SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Briois Valérie) "

Sökning: WFRF:(Briois Valérie)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gajdek, Dorotea, et al. (författare)
  • Sulfidation of Supported Ni, Mo and NiMo Catalysts Studied by In Situ XAFS
  • 2023
  • Ingår i: Topics in Catalysis. - : Springer Science and Business Media LLC. - 1022-5528 .- 1572-9028. ; 66:17-18, s. 1287-1295
  • Tidskriftsartikel (refereegranskat)abstract
    • Active sites in Mo-based hydrotreating catalysts are produced by sulfidation. To achieve insights that may enable optimization of the catalysts, this process should be studied in situ. Herein we present a comparative XAFS study where the in situ sulfidation of Mo/δ-Al2O3 and Ni/δ-Al2O3 is compared to that of δ-Al2O3 supported NiMo catalysts with different NiMo ratios. The study also covers the comparison of sulfidation of Ni and Mo using different oxide supports as well as the sulfidation conditions applied in the reactor. The XAFS spectra confirms the oxide phase for all catalysts at the beginning of the sulfidation reaction and their conversion to a sulfidized phase is followed with in situ measurements. Furthermore, it is found that the monometallic catalysts are less readily sulfidized than bimetallic ones, indicating the importance of Ni-Mo interactions for catalyst activation. Mo K-edge XAFS spectra did not show any difference related to the support of the catalyst or the pressure applied during the reaction. Ni K-edge XAFS spectra, however, show a more complete sulfidation of the Ni species in the catalyst when SiO2 is used as a support as compared to the Al2O3. Nevertheless, it is believed that stronger interactions with Al2O3 support prevent sintering of the catalyst which leads to its stabilization. The results contribute to a better understanding of how different parameters affect the formation of the active phase of the NiMo catalysts used in the production of biofuel.
  •  
2.
  • Galaup, Ariane, et al. (författare)
  • Protection Against Myocardial Infarction and No-Reflow Through Preservation of Vascular Integrity by Angiopoietin-Like 4
  • 2012
  • Ingår i: Circulation. - 0009-7322 .- 1524-4539. ; 125:1, s. 140-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-Increased permeability, predominantly controlled by endothelial junction stability, is an early event in the deterioration of vascular integrity in ischemic disorders. Hemorrhage, edema, and inflammation are the main features of reperfusion injuries, as observed in acute myocardial infarction (AMI). Thus, preservation of vascular integrity is fundamental in ischemic heart disease. Angiopoietins are pivotal modulators of cell-cell junctions and vascular integrity. We hypothesized that hypoxic induction of angiopoietin-like protein 4 (ANGPTL4) might modulate vascular damage, infarct size, and no-reflow during AMI. Methods and Results-We showed that vascular permeability, hemorrhage, edema, inflammation, and infarct severity were increased in angptl4-deficient mice. We determined that decrease in vascular endothelial growth factor receptor 2 (VEGFR2) and VE-cadherin expression and increase in Src kinase phosphorylation downstream of VEGFR2 were accentuated after ischemia-reperfusion in the coronary microcirculation of angptl4-deficient mice. Both events led to altered VEGFR2/VE-cadherin complexes and to disrupted adherens junctions in the endothelial cells of angptl4-deficient mice that correlated with increased no-reflow. In vivo injection of recombinant human ANGPTL4 protected VEGF-driven dissociation of the VEGFR2/VE-cadherin complex, reduced myocardial infarct size, and the extent of no-reflow in mice and rabbits. Conclusions-These data showed that ANGPTL4 might constitute a relevant target for therapeutic vasculoprotection aimed at counteracting the effects of VEGF, thus being crucial for preventing no-reflow and conferring secondary cardioprotection during AMI.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy