SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brochon Cyril) "

Sökning: WFRF:(Brochon Cyril)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Routier, Cyril, et al. (författare)
  • Chitosan-modified polyethyleneimine nanoparticles for enhancing the carboxylation reaction and plants' CO2 uptake
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 17:4, s. 3430-3441
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing plants' photosynthetic efficiency is a major challenge that must be addressed in order to cover the food demands of the growing population in the changing climate. Photosynthesis is greatly limited at the initial carboxylation reaction, where CO2 is converted to the organic acid 3-PGA, catalyzed by the RuBisCO enzyme. RuBisCO has poor affinity for CO2, but also the CO2 concentration at the RuBisCO site is limited by the diffusion of atmospheric CO2 through the various leaf compartments to the reaction site. Beyond genetic engineering, nanotechnology can offer a materials-based approach for enhancing photosynthesis, and yet, it has mostly been explored for the light-dependent reactions. In this work, we developed polyethyleneimine-based nanoparticles for enhancing the carboxylation reaction. We demonstrate that the nanoparticles can capture CO2 in the form of bicarbonate and increase the CO2 that reacts with the RuBisCO enzyme, enhancing the 3-PGA production in in vitro assays by 20%. The nanoparticles can be introduced to the plant via leaf infiltration and, because of the functionalization with chitosan oligomers, they do not induce any toxic effect to the plant. In the leaves, the nanoparticles localize in the apoplastic space but also spontaneously reach the chloroplasts where photosynthetic activity takes place. Their CO2 loading-dependent fluorescence verifies that, in vivo, they maintain their ability to capture CO2 and can be therefore reloaded with atmospheric CO2 while in planta. Our results contribute to the development of a nanomaterials-based CO2-concentrating mechanism in plants that can potentially increase photosynthetic efficiency and overall plants' CO2 storage.
  •  
2.
  • Abdollahi Sani, Negar, et al. (författare)
  • A ferroelectric polymer introduces addressability in electrophoretic display cells
  • 2019
  • Ingår i: FLEXIBLE AND PRINTED ELECTRONICS. - : IOP PUBLISHING LTD. - 2058-8585. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last decades, tremendous efforts have been carried out to develop flexible electronics for a vast array of applications. Among all different applications investigated in this area, flexible displays have gained significant attention, being a vital part of large-area devices, portable systems and electronic labels etc electrophoretic (EP) ink displays have outstanding properties such as a superior optical switch contrast and low power consumption, besides being compatible with flexible electronics. However, the EP ink technology requires an active matrix-addressing scheme to enable exclusive addressing of individual pixels. EP ink pixels cannot be incorporated in low cost and easily manufactured passive matrix circuits due to the lack of threshold voltage and nonlinearity, necessities to provide addressability. Here, we suggest a simple method to introduce nonlinearity and threshold voltage in EP ink display cells in order to make them passively addressable. Our method exploits the nonlinearity of an organic ferroelectric capacitor that introduces passive addressability in display cells. The organic ferroelectric material poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) is here chosen because of its simple manufacturing protocol and good polarizability. We demonstrate that a nonlinear EP cell with bistable states can be produced by depositing a P(VDF-TrFE) film on the bottom electrode of the display cell. The P(VDF-TrFE) capacitor and the EP ink cell are separately characterized in order to match the surface charge at their respective interfaces and to achieve and optimize bistable operation of display pixels.
  •  
3.
  • Deribew, Dargie, et al. (författare)
  • Crystallization-Driven Enhancement in Photovoltaic Performance through Block Copolymer Incorporation into P3HT:PCBM Blends
  • 2013
  • Ingår i: Macromolecules. - : American Chemical Society (ACS). - 0024-9297 .- 1520-5835. ; 46:8, s. 3015-3024
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the increased crystallization of poly(3-hexylthiophene)(P3HT) in the donor−acceptor mixture of [6,6]-phenyl-C61-butyric acid methylester (PCBM) with P3HT by the addition of a block copolymer, P3HT-b-PI, where PI refers to polyisoprene. The photovoltaic performance of devices created using this blendis markedly improved by the addition of the diblock copolymer. We have characterizedthe structure of thin films of the P3HT-b-PI containing mixtures using opticalmicroscopy, scanning force microscopy, UV−vis absorption spectroscopy, neutronreflectometry, and grazing incidence X-ray diffraction (GIXD). The GIXD data providethe information on the crystallinity of the films, the absorption data were used toconfirm that the addition of the diblock was responsible for the increase in crystallization, neutron reflectometry data reveal a PCBM-rich region near the hole injection layer, and the two microscopy techniques revealed the structural effect of the crystallization at the surface of the films.
  •  
4.
  • Mantione, Daniele, et al. (författare)
  • Thiophene-Based Trimers for In Vivo Electronic Functionalization of Tissues
  • 2020
  • Ingår i: ACS APPLIED ELECTRONIC MATERIALS. - : AMER CHEMICAL SOC. - 2637-6113. ; 2:12, s. 4065-4071
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic materials that can self-organize in vivo and form functional components along the tissue of interest can result in a seamless integration of the bioelectronic interface. Previously, we presented in vivo polymerization of the conjugated oligomer ETE-S in plants, forming conductors along the plant structure. The EDOT-thiophene-EDOT trimer with a sulfonate side group polymerized due to the native enzymatic activity of the plant and integrated within the plant cell wall. Here, we present the synthesis of three different conjugated trimers based on thiophene and EDOT or purely EDOT trimers that are able to polymerize enzymatically in physiological pH in vitro as well as in vivo along the roots of living plants. We show that by modulating the backbone and the side chain, we can tune the electronic properties of the resulting polymers as well as their localization and penetration within the root. Our work paves the way for the rational design of electronic materials that can self-organize in vivo for spatially controlled electronic functionalization of living tissue.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy