an attractive biomarker for AD and a possible target for therapy. Here, we describe an optimized immunoprecipitation mass spectrometry method that enables, for the first time, detailed characterization of tau in human cerebrospinal fluid. The identities of putative tau fragments were confirmed using nanoflow liquid chromatography and tandem mass spectrometry. Nineteen tryptic fragments of tau were detected, of which 16 are found in all tau isoforms while 3 represented unique tau isoforms. These results pave the way for clinical CSF studies on the tauopathies.
  •  
22.
  • Portelius, Erik, 1977, et al. (författare)
  • Effects of gamma-Secretase Inhibition on the Amyloid beta Isoform Pattern in a Mouse Model of Alzheimer's Disease.
  • 2009
  • Ingår i: Neuro-degenerative diseases. - : S. Karger AG. - 1660-2862 .- 1660-2854. ; 6:5-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:Accumulation of amyloid beta (Abeta) in the brain is believed to represent one of the earliest events in the Alzheimer disease process. Abeta is generated from amyloid precursor protein after sequential cleavage by beta- and gamma-secretase. Alternatively, alpha-secretase cleaves within the Abeta sequence, thus, precluding the formation of Abeta. A lot of research has focused on Abeta production, while less is known about the non-amyloidogenic pathway. We have previously shown that Abeta is present in human cerebrospinal fluid (CSF) as several shorter C-terminal truncated isoforms (e.g. Abeta1-15 and Abeta1-16), and that the levels of these shorter isoforms are elevated in media from cells that have been treated with gamma-secretase inhibitors. Objective:To explore the effect of N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT), a gamma-secretase-inhibitor, treatment on the Abeta isoform pattern in brain tissue and CSF from Tg2576 mice. Methods: Immunoprecipitation using the anti-Abeta antibodies 6E10 and 4G8 was combined with either matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or nanoflow liquid chromatography and tandem mass spectrometry. Results: All fragments longer than and including Abeta1-17 displayed a tendency towards decreased levels upon gamma-secretase inhibition, whereas Abeta1-15 and Abeta1-16 indicated slightly elevated levels during treatment. Conclusion: These data suggest that Abeta1-15 and Abeta1-16 may be generated through a third metabolic pathway independent of gamma-secretase, and that these Abeta isoforms may serve as biomarkers for secretase inhibitor treatment.
  •  
23.
  • Portelius, Erik, 1977, et al. (författare)
  • Identification of novel APP/Abeta isoforms in human cerebrospinal fluid.
  • 2009
  • Ingår i: Neuro-degenerative diseases. - : S. Karger AG. - 1660-2862 .- 1660-2854. ; 6:3, s. 87-94
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Aggregation of beta-amyloid (Abeta) into oligomers and plaques is the central pathogenic mechanism in Alzheimer's disease (AD). Abeta is produced from the amyloid precursor protein (APP) by beta- and gamma-secretases, whereas, in the nonamyloidogenic pathway, alpha-secretase cleaves within the Abeta sequence, and thus precludes Abeta formation. A lot of research has focused on Abeta production and the neurotoxic 42-amino-acid form of Abeta (Abeta1-42), while less is known about the nonamyloidogenic pathway and how Abeta is degraded. OBJECTIVE: To study the Abeta metabolism in man by searching for novel Abeta peptides in cerebrospinal fluid (CSF). METHODS: Immunoprecipitation, using an anti-Abeta antibody, 6E10, was combined with either matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or nanoflow liquid chromatography and tandem mass spectrometry. RESULTS: We identified 12 truncated APP/Abeta peptides in the CSF, all of which end at amino acid 15 in the Abeta sequence, i.e. 1 amino acid before the proposed alpha-secretase site. Of these 12 APP/Abeta peptides, 11 are novel peptides and start N-terminally of the beta-secretase site. The most abundant APP/Abeta peptide starts 25 amino acids before the beta-secretase site, APP/Abeta (-25 to 15), and had a concentration of approximately 80 pg/ml. The identity of all the APP/Abeta peptides was verified in a cohort of AD patients and controls. A first pilot study also showed that the intensity of several APP/Abeta peaks in CSF was higher in AD cases than in controls. CONCLUSION: These data suggest an enzymatic activity that cleaves the precursor protein in a specific manner that may reflect a novel metabolic pathway for APP and Abeta.
  •  
24.
  • Portelius, Erik, 1977, et al. (författare)
  • Identification of novel N-terminal fragments of amyloid precursor protein in cerebrospinal fluid.
  • 2010
  • Ingår i: Experimental neurology. - : Elsevier BV. - 1090-2430 .- 0014-4886. ; 223:2, s. 351-358
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the central nervous system. Two pathological hallmarks in the brain of AD patients are neurofibrillary tangles and senile plaques. The plaques consist mainly of beta-amyloid (Abeta) peptides that are produced from the amyloid precursor protein (APP), by sequential cleavage by beta- and gamma-secretase. Most previous studies have been focused on the C-terminal fragments of APP, where the Abeta sequence is localized. The purpose of this study was to search for N-terminal fragments of APP in cerebrospinal fluid (CSF) using mass spectrometry (MS). By using immunoprecipitation (IP) combined with matrix-assisted laser desorption/ionization time-of-flight MS as well as nanoflow liquid chromatography coupled to high resolution tandem MS we were able to detect and identify six novel N-terminal APP fragments [APP((18-119)), APP((18-121)), APP((18-122)), APP((18-123)), APP((18-124)) and APP((18-126))], having molecular masses of approximately 12 kDa. The presence of these APP derivatives in CSF was also verified by Western blot analysis. Two pilot studies using either IP-MS or Western blot analysis indicated slightly elevated levels of N-terminal APP fragments in CSF from AD patients compared with controls, which are in need of replications in independent and larger patient materials.
  •  
25.
  • Portelius, Erik, 1977, et al. (författare)
  • Mass spectrometric characterization of amyloid-β species in the 7PA2 cell model of Alzheimer's disease.
  • 2013
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 33:1, s. 85-93
  • Tidskriftsartikel (refereegranskat)abstract
    • The Chinese hamster ovary cell line 7PA2, stably transfected with the 751 amino acid isoform of amyloid-β protein precursor (AβPP) containing the Val → Phe mutation at residue 717, is one of the most used models to study the biochemistry and toxicity of secreted amyloid-β (Aβ) peptides, particularly Aβ oligomers, which are considered to be of relevance to the pathogenesis of Alzheimer's disease. Here, we present a detailed immunochemical and mass spectrometric characterization of primary structures of Aβ peptides secreted by 7PA2 cells. Immunoprecipitation and western blot of 7PA2 cell culture media revealed abundant anti-Aβ immunoreactive bands in the molecular weight range of 4-20 kDa. Mass spectrometric analysis showed that these bands contain several AβPP/Aβ peptides, starting at the N-terminal of the Aβ sequence and extending across the BACE1 cleavage site. Treatment of cells with a BACE1 inhibitor decreased the abundance of the Aβ monomer band by western blot and resulted in lower levels of Aβ1-40, Aβ1-42, and sAβPPβ as measured by ELISA. However, western blot bands thought to represent oligomers of Aβ increased in response to BACE1 inhibition. This increase was paralleled by the emergence of N-terminally truncated Aβ species (Aβ5-40 in particular) and Aβ species that spanned the β-secretase site in AβPP according to mass spectrometric analyses. The formation of these AβPP/Aβ peptides may have implications for the use of the 7PA2 cell line as a model for Aβ pathology. The enzyme(s) responsible for this particular BACE1-independent AβPP-processing remains to be identified.
  •  
26.
  • Portelius, Erik, 1977, et al. (författare)
  • Proteomic studies of cerebrospinal fluid biomarkers of Alzheimer's disease: an update.
  • 2017
  • Ingår i: Expert review of proteomics. - : Informa UK Limited. - 1744-8387 .- 1478-9450. ; 14:11, s. 1007-1020
  • Forskningsöversikt (refereegranskat)abstract
    • Alzheimer's disease (AD) is a neurodegenerative disease affecting the brain. Today there are three cerebrospinal fluid (CSF) biomarkers, amyloid-β consisting of 42 amino acids (Aβ42), total-tau (t-tau) and phosphorylated-tau (p-tau), which combined have sensitivity and specificity figures around 80%. However, pathological studies have shown that comorbidity is a common feature in AD and that the three currently used CSF biomarkers do not optimally reflect the activity of the disease process. Thus, additional markers are needed. Areas covered: In the present review, we screened PubMed for articles published the last five years (2012-2017) for proteomic studies in CSF with the criteria that AD had to be included as one of the diagnostic groups. Based on inclusion criteria, 28 papers were included reporting in total 224 biomarker-data that were altered in AD compared to control. Both mass spectrometry and multi-panel immunoassays were considered as proteomic studies. Expert commentary: A large number of pilot studies have been reported but so far there is a lack of replicated findings and to date no CSF biomarker discovered in proteomic studies has reached the clinic to aid in the diagnostic work-up of patients with cognitive impairment.
  •  
27.
  • Sjödin, Simon, et al. (författare)
  • Mass Spectrometric Analysis of Cerebrospinal Fluid Ubiquitin in Alzheimer's Disease and Parkinsonian Disorders
  • 2017
  • Ingår i: Proteomics - Clinical Applications. - : Wiley. - 1862-8346 .- 1862-8354. ; 11:11-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Dysfunctional proteostasis, with decreased protein degradation and an accumulation of ubiquitin into aggregated protein inclusions, is a feature of neurodegenerative diseases. Identifying new potential biomarkers in cerebrospinal fluid (CSF) reflecting this process could contribute important information on pathophysiology. Experimental design: A developed method combining SPE and PRM-MS is employed to monitor the concentration of ubiquitin in CSF from subjects with Alzheimer's disease (AD), Parkinson's disease (PD), and progressive supranuclear palsy (PSP). Four independent cross-sectional studies are conducted, studies 1–4, including controls (n = 86) and participants with AD (n = 60), PD (n = 15), and PSP (n = 11). Results: The method shows a repeatability and intermediate precision not exceeding 6.1 and 7.9%, respectively. The determined LOD is 0.1 nm and the LOQ range between 0.625 and 80 nm. The CSF ubiquitin concentration is 1.2–1.5-fold higher in AD patients compared with controls in the three independent AD-control studies (Study 1, p < 0.001; Study 2, p < 0.001; and Study 3, p = 0.003). In the fourth study, there is no difference in PD or PSP, compared to controls. Conclusion and clinical relevance: CSF ubiquitin may reflect dysfunctional proteostasis in AD. The described method can be used for further exploration of ubiquitin as a potential biomarker in neurodegenerative diseases.
  •  
28.
  •  
29.
  • Zetterberg, Henrik, 1973, et al. (författare)
  • Clinical proteomics in neurodegenerative disorders.
  • 2008
  • Ingår i: Acta neurologica Scandinavica. - : Hindawi Limited. - 1600-0404 .- 0001-6314. ; 118:1, s. 1-11
  • Forskningsöversikt (refereegranskat)abstract
    • Neurodegenerative disorders are characterized by neuronal impairment that eventually leads to neuronal death. In spite of the brain's known capacity for regeneration, lost neurons are difficult to replace. Therefore, drugs aimed at inhibiting neurodegenerative processes are likely to be most effective if the treatment is initiated as early as possible. However, clinical manifestations in early disease stages are often numerous, subtle and difficult to diagnose. This is where biomarkers that specifically reflect onset of pathology, directly or indirectly, may have a profound impact on diagnosis making in the future. A triplet of biomarkers for Alzheimer's disease (AD), total and hyperphosphorylated tau and the 42 amino acid isoform of beta-amyloid, has already been established for early detection of AD before the onset of dementia. However, more biomarkers are needed both for AD and for other neurodegenerative disorders, such as Parkinson's disease, frontotemporal dementia and amyotrophic lateral sclerosis. This review provides an update on recent advances in clinical neuroproteomics, a biomarker discovery field that has expanded immensely during the last decade, and gives an overview of the most commonly used techniques and the major clinically relevant findings these techniques have lead to.
  •  
30.
  • Öhrfelt, Annika, 1973, et al. (författare)
  • The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer's disease
  • 2016
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Synaptic degeneration is a central pathogenic event in Alzheimer's disease that occurs early during the course of disease and correlates with cognitive symptoms. The pre-synaptic vesicle protein synaptotagmin-1 appears to be essential for the maintenance of an intact synaptic transmission and cognitive function. Synaptotagmin-1 in cerebrospinal fluid is a candidate Alzheimer biomarker for synaptic dysfunction that also may correlate with cognitive decline. Methods: In this study, a novel mass spectrometry-based assay for measurement of cerebrospinal fluid synaptotagmin-1 was developed, and was evaluated in two independent sample sets of patients and controls. Sample set I included cerebrospinal fluid samples from patients with dementia due to Alzheimer's disease (N = 17, age 52-86 years), patients with mild cognitive impairment due to Alzheimer's disease (N = 5, age 62-88 years), and controls (N = 17, age 41-82 years). Sample set II included cerebrospinal fluid samples from patients with dementia due to Alzheimer's disease (N = 24, age 52-84 years), patients with mild cognitive impairment due to Alzheimer's disease (N = 18, age 58-83 years), and controls (N = 36, age 43-80 years). Results: The reproducibility of the novel method showed coefficients of variation of the measured synaptotagmin-1 peptide 215-223 (VPYSELGGK) and peptide 238-245 (HDIIGEFK) of 14 % or below. In both investigated sample sets, the CSF levels of synaptotagmin-1 were significantly increased in patients with dementia due to Alzheimer's disease (P <= 0.0001) and in patients with mild cognitive impairment due to Alzheimer's disease (P < 0.001). In addition, in sample set I the synaptotagmin-1 level was significantly higher in patients with mild cognitive impairment due to Alzheimer's disease compared with patients with dementia due to Alzheimer's disease (P <= 0.05). Conclusions: Cerebrospinal fluid synaptotagmin-1 is a promising biomarker to monitor synaptic dysfunction and degeneration in Alzheimer's disease that may be useful for clinical diagnosis, to monitor effect on synaptic integrity by novel drug candidates, and to explore pathophysiology directly in patients with Alzheimer's disease.
  •  
31.
  • Öhrfelt Olsson, Annika, 1973, et al. (författare)
  • Identification of Novel α-Synuclein Isoforms in Human Brain Tissue by using an Online NanoLC-ESI-FTICR-MS Method.
  • 2011
  • Ingår i: Neurochemical research. - : Springer Science and Business Media LLC. - 1573-6903 .- 0364-3190. ; 36:11, s. 2029-2042
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are neurodegenerative diseases that are characterized by intra-neuronal inclusions of Lewy bodies in distinct brain regions. These inclusions consist mainly of aggregated α-synuclein (α-syn) protein. The present study used immunoprecipitation combined with nanoflow liquid chromatography (LC) coupled to high resolution electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) to determine known and novel isoforms of α-syn in brain tissue homogenates. N-terminally acetylated full-length α-syn (Ac-α-syn(1-140)) and two N-terminally acetylated C-terminally truncated forms of α-syn (Ac-α-syn(1-139) and Ac-α-syn(1-103)) were found. The different forms of α-syn were further studied by Western blotting in brain tissue homogenates from the temporal cortex Brodmann area 36 (BA36) and the dorsolateral prefrontal cortex BA9 derived from controls, patients with DLB and PD with dementia (PDD). Quantification of α-syn in each brain tissue fraction was performed using a novel enzyme-linked immunosorbent assay (ELISA).
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  • Daniilidou, Makrina, et al. (författare)
  • Alzheimer's disease biomarker profiling in a memory clinic cohort without common comorbidities.
  • 2023
  • Ingår i: Brain communications. - 2632-1297. ; 5:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease is a multifactorial disorder with large heterogeneity. Comorbidities such as hypertension, hypercholesterolaemia and diabetes are known contributors to disease progression. However, less is known about their mechanistic contribution to Alzheimer's pathology and neurodegeneration. The aim of this study was to investigate the relationship of several biomarkers related to risk mechanisms in Alzheimer's disease with the well-established Alzheimer's disease markers in a memory clinic population without common comorbidities. We investigated 13 molecular markers representing key mechanisms underlying Alzheimer's disease pathogenesis in CSF from memory clinic patients without diagnosed hypertension, hypercholesterolaemia or diabetes nor other neurodegenerative disorders. An analysis of covariance was used to compare biomarker levels between clinical groups. Associations were analysed by linear regression. Two-step cluster analysis was used to determine patient clusters. Two key markers were analysed by immunofluorescence staining in the hippocampus of non-demented control and Alzheimer's disease individuals. CSF samples from a total of 90 participants were included in this study: 30 from patients with subjective cognitive decline (age 62.4 ± 4.38, female 60%), 30 with mild cognitive impairment (age 65.6 ± 7.48, female 50%) and 30 with Alzheimer's disease (age 68.2 ± 7.86, female 50%). Angiotensinogen, thioredoxin-1 and interleukin-15 had the most prominent associations with Alzheimer's disease pathology, synaptic and axonal damage markers. Synaptosomal-associated protein 25kDa and neurofilament light chain were increased in mild cognitive impairment and Alzheimer's disease patients. Grouping biomarkers by biological function showed that inflammatory and survival components were associated with Alzheimer's disease pathology, synaptic dysfunction and axonal damage. Moreover, a vascular/metabolic component was associated with synaptic dysfunction. In the data-driven analysis, two patient clusters were identified: Cluster 1 had increased CSF markers of oxidative stress, vascular pathology and neuroinflammation and was characterized by elevated synaptic and axonal damage, compared with Cluster 2. Clinical groups were evenly distributed between the clusters. An analysis of post-mortem hippocampal tissue showed that compared with non-demented controls, angiotensinogen staining was higher in Alzheimer's disease and co-localized with phosphorylated-tau. The identification of biomarker-driven endophenotypes in cognitive disorder patients further highlights the biological heterogeneity of Alzheimer's disease and the importance of tailored prevention and treatment strategies.
  •  
37.
  • Davidsson, Pia, 1962, et al. (författare)
  • Clinical mass spectrometry in neuroscience. Proteomics and peptidomics.
  • 2003
  • Ingår i: Cellular and molecular biology (Noisy-le-Grand, France). - 0145-5680 .- 1165-158X. ; 49:5, s. 681-8
  • Forskningsöversikt (refereegranskat)abstract
    • In this review we discuss the merits and drawbacks with the use of proteomic and peptidomic strategies for identification of proteins and peptides in their multidimensional interactions in complex biological processes. The progress in proteomics and peptidomics during the last years offer us new challenges to study changes in the protein and peptide synthesis. These strategies also offer new tools to follow post-translational modifications and other disturbed chemical processes that may be indicative of pathophysiological alteration(s). Furthermore these techniques can contribute to improvements in the diagnosis and therapy of neurodegenerative diseases, such as Alzheimer's disease, and psychiatric diseases, as depression and post traumatic stress disorders. We also consider different practical aspects of the applications of mass spectrometry in clinical neuroscience, illustrated by example from our laboratories. The new proteomic and peptidomic strategies will further enable the progress for clinical neuroscience research.
  •  
38.
  • Davidsson, Pia, 1962, et al. (författare)
  • Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients.
  • 2002
  • Ingår i: Neuroreport. - : Ovid Technologies (Wolters Kluwer Health). - 0959-4965. ; 13:5, s. 611-5
  • Tidskriftsartikel (refereegranskat)abstract
    • By comparing the CSF proteome between Alzheimer disease (AD) patients and controls it may be possible to identify proteins that play a role in the disease process and thus to study the pathogenesis of AD. We used mini-gel technology in a two-dimensional electrophoresis procedure, sensitive SYPRO Ruby staining and mass spectrometry for clinical screening of disease-influenced CSF proteins in 15 AD patients and 12 controls. The levels of six proteins and their isoforms, including proapolipoprotein, apolipoprotein E, beta-2 microglobulin, retinol-binding protein, transthyretin, and ubiquitin, were significantly altered in CSF of AD patients. The most prominently altered proteins were the apolipoproteins, especially proapolipoprotein.
  •  
39.
  • Hansson, Sarah, 1976, et al. (författare)
  • Cystatin C in cerebrospinal fluid and multiple sclerosis.
  • 2007
  • Ingår i: Annals of neurology. - : Wiley. - 0364-5134. ; 62:2, s. 193-196
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: A recent study using surface-enhanced laser desorption/ionization time-of-flight analysis of cerebrospinal fluid identified a 12.5 kDa truncated isoform of cystatin C (CysC) as a specific biomarker for multiple sclerosis (MS). METHODS: Surface-enhanced laser desorption/ionization time-of-flight analysis of cerebrospinal fluid samples from 43 MS patients and 46 healthy control subjects. RESULTS: Full-length CysC (13.4 kDa) concentration was similar in MS and control samples. The 12.5 kDa CysC protein was produced from full-length CysC by N-terminal cleavage during storage at -20 degrees C. INTERPRETATION: The 12.5 kDa CysC isoform is a storage-related artifact and is not useful as a diagnostic marker for MS.
  •  
40.
  • Knorr, Ulla, et al. (författare)
  • Cerebrospinal fluid synaptic biomarker changes in bipolar disorder - A longitudinal case-control study.
  • 2024
  • Ingår i: Journal of affective disorders. - 1573-2517. ; 358, s. 250-259
  • Tidskriftsartikel (refereegranskat)abstract
    • This exploratory study investigated cerebrospinal fluid (CSF) synaptic protein biomarkers in bipolar disorder (BD), aiming to highlight the neurobiological basis of the disorder. With shared cognitive impairment features between BD and Alzheimer's disease, and considering increased dementia risk in BD patients, the study explores potential connections.Fifty-nine well-characterized patients with BD and thirty-seven healthy control individuals were examined and followed for one year. Synaptic proteins encompassing neuronal pentraxins (NPTX)1, NPTX2, and NPTX-receptor, 14-3-3 protein family epsilon, and zeta/delta, activating protein-2 complex subunit beta, synucleins beta-synuclein and gamma-synuclein, complexin-2, phosphatidylethanolamine-binding protein 1, rab GDP dissociation inhibitor alpha, and syntaxins 1B and 7 were measured in CSF using a microflow liquid chromatography-mass spectrometric multiple reaction monitoring set-up. Biomarker levels were compared between BD and HC and in BD before, during, and after mood episodes.The synaptic proteins revealed no statistically significant differences between BD and HC, neither at baseline, one-year follow-up, or in terms of changes from baseline to follow-up. Moreover, the CSF synaptic protein levels in patients with BD were unaltered compared to baseline when they stabilized in euthymia following an affective episode and at one-year follow-up.It is uncertain what the CSF biomarker concentrations reflect since we yet do not know the mechanisms of release of these proteins, and we are uncertain of what increased or decreased levels reflect.This first-ever investigation of a panel of CSF protein biomarkers of synaptic dysfunction in patients with BD and HC individuals found no statistically significant differences cross-sectionally or longitudinally.
  •  
41.
  •  
42.
  • Nilsson, Johanna, 1993, et al. (författare)
  • Cerebrospinal fluid biomarkers of synaptic dysfunction are altered in Parkinson's disease and related disorders
  • 2023
  • Ingår i: Movement Disorders. - : John Wiley & Sons. - 0885-3185 .- 1531-8257. ; 38:2, s. 267-277
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Synaptic dysfunction and degeneration are central contributors to the pathogenesis and progression of parkinsonian disorders. Therefore, identification and validation of biomarkers reflecting pathological synaptic alterations are greatly needed and could be used in prognostic assessment and to monitor treatment effects.Objective: To explore candidate biomarkers of synaptic dysfunction in Parkinson's disease (PD) and related disorders.Methods: Mass spectrometry was used to quantify 15 synaptic proteins in two clinical cerebrospinal fluid (CSF) cohorts, including PD (n1 = 51, n2 = 101), corticobasal degeneration (CBD) (n1 = 11, n2 = 3), progressive supranuclear palsy (PSP) (n1 = 22, n2 = 21), multiple system atrophy (MSA) (n1 = 31, n2 = 26), and healthy control (HC) (n1 = 48, n2 = 30) participants, as well as Alzheimer's disease (AD) (n2 = 23) patients in the second cohort.Results: Across both cohorts, lower levels of the neuronal pentraxins (NPTX; 1, 2, and receptor) were found in PD, MSA, and PSP, compared with HC. In MSA and PSP, lower neurogranin, AP2B1, and complexin-2 levels compared with HC were observed. In AD, levels of 14-3-3 zeta/delta, beta- and gamma-synuclein were higher compared with the parkinsonian disorders. Lower pentraxin levels in PD correlated with Mini-Mental State Exam scores and specific cognitive deficits (NPTX2; rho = 0.25–0.32, P < 0.05) and reduced dopaminergic pre-synaptic integrity as measured by DaTSCAN (NPTX2; rho = 0.29, P = 0.023). Additionally, lower levels were associated with the progression of postural imbalance and gait difficulty symptoms (All NPTX; β-estimate = −0.025 to −0.038, P < 0.05) and cognitive decline (NPTX2; β-estimate = 0.32, P = 0.021).Conclusions: These novel findings show different alterations of synaptic proteins in parkinsonian disorders compared with AD and HC. The neuronal pentraxins may serve as prognostic CSF biomarkers for both cognitive and motor symptom progression in PD. 
  •  
43.
  • Orduña Dolado, Anna, et al. (författare)
  • Effects of time of the day at sampling on CSF and plasma levels of Alzheimer’ disease biomarkers
  • 2024
  • Ingår i: Alzheimer's Research and Therapy. - 1758-9193. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Studies suggest that cerebrospinal fluid (CSF) levels of amyloid-β (Aβ)42 and Aβ40 present a circadian rhythm. However sustained sampling of large volumes of CSF with indwelling intrathecal catheters used in most of these studies might have affected CSF dynamics and thereby confounded the observed fluctuations in the biomarker levels. Methods: We included 38 individuals with either normal (N = 20) or abnormal (N = 18) CSF Aβ42/Aβ40 levels at baseline. CSF and plasma were collected at two visits separated by an average of 53 days with lumbar punctures and venipunctures performed either in the morning or evening. At the first visit, sample collection was performed in the morning for 17 participants and the order was reversed for the remaining 21 participants. CSF and plasma samples were analyzed for Alzheimer’ disease (AD) biomarkers, including Aβ42, Aβ40, GFAP, NfL p-tau181, p-tau217, p-tau231 and t-tau. CSF samples were also tested using mass spectrometry for 22 synaptic and endo-lysosomal proteins. Results: CSF Aβ42 (mean difference [MD], 0.21 ng/mL; p = 0.038), CSF Aβ40 (MD, 1.85 ng/mL; p < 0.001), plasma Aβ42 (MD, 1.65 pg/mL; p = 0.002) and plasma Aβ40 (MD, 0.01 ng/mL, p = 0.002) were increased by 4.2-17.0% in evening compared with morning samples. Further, CSF levels of 14 synaptic and endo-lysosomal proteins, including neurogranin and neuronal pentraxin-1, were increased by 4.5-13.3% in the evening samples (MDrange, 0.02-0.56 fmol/µl; p < 0.042). However, no significant differences were found between morning and evening levels for the Aβ42/Aβ40 ratio, different p-tau variants, GFAP and NfL. There were no significant interaction between sampling time and Aβ status for any of the biomarkers, except that CSF t-tau was increased (by 5.74%) in the evening samples compared to the morning samples in Aβ-positive (MD, 16.46 ng/ml; p = 0.009) but not Aβ-negative participants (MD, 1.89 ng/ml; p = 0.47). There were no significant interactions between sampling time and order in which samples were obtained. Discussion: Our findings provide evidence for diurnal fluctuations in Aβ peptide levels, both in CSF and plasma, while CSF and plasma p-tau, GFAP and NfL were unaffected. Importantly, Aβ42/Aβ40 ratio remained unaltered, suggesting that it is more suitable for implementation in clinical workup than individual Aβ peptides. Additionally, we show that CSF levels of many synaptic and endo-lysosomal proteins presented a diurnal rhythm, implying a build-up of neuronal activity markers during the day. These results will guide the development of unified sample collection procedures to avoid effects of diurnal variation for future implementation of AD biomarkers in clinical practice and drug trials.
  •  
44.
  • Orduña Dolado, Anna, et al. (författare)
  • Effects of time of the day at sampling on CSF and plasma levels of Alzheimer' disease biomarkers
  • 2024
  • Ingår i: ALZHEIMERS RESEARCH & THERAPY. - 1758-9193. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Studies suggest that cerebrospinal fluid (CSF) levels of amyloid-beta (A beta)42 and A beta 40 present a circadian rhythm. However sustained sampling of large volumes of CSF with indwelling intrathecal catheters used in most of these studies might have affected CSF dynamics and thereby confounded the observed fluctuations in the biomarker levels. Methods We included 38 individuals with either normal (N = 20) or abnormal (N = 18) CSF A beta 42/A beta 40 levels at baseline. CSF and plasma were collected at two visits separated by an average of 53 days with lumbar punctures and venipunctures performed either in the morning or evening. At the first visit, sample collection was performed in the morning for 17 participants and the order was reversed for the remaining 21 participants. CSF and plasma samples were analyzed for Alzheimer' disease (AD) biomarkers, including A beta 42, A beta 40, GFAP, NfL p-tau181, p-tau217, p-tau231 and t-tau. CSF samples were also tested using mass spectrometry for 22 synaptic and endo-lysosomal proteins. Results CSF A beta 42 (mean difference [MD], 0.21 ng/mL; p = 0.038), CSF A beta 40 (MD, 1.85 ng/mL; p < 0.001), plasma A beta 42 (MD, 1.65 pg/mL; p = 0.002) and plasma A beta 40 (MD, 0.01 ng/mL, p = 0.002) were increased by 4.2-17.0% in evening compared with morning samples. Further, CSF levels of 14 synaptic and endo-lysosomal proteins, including neurogranin and neuronal pentraxin-1, were increased by 4.5-13.3% in the evening samples (MDrange, 0.02-0.56 fmol/l; p < 0.042). However, no significant differences were found between morning and evening levels for the A beta 42/A beta 40 ratio, different p-tau variants, GFAP and NfL. There were no significant interaction between sampling time and A beta status for any of the biomarkers, except that CSF t-tau was increased (by 5.74%) in the evening samples compared to the morning samples in A beta-positive (MD, 16.46 ng/ml; p = 0.009) but not A beta-negative participants (MD, 1.89 ng/ml; p = 0.47). There were no significant interactions between sampling time and order in which samples were obtained. Discussion Our findings provide evidence for diurnal fluctuations in A beta peptide levels, both in CSF and plasma, while CSF and plasma p-tau, GFAP and NfL were unaffected. Importantly, A beta 42/A beta 40 ratio remained unaltered, suggesting that it is more suitable for implementation in clinical workup than individual A beta peptides. Additionally, we show that CSF levels of many synaptic and endo-lysosomal proteins presented a diurnal rhythm, implying a build-up of neuronal activity markers during the day. These results will guide the development of unified sample collection procedures to avoid effects of diurnal variation for future implementation of AD biomarkers in clinical practice and drug trials.
  •  
45.
  • Paulson, Linda, 1971, et al. (författare)
  • Comparative genome- and proteome analysis of cerebral cortex from MK-801-treated rats.
  • 2003
  • Ingår i: Journal of neuroscience research. - : Wiley. - 0360-4012 .- 1097-4547. ; 71:4, s. 526-33
  • Tidskriftsartikel (refereegranskat)abstract
    • cDNA microarrays and two-dimensional gel-electrophoresis in combination with mass spectrometry, were used to screen alterations in mRNA and protein levels, respectively, in cerebral cortex of MK-801-treated rats. The rats were divided in two groups; group 1 (short-term treated) and group 2 (long-term treated). In group 1, four genes were up-regulated and five down-regulated. In group 2, seven genes were up-regulated and six down-regulated. In group 1, the levels of one protein was increased and eight proteins reduced. In group 2, the levels of two proteins were increased and four proteins reduced. Several of the altered genes (casein kinase 2, glutamic acid decarboxylase, synaptotagmin, gamma aminobutyric acid [GABA] transporter, creatine kinase, and cytochrome c oxidase) and proteins (superoxide dismutase, hsp 60, hsp 72 and gamma-enolase) have previously been connected to schizophrenia. Alterations of the genes (microglobulin, c-jun proto-oncogene, 40S ribosomal protein S19, adenosine diphosphate (ADP)-ribosylation factors, platelet-derived growth factor, fructose-bisphophate aldolase A, and myelin proteolipid) and the proteins (stathmin, H+-transp. Adenosine triphosphate (ATP) synthase, pyruvate dehydrogenase, beta-actin and alpha-enolase), have not, to our knowledge, earlier been implicated in schizophrenia pathology. Overall, these results with a combined approach of genomics and proteomics add to the validity of subchronic N-methyl-D-aspartate (NMDA)-receptor antagonist treatment as an animal model of schizophrenia.
  •  
46.
  • Paulson, Linda, 1971, et al. (författare)
  • Comparative proteome analysis of thalamus in MK-801-treated rats.
  • 2004
  • Ingår i: Proteomics. - : Wiley. - 1615-9853 .- 1615-9861. ; 4:3, s. 819-25
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional gel-electrophoresis in combination with mass spectrometry is a powerful approach to compare protein expression in brain tissues. Using this proteomic approach, and based on the hypothesis that schizophrenia involves hypoglutamergic brain function, alterations in protein levels in the thalamus of rats treated with the N-methyl-D-aspartate (NMDA) receptor antagonist [+]-5-methyl-10,11-dihydro-5H-dibenzo-[a,d]-cycloheptene-5,10-iminehydrogenmaleate (MK-801), as compared to saline-treated animals, were assessed in an unbiased fashion. The rats were divided into two groups; group 1 (short-term treated) and group 2 (long-term treated). In group 1, the levels of seven proteins were increased and four proteins reduced. In group 2, the levels of six proteins were reduced. Several of the altered proteins (heat shock proteins 60 and 72, albumin, dihydropyrimidinase related protein-2, aldolase c, and malate dehydrogenase) have previously been connected to schizophrenia. Alterations of other proteins (dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex E2, guanine deaminase, alpha-enolase, aconitase, ATP-synthase and alpha-internexin), have not, to the best of our knowledge, earlier been implicated in schizophrenia pathology. Our results show the high potential of using proteomic methods for the validation of animal models of schizophrenia and to identify new proteins involved in the pathophysiological mechanisms of schizophrenia.
  •  
47.
  • Paulson, Linda, 1971, et al. (författare)
  • Proteomics and peptidomics in neuroscience. Experience of capabilities and limitations in a neurochemical laboratory.
  • 2005
  • Ingår i: Journal of mass spectrometry : JMS. - : Wiley. - 1076-5174 .- 1096-9888. ; 40:2, s. 202-13
  • Forskningsöversikt (refereegranskat)abstract
    • The increasing use of proteomics has created a basis for new strategies to develop methodologies for rapid identification of protein patterns in living organisms. It has also become evident that proteomics has other potential applications than protein and peptide identification, e.g. protein characterization, with the aim of revealing their structure, function(s) and interactions of proteins. In comparative proteomics studies, the protein expression of a certain biological system is compared with another system or the same system under perturbed conditions. Global identification of proteins in neuroscience is extremely complex, owing to the limited availability of biological material and very low concentrations of the molecules. Moreover, in addition to proteins, there are number of peptides that must also be considered in global studies on the central nervous system. In this overview, we focus on and discuss problems related to the different sources of biological material and sample handling, which are part of all preparatory and analytical steps. Straightforward protocols are desirable to avoid excessive purification steps, since loss of material at each step is inevitable. We would like to merge the two worlds of proteomics/peptidomics and neuroscience, and finally we consider different practical and technical aspects, illustrated with examples from our laboratory.
  •  
48.
  • Portelius, Erik, 1977, et al. (författare)
  • Determination of beta-amyloid peptide signatures in cerebrospinal fluid using immunoprecipitation-mass spectrometry.
  • 2006
  • Ingår i: Journal of proteome research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 5:4, s. 1010-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Early pathogenic events in Alzheimer's disease (AD) involve increased production and/or reduced clearance of beta-amyloid (Abeta), especially the 42 amino acid fragment Abeta1-42. The Abeta1-42 peptide is generated through cleavage of the amyloid precursor protein by beta- and gamma-secretase and is catabolised by a variety of proteolytic enzymes such as insulin-degrading enzyme and neprilysin. Here, we describe a method that employs immunoprecipitation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to determine the pattern of C-terminally truncated Abeta peptides in cerebrospinal fluid (CSF). Using antibodies coupled to magnetic beads, we have detected 18 C-terminally and 2 N-terminally truncated Abeta peptides in CSF. By determining the identity and profile of the truncated Abeta peptides, more insight may be gained about differences in the metabolism and structural properties of Abeta in AD. Finally, the Abeta fragment signatures may prove useful as a diagnostic test for AD.
  •  
49.
  • Quesnel, Marc James, et al. (författare)
  • Insulin-like growth factor binding protein-2 in at-risk adults and autopsy-confirmed Alzheimer brains.
  • 2024
  • Ingår i: Brain : a journal of neurology. - 0006-8950 .- 1460-2156. ; 147:5, s. 1680-1695
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin, insulin-like growth factors (IGF) and their receptors are highly expressed in the adult hippocampus. Thus, disturbances in the insulin-IGF signaling pathway may account for the selective vulnerability of the hippocampus to nascent Alzheimer's disease (AD) pathology. In the present study, we examined the predominant IGF-binding protein (IGFBP) in the cerebrospinal fluid (CSF) - IGFBP2. CSF was collected from 109 asymptomatic members of the parental history-positive PREVENT-AD cohort. CSF levels of IGFBP2, core AD biomarkers and synaptic biomarkers were measured using proximity extension assay, ELISA and mass spectrometry. Cortical amyloid-beta (Aβ) and tau deposition were examined using 18F-NAV4694 and flortaucipir. Cognitive assessments were performed up to 8 years of follow-up, using the Repeatable Battery for the Assessment of Neuropsychological Status. T1-weighted structural MRI scans were acquired, and neuroimaging analyses were performed on pre-specified temporal and parietal brain regions. Next, in an independent cohort, we allocated 241 dementia-free ADNI-1 participants into four stages of AD progression based on the biomarkers CSF Aβ42 and total-tau (t-tau). In this analysis, differences in CSF and plasma IGFBP2 levels were examined across the pathological stages. Finally, IGFBP2 mRNA and protein levels were examined in the frontal cortex of 55 autopsy-confirmed AD and 31 control brains from the QFP cohort, a unique population isolate from Eastern Canada. CSF IGFBP2 progressively increased over 5 years in asymptomatic PREVENT-AD participants. Baseline CSF IGFBP2 was positively correlated with CSF AD biomarkers and synaptic biomarkers, and was negatively correlated with longitudinal changes in delayed memory (P=0.024) and visuospatial abilities (P=0.019). CSF IGFBP2 was negatively correlated at a trend-level with entorhinal cortex volume (P=0.082) and cortical thickness in the piriform (P=0.039), inferior temporal (P=0.008), middle temporal (P=0.014) and precuneus (P=0.033) regions. In ADNI-1, CSF (P=0.009) and plasma (P=0.001) IGFBP2 were significantly elevated in Stage 2 (CSF Aβ(+)/t-tau(+)). In survival analyses in ADNI-1, elevated plasma IGFBP2 was associated with a greater rate of AD conversion (HR=1.62, P=0.021). In the QFP cohort, IGFBP2 mRNA was reduced (P=0.049), however IGFBP2 protein levels did not differ in the frontal cortex of autopsy-confirmed AD brains (P=0.462). Nascent AD pathology may induce an upregulation in IGFBP2, in asymptomatic individuals. CSF and plasma IGFBP2 may be valuable markers for identifying CSF Aβ(+)/t-tau(+) individuals and those with a greater risk of AD conversion.
  •  
50.
  • Rezeli, M., et al. (författare)
  • Quantification of total apolipoprotein E and its specific isoforms in cerebrospinal fluid and blood in Alzheimer's disease and other neurodegenerative diseases
  • 2015
  • Ingår i: EuPA Open Proteomics. - : Elsevier. - 2212-9685. ; 8, s. 137-143
  • Tidskriftsartikel (refereegranskat)abstract
    • A targeted mass spectrometric assay was developed for identification and quantification of apoE isoforms (apoE2, E3 and E4), and it was utilized for screening of samples from AD patients (. n=. 39) and patients with other neurodegenerative disorders (. n=. 38). The assay showed good linearity with LOQ corresponds to total apoE concentration of 0.8 and 40. ng/mL in CSF and plasma/serum, respectively. We identified apoE phenotypes with 100% accuracy in clinical samples. We found strong association between genotypes of the individuals and their apoE levels in blood; ε4 allele carriers had significantly lower apoE levels in blood than non-carriers. © 2015.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 55
Typ av publikation
tidskriftsartikel (43)
forskningsöversikt (5)
bokkapitel (4)
konferensbidrag (2)
samlingsverk (redaktörskap) (1)
Typ av innehåll
refereegranskat (47)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Brinkmalm-Westman, A ... (53)
Blennow, Kaj, 1958 (43)
Zetterberg, Henrik, ... (35)
Brinkmalm, Gunnar (31)
Portelius, Erik, 197 ... (20)
Gobom, Johan (9)
visa fler...
Andreasson, Ulf, 196 ... (9)
Hansson, Oskar (7)
Öhrfelt, Annika, 197 ... (7)
Persson, Rita, 1951 (7)
Rüetschi, Ulla, 1962 (6)
Ekman, Rolf, 1938 (5)
Davidsson, Pia, 1962 (5)
Wallin, Anders, 1950 (4)
Pannee, Josef, 1979 (4)
Gustavsson, Mikael K (4)
Nilsson, Johanna, 19 ... (4)
Dahl, Annika, 1973 (4)
Blennow, Kaj (3)
Eriksson, Peter S, 1 ... (3)
Zetterberg, Henrik (3)
Silberring, Jerzy (3)
Sjödin, Simon (3)
Simonsen, Anja Hviid (3)
Karlsson, Gösta, 196 ... (3)
Hedberg-Fogel, Krist ... (3)
Nilsson, Carol L, 19 ... (3)
Minthon, Lennart (2)
Abramsson, Alexandra ... (2)
von Otter, Malin, 19 ... (2)
Thorsell, Annika, 19 ... (2)
Olsson, Maria (2)
Janelidze, Shorena (2)
Stomrud, Erik (2)
Nilsson, Jonas, 1970 (2)
Ashton, Nicholas J. (2)
Andreasen, Niels (2)
Vanmechelen, Eugeen (2)
Mattsson, Niklas, 19 ... (2)
Larson, Göran, 1953 (2)
Brum, Wagner S. (2)
Jethwa, Alexander (2)
Hasselbalch, Steen G ... (2)
Halim, Adnan (2)
Dahlén, Rahil (2)
Hansson, Sarah, 1976 (2)
Honer, William G. (2)
Martin, Peter (2)
Persson, Anders I., ... (2)
Lindbjer, Maria (2)
visa färre...
Lärosäte
Göteborgs universitet (53)
Lunds universitet (6)
Karolinska Institutet (5)
Umeå universitet (1)
Uppsala universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (55)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (44)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy