SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Broman Curt) "

Sökning: WFRF:(Broman Curt)

  • Resultat 1-50 av 78
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andrén, Margareta, et al. (författare)
  • Coupling between mineral reactions, chemical changes in groundwater, and earthquakes in Iceland
  • 2016
  • Ingår i: Journal of Geophysical Research - Solid Earth. - 2169-9313 .- 2169-9356. ; 121:4, s. 2315-2337
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical analysis of groundwater samples collected from a borehole at Hafralækur, northernIceland, from October 2008 to June 2015 revealed (1) a long-term decrease in concentration of Si and Naand (2) an abrupt increase in concentration of Na before each of two consecutive M > 5 earthquakes whichoccurred in 2012 and 2013, both 76 km from Hafralækur. Based on a geochemical (major elements and stableisotopes), petrological, and mineralogical study of drill cuttings taken from an adjacent borehole, we areable to show that (1) the long-term decrease in concentration of Si and Na was caused by constant volumereplacement of labradorite by analcime coupled with precipitation of zeolites in vesicles and along fracturesand (2) the abrupt increase of Na concentration before the first earthquake records a switchover tononstoichiometric dissolution of analcime with preferential release of Na into groundwater. We attributedecay of the Na peaks, which followed and coincided with each earthquake to uptake of Na along fracturedor porous boundaries between labradorite and analcime crystals. Possible causes of these Na peaks are anincrease of reactive surface area caused by fracturing or a shift from chemical equilibrium caused by mixingbetween groundwater components. Both could have been triggered by preseismic dilation, which was alsoinferred in a previous study by Skelton et al. (2014). The mechanism behind preseismic dilation so far from thefocus of an earthquake remains unknown.
  •  
2.
  • Bark, Glenn, et al. (författare)
  • Fluid chemistry of the Palaeoproterozoic Fäboliden hypozonal orogenic gold deposit, northern Sweden : evidence from fluid inclusions
  • 2007
  • Ingår i: GFF. - : Informa UK Limited. - 1103-5897 .- 2000-0863. ; 129:3, s. 197-210
  • Tidskriftsartikel (refereegranskat)abstract
    • A new ore province, the Gold Line, southwest of the Skellefte District, northern Sweden, is currently under exploration. The largest known deposit in the Gold Line is the hypozonal Fäboliden orogenic gold deposit. The mineralization is hosted by arsenopyrite-bearing quartz veins, within a steep shear zone in amphibolite facies metagreywacke host rocks. Gold occur in fractures and as intergrowths in arsenopyrite-löllingite, and as free grains in the silicate matrix of the host rock. The hydrothermal mineral assemblage in the proximal alteration zone is diopside, calcic amphibole, biotite, and minor andalusite and tourmaline. Primary fluid inclusions in the Fäboliden quartz veins show a CO2-CH4 or a H2S (±CH4) composition (the latter recognized for the first time in a Swedish ore deposit). The primary fluid inclusions are associated with arsenopyrite-löllingite (+gold) and the CO2-CH4 fluid was also involved in precipitation of graphite. A prevalence of carbonic over aqueous fluid inclusions is characteristic for a number of hypozonal high-temperature orogenic gold deposits. The Fäboliden deposit, thus, shows fluid compositions similar to other hypozonal orogenic gold deposits. The proposed main mechanism for precipitation of gold from the fluids, is a mixing between H2S-rich and H2O?-CO2±CH4 fluids. Fluid inclusion data indicate arsenopyrite-löllingite and graphite deposition at a pressure condition of about 4 kbar. Graphite thermometry indicates maximum temperatures of 520-560°C for the hydrothermal alteration at Fäboliden, suggesting that at least the late stages of the mineralizing event took place shortly after peak-metamorphism in the area, i.e. at c. 1.80 Ga.
  •  
3.
  •  
4.
  •  
5.
  • Bengtson, Stefan, 1947-, et al. (författare)
  • Deep-biosphere consortium of fungi and prokaryotes in Eocene sub-seafloor basalts.
  • 2014
  • Ingår i: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 12:6, s. 489-496
  • Tidskriftsartikel (refereegranskat)abstract
    • The deep biosphere of the subseafloor crust is believed to contain a significant part of Earth’s biomass, but because of the difficulties of directly observing the living organisms, its composition and ecology are poorly known. We report here a consortium of fossilized prokaryotic and eukaryotic microorganisms, occupying cavities in deep-drilled vesicular basalt from the Emperor Seamounts, Pacific Ocean, 67.5 meters below seafloor (mbsf). Fungal hyphae provide the framework on which prokaryote-like organisms are suspended like cobwebs and iron-oxidizing bacteria form microstromatolites (Frutexites). The spatial interrelationships show that the organisms were living at the same time in an integrated fashion, suggesting symbiotic interdependence. The community is contemporaneous with secondary mineralizations of calcite partly filling the cavities. The fungal hyphae frequently extend into the calcite, indicating that they were able to bore into the substrate through mineral dissolution. A symbiotic relationship with chemoautotrophs, as inferred for the observed consortium, may be a prerequisite for the eukaryotic colonization of crustal rocks. Fossils thus open a window to the extant as well as the ancient deep biosphere.
  •  
6.
  • Bengtson, Stefan, 1947-, et al. (författare)
  • Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt.
  • 2017
  • Ingår i: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 1:6, s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi have recently been found to comprise a significant part of the deep biosphere in oceanic sediments and crustal rocks. Fossils occupying fractures and pores in Phanerozoic volcanics indicate that this habitat is at least 400 million years old, but its origin may be considerably older. A 2.4-billion-year-old basalt from the Palaeoproterozoic Ongeluk Formation in South Africa contains filamentous fossils in vesicles and fractures. The filaments form mycelium-like structures growing from a basal film attached to the internal rock surfaces. Filaments branch and anastomose, touch and entangle each other. They are indistinguishable from mycelial fossils found in similar deep-biosphere habitats in the Phanerozoic, where they are attributed to fungi on the basis of chemical and morphological similarities to living fungi. The Ongeluk fossils, however, are two to three times older than current age estimates of the fungal clade. Unless they represent an unknown branch of fungus-like organisms, the fossils imply that the fungal clade is considerably older than previously thought, and that fungal origin and early evolution may lie in the oceanic deep biosphere rather than on land. The Ongeluk discovery suggests that life has inhabited submarine volcanics for more than 2.4 billion years.
  •  
7.
  • Billstrom, K., et al. (författare)
  • Geochronological, stable isotopes and fluid inclusion constraints for a premetamorphic development of the intrusive-hosted Bjorkdal Au deposit, northern Sweden
  • 2009
  • Ingår i: International journal of earth sciences. - : Springer Science and Business Media LLC. - 1437-3254 .- 1437-3262. ; 98:5, s. 1027-1052
  • Tidskriftsartikel (refereegranskat)abstract
    • The Bjorkdal gold deposit, bound to a quartz vein system which is mainly hosted by a quartz-monzodioritic intrusion, is situated at the easternmost part of the 1.9 Ga Skellefte base metal district in the Fennoscandian shield. Three fluid stages may be distinguished, referred to as a ""barren"" stage, a main gold stage, and a remobilization stage, respectively. From oxygen and hydrogen isotope evidence, it is argued that fluids of different origins (magmatic and surface waters) penetrated the ore zone at the inferred stages, but regional metamorphic fluids appear essentially only to have redistributed elements. Early quartz veining took place during a pre-metamorphic stage at ca. 1.88 Ga, as evidenced by unradiogenic galena data and an Sm-Nd scheelite errorchron of 1,915 +/- A 32 Ma (MSWD = 0.25). Temporarily, the main ore-forming stage was closely related to the first barren stage and took place during a major uplift event close to 1.88 Ga. Although other source rocks cannot be totally ruled out, available isotope data (O, S, Sr and Pb) are seemingly consistent with the view that these elements, and by inference other ore elements, were derived from the host intrusion.
  •  
8.
  • Billström, Kjell, et al. (författare)
  • Geology and Age Constraints on the Origin of the Intrusion-Related, Sheeted Vein-Type Åkerberg Gold Deposit, Skellefte District, Sweden
  • 2012
  • Ingår i: Minerals. - : MDPI AG. - 2075-163X. ; 2:4, s. 385-416
  • Tidskriftsartikel (refereegranskat)abstract
    • The Early Proterozoic (~1.9 Ga) Skellefte mining district in northern Sweden hosts abundant base metal deposits, but there are also gold-only deposits. The Åkerberg gold ore is unusual given the noted lack of alteration, a scarcity of sulfides and gold associated with thin (mm-cm wide) parallel quartz veins hosted in a gabbro. The gold content is positively correlated with the density of quartz veins, but gold often occurs between veins and also in parts of the gabbro where there is no veining. The gabbro is intruded by a granodiorite and associated pegmatite bodies, and U-Pb dating of zircon and baddeleyite suggest that these lithologies developed close in time at around 1.88 Ga ago. There are no primary inclusions in quartz veins, but different types of secondary aqueous inclusions occur. The Åkerberg ore is interpreted as a sheeted vein complex, with veins constrained to tensional cracks induced when a granodioritic magma intruded the competent, sheet-like gabbro intrusion. It is suggested that unmixing of the felsic magma also produced pegmatite bodies and a gel-like melt which invaded fractures in the gabbro and deposited silica. In a comparison, the Åkerberg ore shares many characteristics with the intrusion-related style of gold mineralizations.
  •  
9.
  • Billström, Kjell, et al. (författare)
  • IOCG and related mineral deposits of the northern Fennoscandian Shield
  • 2011
  • Ingår i: Hydrothermal iron oxide copper-gold & related topics. - Adelaide : PGC Publishing. ; , s. 381-414
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The northernmost Fennoscandian shield comprises Archaean and Palaeoproterozoic rocks. Unlike most other shield areas, economic mineral deposits are largely restricted to its Palaeoproterozoic parts. The latter are characterised by intracratonic basin evolution between ca. 2.5 and 2.0 Ga, involving recurrent mantle hotspot activity with numerous layered intrusions, komatiite and picrite eruptions, but no signs of accretionary phases or formation of major new felsic crust. Accretion and continent-continent collision followed from ca. 1.9 to 1.8 Ga, during the Svecofennian orogeny. A range of mineralisation styles are hosted by extensive ca. 2.5 to 2.0 Ga greenstone belts and younger, subduction-related 1.9 to 1.8 Ga Svecofennian intrusive and extrusive settings. These mineralisation styles partially overlap, and individual deposits may not readily be placed into genetic classification schemes. A provisional grouping of observed mineralisation styles comprises (1) stratiform-stratabound sulphide, (2) apatite-iron, (3) skarn-related iron and BIF, and (4) epigenetic(±syngenetic?) Au and Cu-Au deposits. The descriptive section of this paper also highlights features that may relate to orogenic-gold, IOCG and 'atypical metal association' categories of mineralisation. The assumption made is that the deposition of a diverse range of ore deposits was made possible by a long and complex geological evolution. This involved an initial (sowing) stage where iron, and to some extent copper and gold, were concentrated during 2.3 to 2.1 Ga (Karelian) rock-forming processes. Following this, ore elements were mobilised during two younger (Svecofennian) stages at 1.92 to 1.87 and 1.85 to 1.79 Ga, respectively. The latter were triggered by metamorphic and magmatic episodes, and fluids liberated during these stages precipitated IOCG and related deposits when fluids met structural and chemical traps in suitable host rocks. Ore fluids are generally saline, and their development probably involved incorporation of evaporates and, at least locally, also felsic magmatism may have played a role. Skarn-related mineralisation, hosted by ca. 2.1 Ga greenstones, occurs both as a BIF type in Sweden (formed at around 2.1 Ga), and as a gold-copper enriched variety (the result of Svecofennian epigenetic processes) in the Kolari region of Finland. The huge Kiirunavaara deposit is the type example of apatite iron ores, and is here considered to have formed from a magma at ca. 1.88 Ga, although it also has features best explained by a magmatic-hydrothermal overprint. A younger, less prominent, stage of apatite iron ore formation took place at approximately 1.78 Ga. Epigenetic gold and copper-gold deposits are particularly hard to classify as these show mixed ore characteristics, and to some extent this is likely to be due to multiple mineralisation stages (cf. the huge, low grade Aitik deposit in Sweden which is interpreted to be a hybrid porphyry-IOCG-type of ore). Structurally controlled, orogenic-gold mineralisation is common in the Central Lapland greenstone belt, although there are also gold deposits with enhanced contents of e.g., copper, cobalt and uranium (e.g., at Saatopoora). The latter, sometimes referred to as being of an 'atypical metal association' type, could potentially also include syngenetic mineralisation (e.g., at Juomasou). The range of epigenetic (±syngenetic) gold and copper-gold deposits could possibly be related to a vague east-west trend defined by gold-rich deposits in the east (Finland), followed by IOCG (copper±gold) and more iron-dominant ore types near the Finnish-Swedish border and further west into Sweden.
  •  
10.
  •  
11.
  • Billström, Kjell, et al. (författare)
  • Sandstone-hosted Pb-Zn deposits along the margin of the Scandinavian Caledonides and their possible relationship with nearby Pb-Zn vein mineralisation
  • 2020
  • Ingår i: Ore Geology Reviews. - : Elsevier BV. - 0169-1368 .- 1872-7360. ; 127
  • Forskningsöversikt (refereegranskat)abstract
    • Numerous sandstone-hosted Pb-Zn deposits occur along the present-day erosional front of the eastern Scandinavian Caledonides. The largest deposit is Laisvall (64.3 Mt at 4.0% Pb, 0.6% Zn and 9.0 g/t Ag) and since mineralisations generally share similar characteristics (reminding of both SEDEX and MVT-style) the term Laisvall-type has often been used. Typically, mineralised zones occur along sedimentary bedding and consist of disseminated galena and sphalerite and lesser amounts of calcite, fluorite, baryte, pyrite and sericite forming a cement that fill interstitial pores in Neoproterozoic/Eocambrian (e.g. Laisvall) to Cambrian (e.g. Vassbo) sandstones. Deposits occur both in autochtonous and allochtonous sedimentary rocks, and a broad consensus exists about their epigenetic nature, their spatial relationships to syn-sedimentary faults and that ore fluids have scavenged metals from the crystalline basement. However, the detailed ore depositional history and the timing of ore deposition have remained more controversial. New analyses aimed to complement earlier Rb-Sr data (crush-leach technique using sphalerite) fail to support a published three-point isochron age of 467 +/- 5 Ma. This is probably due to syn-ore mixing between fluids carrying isotopically variable strontium and inherited problems to analyse sphalerite grains that strictly were deposited from a single ore pulse. Tentatively, strontium in the ores originate from a mix of components derived from the basement, seawater and the local sedimentary host sequences. The lead component has highly radiogenic compositions, and data define sub-parallel linear arrays interpreted to essentially represent mixing of isotopically different types of lead released from regional basement rocks. There are obvious similarities when comparing features of deposits representing two Pb-Zn ore styles, the sandstone-hosted dissemination and the fracture-controlled mineralisation in the granite-dominated basement occurring further east of the Caledonian margin. These include low temperature brines responsible for mineral deposition, the mineralogy and the nature of Rb-Sr and Pb isotope data. We suggest that these types of mineralisation have a common origin and time of emplacement, but it is elusive to propose a well-constrained age. Nonetheless, field observations and other evidence suggest that ore formation is due to large-scale fluid flow triggered by the transition from an extensional to compressional tectonic setting at about 500 Ma. Connected to this mid-Cambrian stage was the development of syn-sedimentary faults and fractures in the basement and in overlying consolidated sandstones. The opening of such zones of weakness enabled a movement of ore-forming fluids infilling pore space in sandstones (disseminated ore) and fractures in the basement (vein ore).
  •  
12.
  • Billström, Kjell, et al. (författare)
  • Solstad, a Co-Se-bearing copper ore in the Västervik quartzites, Sweden
  • 2023
  • Ingår i: GFF. - : Informa UK Limited. - 1103-5897 .- 2000-0863. ; 144:3-4, s. 156-169
  • Tidskriftsartikel (refereegranskat)abstract
    • The Solstad copper deposit, located in SE Sweden, is hosted by a quartz-rich rock sliver surrounded by a granite belonging to the 1.8 Ga Transscandinavian Igneous Belt. Ore petrographic studies have revealed a number of previously unrecognized opaque phases, including several Co phases, selenides and tellurides. Based on an in situ U-Pb investigation of zircons from a mineralized sample, it is suggested that zircons have a detrital origin and that the quartz-rich host rock is a xenolith belonging to the c. 1.88–1.86 Ga Västervik quartzite formation. A low-radiogenic galena sample implies that the source for the metals in the ore has a primitive origin, probably the basaltic lavas (now amphibolites) that are intercalated in the Västervik quartzite. Fluid inclusion studies in quartz distinguish four distinct ore fluids: (1) a hypersaline halite-bearing aqueous fluid related to an early (1.85–1.86 Ga) chalcopyrite depositional stage, (2) a subsequent CO2-rich fluid, that deposited native gold, tellurides, selenides and bismuthinite, developed (at ≥1.8 Ga) as a result of a phase separation, (3), a moderate- to high-salinity aqueous fluid did also develop at this event and led to the deposition of bornite and (4) a concluding, low-salinity aqueous fluid stage (at ≤1.8 Ga) caused oxidation to covelline and digenite of previously formed phases. It is proposed that the Solstad deposit and other Cu ± Co-rich sulphide (± magnetite) occurrences in the Västervik region along the southernmost margin of the 1.9–1.8 Ga Svecofennian Domain, represent a distinct ore type associated with quartzites and amphibolites. 
  •  
13.
  • Billström, Kjell, et al. (författare)
  • Zn-Pb Ores of Mississippi Valley Type in the Lycksele-Storuman District, Northern Sweden : A Possible Rift-Related Cambrian Mineralisation Event
  • 2012
  • Ingår i: Minerals. - : MDPI AG. - 2075-163X. ; 2:3, s. 169-207
  • Tidskriftsartikel (refereegranskat)abstract
    • The epigenetic Zn-Pb deposits in the Lycksele-Storuman ore district, northern Sweden, are hosted by Paleoproterozoic basement near the margin of the Caledonian mountains. A paleogeographic reconstruction suggests that platform sediments, including Cambrian shales, overlaid the mineralised basement. The mineralisation type, containing sphalerite, galena, calcite and fluorite, is confined to veins and breccias and interpreted to be of Mississippi Valley Type (MVT) style. There is no appreciable wall rock alteration. Fluid inclusion work reveals coexisting aqueous and hydrocarbon fluids. Ore deposition is interpreted to have occurred during mixing of two fluids; a cool (<70 degrees C) brine with a salinity of 30 eq. mass% CaCl2 and a hot (similar to 200 degrees C) brine with about 18 eq. mass% CaCl2. The mixing led to complex Sr isotope systematics in the analysed minerals. A tentative sphalerite Rb-Sr isochron age of a 534 +/- 13 Ma probably dates mineralisation. The isotope systematics of Pb and Nd are less complex and both elements were essentially leached from basement rocks and transported by the hot fluid. Ore formation is considered to have taken place during rifting, related to the opening of the Iapetus Ocean.
  •  
14.
  • Boskabadi, Arman, et al. (författare)
  • Carbonate alteration of ophiolitic rocks in the Arabian-Nubian Shield of Egypt : sources and compositions of the carbonating fluid and implications for the formation of Au deposits
  • 2017
  • Ingår i: International Geology Review. - : TAYLOR & FRANCIS INC. - 0020-6814 .- 1938-2839. ; 59:4, s. 391-419
  • Forskningsöversikt (refereegranskat)abstract
    • Ultramafic portions of ophiolitic fragments in the Arabian-Nubian Shield (ANS) show pervasive carbonate alteration forming various degrees of carbonated serpentinites and listvenitic rocks. Notwithstanding the extent of the alteration, little is known about the processes that caused it, the source of the CO2 or the conditions of alteration. This study investigates the mineralogy, stable (O, C) and radiogenic (Sr) isotope composition, and geochemistry of suites of variably carbonate altered ultramafics from the Meatiq area of the Central Eastern Desert (CED) of Egypt. The samples investigated include least-altered lizardite (Lz) serpentinites, antigorite (Atg) serpentinites and listvenitic rocks with associated carbonate and quartz veins. The C, O and Sr isotopes of the vein samples cluster between -8.1 parts per thousand and -6.8 parts per thousand for delta C-13, +6.4 parts per thousand and +10.5 parts per thousand for delta O-18, and Sr-87/Sr-86 of 0.7028-0.70344, and plot within the depleted mantle compositional field. The serpentinites isotopic compositions plot on a mixing trend between the depleted-mantle and sedimentary carbonate fields. The carbonate veins contain abundant carbonic (CO2 +/- CH4 +/- N-2) and aqueous-carbonic (H2O-NaCl-CO2 +/- CH4 +/- N-2) low salinity fluid, with trapping conditions of 270-300 degrees C and 0.7-1.1kbar. The serpentinites are enriched in Au, As, S and other fluid-mobile elements relative to primitive and depleted mantle. The extensively carbonated Atg-serpentinites contain significantly lower concentrations of these elements than the Lz-serpentinites suggesting that they were depleted during carbonate alteration. Fluid inclusion and stable isotope compositions of Au deposits in the CED are similar to those from the carbonate veins investigated in the study and we suggest that carbonation of ANS ophiolitic rocks due to influx of mantle-derived CO2-bearing fluids caused break down of Au-bearing minerals such as pentlandite, releasing Au and S to the hydrothermal fluids that later formed the Au-deposits. This is the first time that gold has been observed to be remobilized from rocks during the lizardite-antigorite transition.
  •  
15.
  • Boskabadi, Ahmad, et al. (författare)
  • Carbonatite crystallization and alteration in the Tarr carbonatite-albitite complex, Sinai Peninsula, Egypt
  • 2013
  • Ingår i: Precambrian Research. - : Elsevier BV. - 0301-9268 .- 1872-7433. ; 239, s. 24-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbonate dykes occurring in the Arabian-Nubian Shield (ANS) are clearly intrusive in origin and carbonatites according to the IUGS classification, yet previous investigations refer to them as "intrusive carbonates", due mainly to their low Sr, Ba, Nb, Y,Th and rare earth element (REE) contents. The Tarr carbonatite albitite complex (TCA) in SE Sinai, Egypt contains a series of small (<1.2 km(2)) albitite intrusions surrounded by small veins and dykes of carbonatite, which occur predominantly in a narrow zone of brecciation surrounding the intrusions. Fennitic alteration surrounding TCA has been reported but there is little consensus on the extent and origin of this alteration. Fennitic alteration surrounding the TCA carbonatites is not abundant. Alteration is dominated by precipitation of carbonates in the breccia zone surrounding the albitite intrusion with associated actinolite, chlorite, sericite and epidote. Geochemical compositions are consistent with addition of carbonates and associated secondary minerals because the altered rocks contain higher CaO, MgO, Fe2O3 and MnO and lower SiO2, Al2O3, Na2O and K2O compared to their less altered rocks. Fluid inclusion investigations show that the carbonatite magma contained a high-salinity H2O-CO2-NaCl-CaCl2 fluid, although the lack of fennitic alteration implies that this fluid was not abundant. The crystallization conditions of the carbonatite dykes and carbonatite matrix in the breccia zones have been constrained using Zr-in-rutile thermometry and fluid inclusion microthermometry. Crystallization of the carbonatite in the dykes and in the breccia zone occurred between 565 +/- 38 degrees C and 420-480 degrees C, respectively and at 0.75-1.3 kbar, which corresponds to a depth of 2.8-4.9 km. Rutile hosted within the carbonatite crystallized earlier at high temperature and the carbonate matrix crystallized later after cooling. Immiscible fluid from carbonatite magma would have altered the surrounding country rocks at lower temperature (between 400 degrees C and 150 degrees C deduced from the fluid inclusion thermometry) after the intrusion of the carbonatite melt.
  •  
16.
  • Broman, Curt, et al. (författare)
  • Deposition conditions for the indium-bearing polymetallic quartz veins at Sarvlaxviken, south-eastern Finland
  • 2018
  • Ingår i: Mineralogical magazine. - : Mineralogical Society. - 0026-461X .- 1471-8022. ; 82, s. S43-S59
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymetallic quartz veins, with up to 1500ppm indium, have been discovered recently in the Sarvlaxviken area within the 1.64Ga anorogenic multiphase Wiborg rapakivi batholith and adjacent 1.90Ga Svecofennian crust in SE Finland. Evidence from primary fluid inclusions in the Sarvlaxviken area provides new information on the hydrothermal transport and depositional processes of metals in anorogenic granites. Fluid inclusions with variable aqueous liquid and vapour proportions (5-90vol.% vapour) occur in quartz, cassiterite and fluorite belonging to three generations of polymetallic quartz veins. Microthermometry indicates that the veins were deposited at temperatures that range from similar to 500 degrees C down to <100 degrees C and salinities from 0 to 16 eq. mass% NaCl. Fluid inclusion data show that the depositional conditions were similar regardless of vein generation. The interpreted depositional processes involve phase separation with a combination of condensation, cooling and boiling of an initially low-salinity (<3 eq. mass% NaCl) aqueous magmatic vapour phase enriched in CO2-F-Cl-S and metals. Fluid inclusions with low salinities dominate, but higher salinities are recorded in metal-rich parts of the veins. The turbulent fluid flow, with complex geometry and temperature-salinity patterns, may explain why sulfide and/or oxide opaque minerals occur irregularly, and are locally the dominating vein minerals, but disappear completely into barren parts of the quartz veins. All fluids are considered to have been generated by the F-rich Marviken granite (and related granite dykes), which show all geochemical criteria for an ore-fertile granite. The quartz veins investigated in the adjacent Svecofennian country rocks are considered to represent the very last stage of a fluid with similar characteristics to the fluid responsible for the ore formation in the Sarvlaxviken area, but that had cooled to <100 degrees C.
  •  
17.
  •  
18.
  • Broman, Curt, 1956- (författare)
  • Origin of massive sulfide ores in the Skellefte district, as indicated by fluid inclusions
  • 1992
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The Proterozoic SkeUefte massive sulfide ore district is confined to a 200 km long belt of a submarine metavolcanic and metasedimentary rock sequence in northern Sweden. It is located between an area of terrestrial metavolcanics in the north and gneisses, migmatites and granites in the south. Intrusions of granitoid complexes occur in several places, some of them are cogenetic with the volcanics and some post-date the emplacement of the supacrustals. The regional metamorphism has reached greenschist facies conditions. The district has characteristics typical of a subduction-related volcanic arc formation, which is reflected by the geology, the chemistry of rocks and the appearance of massive sulfide deposits. In the district approximately 100 sulfide mineralizations have been discovered, about 9 are currently mined with a total annual output of roughly 2 million tons of base metal ore. These deposit exhibit many ore features which are common in the Kuroko-type massive sulfide deposits.Microthermometric measurements of aqueous two-phase fluid inclusions in sphalerite, quartz and calcite from the massive sulfide ores indicate that they were deposited from Ca-Na-Cl solutions with a salinity of 1-6 eq. wt. % NaCl under nonboiling conditions at seawater depths between 1 and 2.5 km. The inclusions reveal trapping temperatures of 160-370 °C, similar to the temperatures obtained for the sulfide forming hydrothermal fluids which emerge from the sea floor vents at the East Pacific Rise.The massive ores are underlain by chalcopyrite-rich stockwork mineralizations. The aqueous inclusions hosted by them display temperatures and salinities equal to those in the massive ores, but were C02- and CH4-bearing as well. The characteristics of these inclusions suggest a heterogeneous system with gas-bubbles in a liquid phase. The lack of gases in the inclusions from the massive parts may indicate that the escaping gas have reacted with bottom water and formed the carbonate horizons which are associated with the massive ores.The ores have been affected in various degrees by subsequent metamorphic processes involving fluids of different compositions. Fluid inclusions in healed microfractures and quartz veins indicate that the metamorphic fluids during the peak of the regional metamorphic alteration were dominated by C02-rich compositions. The pressures deduced from the molar volumes of these inclusions can be used to construct a metamorphic isograd which follows the contour of the southern late-orogenic granite, creating a northern and a southern subarea with pressures below and above 3 kbar respectively.Retrograde conditions are recorded by N2-bearing hydrocarbon-rich fluids trapped in microfractures under low metamorphic pressures. No regional gradient was indicated by the N2/CH4 ratio and therefore implying that the amounts were controlled by local mineral reactions. However, the distribution trend of higher molecular weight hydrocarbons in these inclusions suggest a steeper cooling path in the western part of the district.At the final stage of the metamorphism, aqueous solutions with temperatures below 150 “C percolated through the rocks, these were highly saline brines in the western district and solutions with low to medium salinities in the eastern part. 
  •  
19.
  • Broman, Curt, et al. (författare)
  • Oxygen isotopes and implications for the cavity-grown quartz crystals in the Lockne impact structure, Sweden
  • 2011
  • Ingår i: GFF. - : The Geological Society of Sweden. - 1103-5897 .- 2000-0863. ; 133:02-jan, s. 101-107
  • Tidskriftsartikel (refereegranskat)abstract
    • Well-developed quartz crystals are found in open cavities in the intensely fractured crystalline basement of the marine-target impact structure at Lockne in central Sweden. The 458 Ma impact structure has a well-preserved crater in Precambrian granitic basement rock that is covered by resurge deposits composed of breccias and fine-grained sedimentary units of mixed Ordovician limestone, Cambrian black bituminous shales and the basement granite. Directly after the impact, the resurge deposits formed when the seawater rushed back into the crater. The residual heat from the impact facilitated a short-lived hydrothermal system accompanied by the inflowing seawater, which resulted in mineral growth in fractures and open cavities of the granite basement. The oxygen isotope values of the first-precipitated minerals, the cavity-grown quartz crystals, range from +15.2 to +16.2 parts per thousand (Vienna Standard Mean Ocean Water) and differ from those of the hosting granite basement rock with delta(18)O quartz between +10.1 and +11.7 parts per thousand. The delta(18)O values of the quartz are more consistent with derivation from a fluid of relatively high delta(18)O probably attributable to oxygen isotope exchange during seawater-rock interactions in the resurge deposits. The occurrence of organic matter in association with the cavity-grown quartz strongly indicates a relationship to the black bituminous shale in the matrix of the breccia that rests on the crater floor. Comparing the results with previously obtained oxygen data on fracture-grown calcite from Lockne shows that oxygen isotope composition of the cavity-grown quartz crystals is less variable and probably more accurately reflects the original fluid source.
  •  
20.
  • Bukała, Michał, et al. (författare)
  • UHP metamorphism recorded by phengite eclogite from the Caledonides of northern Sweden : P-T path and tectonic implications
  • 2018
  • Ingår i: Journal of Metamorphic Geology. - : Wiley. - 0263-4929 .- 1525-1314. ; 36:5, s. 547-566
  • Tidskriftsartikel (refereegranskat)abstract
    • The Seve Nappe Complex (SNC) of the Scandinavian Caledonides records a well-documented history of high pressure (HP) and ultra-high pressure (UHP) metamorphism. Eclogites of the SNC occur in two areas in Sweden, namely Jamtland and Norrbotten. The Jamtland eclogites and associated rocks are well-studied and provide evidence for late Ordovician UHP metamorphism, whereas the Norrbotten eclogites, formed during the late Cambrian (Furongian)/Early Ordovician, have not been studied in such detail, especially in terms of the P-T conditions of their formation. Within the studied eclogite, clinopyroxene contains a high-Na core and two rims: inner, medium-Na and outer, low-Na. Garnet consists of a high-Ca euhedral core, low-Ca inner rim and medium-Ca outer rim. A similar pattern occurs within phengite, where high-Si cores are enveloped by medium and low-Si rims. The compositions of the mineral cores, inner rims and outer rims reflect three stages in the metamorphic evolution of the eclogite. Applied Quartz-in-Garnet geobarometry, coupled with Zr-in-rutile geothermometry reveal that garnet nucleation (E0 stage) took place at 1.5-1.6GPa and 620-660 degrees C. The eclogite peak-pressure assemblage developed during the E1 stage, it consists of garnet+omphacite+phengite+rutile+coesite? and yields P-T conditions of 2.8-3.1GPa and 660-780 degrees C as constrained by conventional geothermobarometry and thermodynamic modelling in the NCKFMMnASHT system. Later, lower-pressure stages E2 and E3 record conditions of 2.2-2.8GPa, 680-780 degrees C and 2.1GPa, 735 degrees C, respectively. The prograde metamorphic evolution of the eclogite is inferred from inclusions of epidote, amphibole and clinopyroxene within garnet. The presence of amphibole-quartz-plagioclase symplectites, secondary epidote/zoisite and titanite replacing rutile record the later retrograde changes taking place at <1.5GPa (referred as E4 stage). The obtained P-T conditions indicate that the Norrbotten eclogites underwent a metamorphic evolution characterized by a clockwise P-T path with peak metamorphism reaching up to coesite stability field within a relatively cold subduction regime (7.8 degrees C/km). The obtained results provide the first evidence for UHP metamorphism in the SNC above the Arctic Circle and document cold subduction regime and multistage exhumation of the deeply subducted Baltican margin at early stage of the Caledonian Orogeny.
  •  
21.
  • Callac, Nolwenn, et al. (författare)
  • Modes of carbon fixation in an arsenic and CO2-rich shallow hydrothermal ecosystem
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322.
  • Tidskriftsartikel (refereegranskat)abstract
    • The seafloor sediments of Spathi Bay, Milos Island, Greece, are part of the largest arsenic-CO2-rich shallow submarine hydrothermal ecosystem on Earth. Here, white and brown deposits cap chemically distinct sediments with varying hydrothermal influence. All sediments contain abundant genes for autotrophic carbon fixation used in the Calvin-Benson-Bassham (CBB) and reverse tricaboxylic acid (rTCA) cycles. Both forms of RuBisCO, together with ATP citrate lyase genes in the rTCA cycle, increase with distance from the active hydrothermal centres and decrease with sediment depth. Clustering of RuBisCO Form II with a highly prevalent Zetaproteobacteria 16S rRNA gene density infers that iron-oxidizing bacteria contribute significantly to the sediment CBB cycle gene content. Three clusters form from different microbial guilds, each one encompassing one gene involved in CO2 fixation, aside from sulfate reduction. Our study suggests that the microbially mediated CBB cycle drives carbon fixation in the Spathi Bay sediments that are characterized by diffuse hydrothermal activity, high CO2, As emissions and chemically reduced fluids. This study highlights the breadth of conditions influencing the biogeochemistry in shallow CO2-rich hydrothermal systems and the importance of coupling highly specific process indicators to elucidate the complexity of carbon cycling in these ecosystems.
  •  
22.
  •  
23.
  • Chi Fru, Ernest, et al. (författare)
  • Arsenic and high affinity phosphate uptake gene distribution in shallow submarine hydrothermal sediments
  • 2018
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 141:1, s. 41-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The toxicity of arsenic (As) towards life on Earth is apparent in the dense distribution of genes associated with As detoxification across the tree of life. The ability to defend against As is particularly vital for survival in As-rich shallow submarine hydrothermal ecosystems along the Hellenic Volcanic Arc (HVA), where life is exposed to hydrothermal fluids containing up to 3000 times more As than present in seawater. We propose that the removal of dissolved As and phosphorus (P) by sulfide and Fe(III)(oxyhydr)oxide minerals during sediment-seawater interaction, produces nutrient-deficient porewaters containing<2.0ppb P. The porewater arsenite-As(III) to arsenate-As(V) ratios, combined with sulfide concentration in the sediment and/or porewater, suggest a hydrothermally-induced seafloor redox gradient. This gradient overlaps with changing high affinity phosphate uptake gene abundance. High affinity phosphate uptake and As cycling genes are depleted in the sulfide-rich settings, relative to the more oxidizing habitats where mainly Fe(III)(oxyhydr)oxides are precipitated. In addition, a habitat-wide low As-respiring and As-oxidizing gene content relative to As resistance gene richness, suggests that As detoxification is prioritized over metabolic As cycling in the sediments. Collectively, the data point to redox control on Fe and S mineralization as a decisive factor in the regulation of high affinity phosphate uptake and As cycling gene content in shallow submarine hydrothermal ecosystems along the HVA.
  •  
24.
  • Chi Fru, Ernest, et al. (författare)
  • Atmospheric weathering of Scandinavian alum shales and the fractionation of C, N and S isotopes
  • 2016
  • Ingår i: Applied Geochemistry. - : Elsevier BV. - 0883-2927 .- 1872-9134. ; 74, s. 94-108
  • Tidskriftsartikel (refereegranskat)abstract
    • Subaerial exposure and oxidation of organic carbon (C-org)-rich rocks is believed to be a key mechanism for the recycling of buried C and S back to Earth's surface. Importantly, processes coupled to microbial C-org oxidation are expected to shift new biomass delta C-13(org) composition towards more negative values relative to source. However, there is scarcity of information directly relating rock chemistry to oxidative weathering and shifting delta C-13(org) at the rock-atmosphere interface. This is particularly pertinent to the sulfidic, C-org-rich alum shale units of the Baltoscandian Basin believed to constitute a strong source of metal contaminants to the natural environment, following subaerial exposure and weathering. Consistent with independent support, we show that atmospheric oxidation of the sulfidic, C-org-rich alum shale sequence of the Cambrian-Devonian Baltoscandian Basin induces intense acid rock drainage at the expense of progressive oxidation of Fe sulfides. Sulfide oxidation takes priority over microbial organic matter decomposition, enabling quantitative massive erosion of C-org without producing a delta C-13 shift between acid rock drainage precipitates and shale. Moreover, C-13 enrichment in inorganic carbon of precipitates does not support microbial C-org oxidation as the predominant mechanism of rock weathering upon exposure. Instead, a Delta S-34 = delta S-34(shale) - delta S-34(precipitates) approximate to 0, accompanied by elevated S levels and the ubiquitous deposition of acid rock drainage sulfate minerals in deposited efflorescent precipitates relative to shales, provide strong evidence for quantitative mass oxidation of shale sulfide minerals as the source of acidity for chemical weathering. Slight delta N-15 depletion in the new surface precipitates relative to shale, coincides with dramatic loss of N from shales. Collectively, the results point to pyrite oxidation as a major driver of alum black shale weathering at the rock-atmosphere interface, indicating that quantitative mass release of C-org, N, S, and key metals to the environment is a response to intense sulfide oxidation. Consequently, large-scale acidic weathering of the sulfide-rich alum shale units is suggested to influence the fate and redistribution of the isotopes of C, N, and S from shale to the immediate environment.
  •  
25.
  • Chi Fru, Ernest, et al. (författare)
  • Biogenicity of an Early Quaternary iron formation, Milos Island, Greece
  • 2015
  • Ingår i: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 13:3, s. 225-244
  • Tidskriftsartikel (refereegranskat)abstract
    • A ~2.0-million-year-old shallow-submarine sedimentary deposit on Milos Island, Greece, harbours an unmetamorphosed fossiliferous iron formation (IF) comparable to Precambrian banded iron formations (BIFs). This Milos IF holds the potential to provide clues to the origin of Precambrian BIFs, relative to biotic and abiotic processes. Here, we combine field stratigraphic observations, stable isotopes of C, S and Si, rock petrography and microfossil evidence from a ~5-m-thick outcrop to track potential biogeochemical processes that may have contributed to the formation of the BIF-type rocks and the abrupt transition to an overlying conglomerate-hosted IF (CIF). Bulk δ13C isotopic compositions lower than -25‰ provide evidence for biological contribution by the Calvin and reductive acetyl–CoA carbon fixation cycles to the origin of both the BIF-type and CIF strata. Low S levels of ~0.04 wt.% combined with δ34S estimates of up to ~18‰ point to a non-sulphidic depository. Positive δ30Si records of up to +0.53‰ in the finely laminated BIF-type rocks indicate chemical deposition on the seafloor during weak periods of arc magmatism. Negative δ30Si data are consistent with geological observations suggesting a sudden change to intense arc volcanism potentially terminated the deposition of the BIF-type layer. The typical Precambrian rhythmic rocks of alternating Fe- and Si-rich bands are associated with abundant and spatially distinct microbial fossil assemblages. Together with previously proposed anoxygenic photoferrotrophic iron cycling and low sedimentary N and C potentially connected to diagenetic denitrification, the Milos IF is a biogenic submarine volcano-sedimentary IF showing depositional conditions analogous to Archaean Algoma-type BIFs.
  •  
26.
  •  
27.
  • Chi Fru, Ernest, et al. (författare)
  • Fossilized iron bacteria reveal pathway to biological origin of banded iron formation.
  • 2013
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 4:2050, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Debates on the formation of banded iron formations in ancient ferruginous oceans are dominated by a dichotomy between abiotic and biotic iron cycling. This is fuelled by difficulties in unravelling the exact processes involved in their formation. Here we provide fossil environmental evidence for anoxygenic photoferrotrophic deposition of analogue banded iron rocks in shallow marine waters associated with an Early Quaternary hydrothermal vent field on Milos Island, Greece. Trace metal, major and rare earth elemental compositions suggest that the deposited rocks closely resemble banded iron formations of Precambrian origin. Well-preserved microbial fossils in combination with chemical data imply that band formation was linked to periodic massive encrustation of anoxygenic phototrophic biofilms by iron oxyhydroxide alternating with abiotic silica precipitation. The data implicate cyclic anoxygenic photoferrotrophy and their fossilization mechanisms in the construction of microskeletal fabrics that result in the formation of characteristic banded iron formation bands of varying silica and iron oxide ratios.
  •  
28.
  • Chi Fru, Ernest, et al. (författare)
  • Sedimentary mechanisms of a modern banded iron formation on MIlos Island, Greece
  • 2018
  • Ingår i: Solid Earth. - : European Geosciences Union (EGU). - 1869-9510 .- 1869-9529. ; 9, s. 573-598
  • Tidskriftsartikel (refereegranskat)abstract
    • An early Quaternary shallow submarine hydrothermal iron formation (IF) in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece, displays banded rhythmicity similar to Precambrian banded iron formation (BIF). Field-wide stratigraphic and biogeochemical reconstructions show two temporal and spatially isolated iron deposits in the CVSB with distinct sedimentological character. Petrographic screening suggests the presence of a photoferrotrophic-like microfossil-rich IF (MFIF), accumulated on a basement consisting of andesites in a ∼ 150m wide basin in the SW margin of the basin. A banded nonfossiliferous IF (NFIF) sits on top of the Mn-rich sandstones at the transition to the renowned Mn-rich formation, capping the NFIF unit. Geochemical data relate the origin of the NFIF to periodic submarine volcanism and water column oxidation of released Fe(II) in conditions predominated by anoxia, similar to the MFIF. Raman spectroscopy pairs hematite-rich grains in the NFIF with relics of a carbonaceous material carrying an average δ13Corg signature of ∼ −25‰. A similar δ13Corg signature in the MFIF could not be directly coupled to hematite by mineralogy. The NFIF, which postdates large-scale Mn deposition in the CVSB, is composed primarily of amorphous Si (opal-SiO2 ⋅ nH2O) while crystalline quartz (SiO2) predominates the MFIF. An intricate interaction between tectonic processes, changing redox, biological activity, and abiotic Si precipitation are proposed to have collectively formed the unmetamorphosed BIF-type deposits in a shallow submarine volcanic center. Despite the differences in Precambrian ocean–atmosphere chemistry and the present geologic time, these formation mechanisms coincide with those believed to have formed Algoma-type BIFs proximal to active seafloor volcanic centers.
  •  
29.
  •  
30.
  • Drake, Henrik, 1979-, et al. (författare)
  • Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8:55, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.
  •  
31.
  • Drake, Henrik, 1979-, et al. (författare)
  • Episodic microbial methanogenesis, methane oxidation and sulfate reduction in deep granite fractures at Forsmark, Sweden
  • 2017
  • Ingår i: 15TH WATER-ROCK INTERACTION INTERNATIONAL SYMPOSIUM, WRI-15. - : Elsevier BV. ; , s. 702-705
  • Konferensbidrag (refereegranskat)abstract
    • An extensive microanalytical isotope study of calcite and pyrite has been carried out in bedrock fractures at Forsmark, Sweden. The very large delta C-13(calcite)-variation of 103.4% V-PDB in total (-69.2 to +34.2%) evidences significant spatial and temporal variability in processes and carbon sources in the deep fracture system during the period when these minerals were formed (Phanerozoic). The substantial delta C-13(calcite)-span is mainly methane-related, with heavy and very light delta C-13 originating from ubiquitous in situ microbial methanogenesis and anaerobic oxidation of methane (AOM), respectively. Co-genetic cubic and framboidal pyrite showed substantial sulfate reducing bacteria (SRB)-related delta S-34 variation of 95% V-CDT overall (-29 to +66%), indicating closed system isotope distillation and point to similar genetic SRB methane-oxidizer relationships as in marine sediments. The depth distribution of the methanogenesis-, SRB- and AOM-signatures are from just below the ground surface down to about 800 m, which marks the deepest occurrence of AOM-related carbonate yet reported from the continental crystalline crust. Biomarkers and fluid inclusions suggest that the microbial activity in the bedrock fractures was closely related to descending surficial fluids and basinal brines rich in organic matter, in at least two pulses (70-80 degrees C and <50-62 degrees C). (C) 2017 Published by Elsevier B.V.
  •  
32.
  • Drake, Henrik, et al. (författare)
  • Extreme C-13 depletion of carbonates formed during oxidation of biogenic methane in fractured granite
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Precipitation of exceptionally C-13-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in C-13 than in the source methane, because of incorporation of C also from other sources, they are far more depleted in C-13 (delta C-13 as light as - 69% V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely C-13-depleted carbonates ever reported, delta C-13 down to - 125% V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane.
  •  
33.
  • Drake, Henrik, 1979-, et al. (författare)
  • Incorporation of Metals into Calcite in a Deep Anoxic Granite Aquifer
  • 2018
  • Ingår i: Environmental Science & Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851 .- 1086-931X .- 1520-6912. ; 52:2, s. 493-502
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding metal scavenging by calcite in deep aquifers in granite is of importance for deciphering and modeling hydrochemical fluctuations and water rock interaction in the upper crust and for retention mechanisms associated With underground, repositories for toxic wastes. Metal scavenging into calcite has generally been established in the laboratory or in natural environments that cannot be unreservedly applied to conditions in deep crystalline rocks, an environment of broad interest, for nuclear waste repositories. Here, we report a microanalytical study: of calcite precipitated over a period of 17 years from anoxic, low-temperature (14 degrees C), neutral (pH: 7.4-7.7), and brackish (Cl: 1700-7100 mg/L) groundwater flowing in fractures at >400 m depth in granite rock. This enabled assessment of the trace metal uptake by calcite under these deep-seated conditions. Aquatic speciation modeling was carried out to assess influence of metal complexation on the partitioning into calcite. The resulting environment-specific partition coefficients were for several divalent ions in line with values obtained in controlled laboratory experiments, whereas for several other ions they differed substantially. High absolute uptake of rare earth elements and U(IV) suggests that coprecipitation into calcite can be an important sink for these metals and analogousactinides in the vicinity of geological repositories.
  •  
34.
  • Drake, Henrik, 1979-, et al. (författare)
  • Isotopic evidence for microbial production and consumption of methane in the upper continental crust throughout the Phanerozoic eon
  • 2017
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 470, s. 108-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Microorganisms produce and consume methane in terrestrial surface environments, sea sediments and, as indicated by recent discoveries, in fractured crystalline bedrock. These processes in the crystalline bedrock remain, however, unexplored both in terms of mechanisms and spatiotemporal distribution. Here we have studied these processes via a multi-method approach including microscale analysis of the stable isotope compositions of calcite and pyrite precipitated in bedrock fractures in the upper crust (down to 1.7 km) at three sites on the Baltic Shield. Microbial processes have caused an intriguing variability of the carbon isotopes in the calcites at all sites, with delta C-13 spanning as much as -93.1 parts per thousand (related to anaerobic oxidation of methane) to +36.5 parts per thousand (related to methanogenesis). Spatiotemporal coupling between the stable isotope measurements and radiometric age determinations (micro-scale dating using new high spatial methods: LA-ICP-MS U-Pb for calcite and Rb-Sr for calcite and co-genetic adularia) enabled unprecedented direct timing constraints of the microbial processes to several periods throughout the Phanerozoic eon, dating back to Devonian times. These events have featured variable fluid salinities and temperatures as shown by fluid inclusions in the calcite; dominantly 70-85 degrees C brines in the Paleozoic and lower temperatures (<50-62 degrees C) and salinities in the Mesozoic. Preserved organic compounds, including plant signatures, within the calcite crystals mark the influence of organic matter in descending surficial fluids on the microbial processes in the fracture system, thus linking processes in the deep and surficial biosphere. These findings substantially extend the recognized temporal and spatial range for production and consumption of methane within the upper continental crust. (C) 2017 Elsevier B.V. All rights reserved.
  •  
35.
  •  
36.
  • Drake, Henrik, 1979-, et al. (författare)
  • Timing and origin of natural gas accumulation in the Siljan impact structure, Sweden
  • 2019
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Fractured rocks of impact craters may be suitable hosts for deep microbial communities on Earth and potentially other terrestrial planets, yet direct evidence remains elusive. Here, we present a study of the largest crater of Europe, the Devonian Siljan structure, showing that impact structures can be important unexplored hosts for long-term deep microbial activity. Secondary carbonate minerals dated to 80 ± 5 to 22 ± 3 million years, and thus postdating the impact by more than 300 million years, have isotopic signatures revealing both microbial methanogenesis and anaerobic oxidation of methane in the bedrock. Hydrocarbons mobilized from matured shale source rocks were utilized by subsurface microorganisms, leading to accumulation of microbial methane mixed with a thermogenic and possibly a minor abiotic gas fraction beneath a sedimentary cap rock at the crater rim. These new insights into crater hosted gas accumulation and microbial activity have implications for understanding the astrobiological consequences of impacts. © 2019, The Author(s).
  •  
37.
  • Drake, Henrik, 1979-, et al. (författare)
  • Unprecedented S-34-enrichment of pyrite formed following microbial sulfate reduction in fractured crystalline rocks
  • 2018
  • Ingår i: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 16:5, s. 556-574
  • Tidskriftsartikel (refereegranskat)abstract
    • In the deep biosphere, microbial sulfate reduction (MSR) is exploited for energy. Here, we show that, in fractured continental crystalline bedrock in three areas in Sweden, this process produced sulfide that reacted with iron to form pyrite extremely enriched in S-34 relative to S-32. As documented by secondary ion mass spectrometry (SIMS) microanalyses, the S-34(pyrite) values are up to +132 parts per thousand V-CDT and with a total range of 186 parts per thousand. The lightest S-34(pyrite) values (-54 parts per thousand) suggest very large fractionation during MSR from an initial sulfate with S-34 values (S-34(sulfate,0)) of +14 to +28 parts per thousand. Fractionation of this magnitude requires a slow MSR rate, a feature we attribute to nutrient and electron donor shortage as well as initial sulfate abundance. The superheavy S-34(pyrite) values were produced by Rayleigh fractionation effects in a diminishing sulfate pool. Large volumes of pyrite with superheavy values (+120 +/- 15 parts per thousand) within single fracture intercepts in the boreholes, associated heavy average values up to +75 parts per thousand and heavy minimum S-34(pyrite) values, suggest isolation of significant amounts of isotopically light sulfide in other parts of the fracture system. Large fracture-specific S-34(pyrite) variability and overall average S-34(pyrite) values (+11 to +16 parts per thousand) lower than the anticipated S-34(sulfate,0) support this hypothesis. The superheavy pyrite found locally in the borehole intercepts thus represents a late stage in a much larger fracture system undergoing Rayleigh fractionation. Microscale Rb-Sr dating and U/Th-He dating of cogenetic minerals reveal that most pyrite formed in the early Paleozoic era, but crystal overgrowths may be significantly younger. The C-13 values in cogenetic calcite suggest that the superheavy S-34(pyrite) values are related to organotrophic MSR, in contrast to findings from marine sediments where superheavy pyrite has been proposed to be linked to anaerobic oxidation of methane. The findings provide new insights into MSR-related S-isotope systematics, particularly regarding formation of large fractions of S-34-rich pyrite.
  •  
38.
  • Hallberg, Rolf O., et al. (författare)
  • Microbial Fossils in the 2.63 Ga Jeerinah Formation, Western Australia-Evidence of Microbial Oxidation
  • 2018
  • Ingår i: Geomicrobiology Journal. - : Informa UK Limited. - 0149-0451 .- 1521-0529. ; 35:4, s. 255-260
  • Tidskriftsartikel (refereegranskat)abstract
    • A diamond drill core from the upper part of the Jeerinah Formation (similar to 2.63 Ga), underlying the Hamersley Group, deposited at a time when the oxygen concentrations in the marine environment were extremely low, was examined for microbial fossils. The paper presents organo-mineral structures in the form of twisted stalks produced by bacteria being present in the laminated black carbonaceous shale sediments. These twisted stalks are organo-mineral structures produced by microaerophilic Fe(II)-oxidizing-type bacteria such as Gallionella and/or Mariprofundus that are active at very low-oxygen concentrations, thus providing evidence for oxygen being present in the marine environment at 2.63 Ga.
  •  
39.
  • Holtstam, Dan, et al. (författare)
  • Origin of REE mineralization in the Bastnas-type Fe-REE-(Cu-Mo-Bi-Au) deposits, Bergslagen, Sweden
  • 2014
  • Ingår i: Mineralium Deposita. - : Springer Science and Business Media LLC. - 0026-4598 .- 1432-1866. ; 49:8, s. 933-966
  • Tidskriftsartikel (refereegranskat)abstract
    • The Bastnas-type deposits, with mineral assemblages of Fe oxides, Ca-Mg silicates, rare earth element (REE) silicates, REE fluorocarbonates, and Cu-Fe-Mo-Bi sulfides, are associated with marble horizons in a strongly Na, K, and/or Mg altered, metavolcanic succession, over a distance of at least 80 km in a SW-NE trending zone in western Bergslagen. Two subtypes occur: (1) enriched (relative to the other type) in light REE (LREE) and Fe, exemplified by the Bastnas and Rodbergsgruvan deposits, and (2) enriched in heavy REE (HREE), Y, Mg, Ca, and F, represented by deposits in the Norberg district. Bastnasite hosts primary fluid H2O-CO2 inclusions with salinities of 6-29 eq. wt% CaCl2 and with total homogenization temperatures (Th-tot) of ca. 300-400 degrees C. Subtype 2 has late-stage fluorite with fluid inclusions that show 1-16 eq. wt% NaCl and Th-tot of ca. 90-150 degrees C. Molybdenite Re-Os ages obtained from three deposits are 1,904 +/- 6, 1,863 +/- 4, and 1,842 +/- 4 Ma. Nd isotopic data from five different REE minerals yielded no defined isochron, but a range in epsilon(Nd) (1.88 Ga) of +0.2 to +1.6. The oxygen isotope values (delta O-18(SMOW)) of dolomite and calcite from the associated REE-mineralized skarn and recrystallized carbonate assemblages lie in the range 6.1-8.6 parts per thousand, overlapping with those of the host marbles. Carbon isotope values (delta C-13(PDB)) show typical magmatic signatures of -6.7 to -4.4 parts per thousand, while the host marbles group around ca. -2.4 parts per thousand. The sulfur isotope (delta S-34(CDT)) values of associated sulfides range between -10.8 and +0.2 parts per thousand. The combined evidence suggests REE mineralization, beginning at 1.9 Ga, from mainly Svecofennian, juvenile magmatic (>400 degrees C) fluids carrying Si, F, Cl, S, CO2, and the REE in addition to other metals; mineralization occurred through reactions with dolomitic layers in the supracrustal units coevally with regional metasomatic alteration associated with fluid circulation through an extensive active volcano-plutonic complex.
  •  
40.
  •  
41.
  • Ivarsson, Magnus, 1975-, et al. (författare)
  • A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor Igneous Crust
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We have after half a century of coordinated scientific drilling gained insight into Earth's largest microbial habitat, the subseafloor igneous crust, but still lack substantial understanding regarding its abundance, diversity and ecology. Here we describe a fossilized microbial consortium of prokaryotes and fungi at the basalt-zeolite interface of fractured subseafloor basalts from a depth of 240 m below seafloor (mbsf). The microbial consortium and its relationship with the surrounding physical environment are revealed by synchrotron-based X-ray tomographic microscopy (SRXTM), environmental scanning electron microscopy (ESEM), and Raman spectroscopy. The base of the consortium is represented by micro-stromatolites- remains of bacterial communities that oxidized reduced iron directly from the basalt. The microstromatolites and the surrounding basalt were overlaid by fungal cells and hyphae. The consortium was overgrown by hydrothermally formed zeolites but remained alive and active during this event. After its formation, fungal hyphae bored in the zeolite, producing millimetre-long tunnels through the mineral substrate. The dissolution could either serve to extract metals like Ca, Na and K essential for fungal growth and metabolism, or be a response to environmental stress owing to the mineral overgrowth. Our results show how microbial life may be maintained in a nutrient-poor and extreme environment by close ecological interplay and reveal an effective strategy for nutrient extraction from minerals. The prokaryotic portion of the consortium served as a carbon source for the eukaryotic portion. Such an approach may be a prerequisite for prokaryotic-eukaryotic colonisation of, and persistence in, subseafloor igneous crust.
  •  
42.
  • Ivarsson, Magnus, 1975-, et al. (författare)
  • Biogenic Mn-oxides in subseafloor basalts
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite. Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. We suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides. Our results show that fungi are involved in Mn cycling at great depths in the seafloor and we introduce EPR as a means to easily identify biogenic Mn oxides in these environments.
  •  
43.
  • Ivarsson, Magnus, et al. (författare)
  • Chromite oxidation by manganee oxides in subseafloor basalts and the presence of putative fossilized microorganisms
  • 2011
  • Ingår i: Geochemical Transactions. - : Springer Science and Business Media LLC. - 1467-4866. ; 12, s. 5-
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromite is a mineral with low solubility and is thus resistant to dissolution. The exception is when manganese oxides are available, since they are the only known naturally occurring oxidants for chromite. In the presence of Mn(IV) oxides, Cr(III) will oxidise to Cr(VI), which is more soluble than Cr(III), and thus easier to be removed. Here we report of chromite phenocrysts that are replaced by rhodochrosite (Mn(II) carbonate) in subseafloor basalts from the Koko Seamount, Pacific Ocean, that were drilled and collected during the Ocean Drilling Program (ODP) Leg 197. The mineral succession chromite-rhodochrosite-saponite in the phenocrysts is interpreted as the result of chromite oxidation by manganese oxides. Putative fossilized microorganisms are abundant in the rhodochrosite and we suggest that the oxidation of chromite has been mediated by microbial activity. It has previously been shown in soils and in laboratory experiments that chromium oxidation is indirectly mediated by microbial formation of manganese oxides. Here we suggest a similar process in subseafloor basalts.
  •  
44.
  • Ivarsson, Magnus, et al. (författare)
  • Exceptional Preservation of Fungi as H2-Bearing Fluid Inclusions in an Early Quaternary Paleo-Hydrothermal System at Cape Vani, Milos, Greece
  • 2019
  • Ingår i: Minerals. - : MDPI. - 2075-163X. ; 9:12, s. 1-33
  • Tidskriftsartikel (refereegranskat)abstract
    • The production of H-2 in hydrothermal systems and subsurface settings is almost exclusively assumed a result of abiotic processes, particularly serpentinization of ultramafic rocks. The origin of H-2 in environments not hosted in ultramafic rocks is, as a rule, unjustifiably linked to abiotic processes. Additionally, multiple microbiological processes among both prokaryotes and eukaryotes are known to involve H-2-production, of which anaerobic fungi have been put forward as a potential source of H-2 in subsurface environments, which is still unconfirmed. Here, we report fungal remains exceptionally preserved as fluid inclusions in hydrothermal quartz from feeder quartz-barite veins from the Cape Vani Fe-Ba-Mn ore on the Greek island of Milos. The inclusions possess filamentous or near-spheroidal morphologies interpreted as remains of fungal hyphae and spores, respectively. They were characterized by microthermometry, Raman spectroscopy, and staining of exposed inclusions with WGA-FITC under fluorescence microscopy. The spheroidal aqueous inclusions interpreted as fungal spores are unique by their coating of Mn-oxide birnessite, and gas phase H-2. A biological origin of the H-2 resulting from anaerobic fungal respiration is suggested. We propose that biologically produced H-2 by micro-eukaryotes is an unrecognized source of H-2 in hydrothermal systems that may support communities of H-2-dependent prokaryotes.
  •  
45.
  •  
46.
  • Ivarsson, M., et al. (författare)
  • Fossilized Life in Subseafloor Ultramafic Rocks
  • 2018
  • Ingår i: Geomicrobiology Journal. - : Informa UK Limited. - 0149-0451 .- 1521-0529. ; 35:6, s. 460-467
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultramafic rocks are hypothesized to support a subseafloor hydrogen-driven biosphere because of extensive production of bioavailable energy sources like H-2 or CH4 from fluid-rock interactions. Hence, the apparent lack of microbial remains in subseafloor ultramafic rocks, in contrast to their frequent observation in subseafloor basalts, is somewhat of a paradox. Here we report fossilized microbial remains in aragonite veins in ultramafic rocks from the 15 degrees 20N Fracture Zone area on the Mid-Atlantic Ridge (MAR), collected during Ocean Drilling Program (ODP) Leg 209. The microbial remains consist of filamentous structures associated with biofilms. The young age (<1 Myr) and absence of diagenesis result in fossilized microbial communities with a pristine composition characterized by carbonaceous matter (CM) and the enrichment in trace elements such as Ni, Co, Mo and Mn. Our study confirms the presence of the hypothesized deep subseafloor biosphere hosted in ultramafic rocks. We further show that host rock composition may influence the microbial elemental composition, which is recorded during the fossilization.
  •  
47.
  •  
48.
  • Ivarsson, Magnus, et al. (författare)
  • Fossilized microorganisms associated with zeolite-carbonate interfaces in sub-seafloor hydrothermal environments
  • 2008
  • Ingår i: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 6:2, s. 155-170
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we describe carbon-rich filamentous structures observed in association with the zeolite mineral phillipsite from sub-seafloor samples drilled and collected during the Ocean Drilling Program (ODP) Leg 197 at the Emperor Seamounts. The filamentous structures are ~5 µm thick and ~100–200 µm in length. They are found attached to phillipsite surfaces in veins and entombed in vein-filling carbonates. The carbon content of the filaments ranges between ~10 wt% C and 55 wt% C. They further bind to propidium iodide (PI), which is a dye that binds to damaged cell membranes and remnants of DNA. Carbon-rich globular microstructures, 1–2 µm in diameter, are also found associated with the phillipsite surfaces as well as within wedge-shaped cavities in phillipsite assemblages. The globules have a carbon content that range between ~5 wt% C and 55 wt% C and they bind to PI. Ordinary globular iron oxides found throughout the samples differ in that they contain no carbon and do not bind to the dye PI. The carbon-rich globules are mostly concentrated to a film-like structure that is attached to the phillipsite surfaces. This film has a carbon content that ranges between ~25 wt% C and 75 wt% C and partially binds to PI. EDS analyses show that the carbon in all structures described are not associated with calcium and therefore not bound in carbonates. The carbon content and the binding to PI may indicate that the filamentous structures could represent fossilized filamentous microorganisms, the globules could represent fossilized microbial cells and the film-like structures could represent a microbially produced biofilm. Our results extend the knowledge of possible habitable niches for a deep biosphere in sub-seafloor environments and suggests, as phillipsite is one of the most common zeolite mineral in volcanic rocks of the oceanic crust, that it could be a common feature in the oceanic crust elsewhere.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 78
Typ av publikation
tidskriftsartikel (64)
konferensbidrag (6)
forskningsöversikt (4)
doktorsavhandling (2)
annan publikation (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (69)
övrigt vetenskapligt/konstnärligt (8)
populärvet., debatt m.m. (1)
Författare/redaktör
Broman, Curt (76)
Ivarsson, Magnus (19)
Ivarsson, Magnus, 19 ... (15)
Drake, Henrik, 1979- (9)
Chi Fru, Ernest (9)
Holm, Nils (8)
visa fler...
Åström, Mats E., 196 ... (7)
Billström, Kjell (7)
Whitehouse, Martin (7)
Bengtson, Stefan, 19 ... (7)
Siljeström, Sandra (6)
Martinsson, Olof (5)
Sjövall, Peter (5)
Bengtson, Stefan (5)
Wanhainen, Christina (4)
Lausmaa, Jukka (4)
Marone, Federica (4)
Hogmalm, Johan, 1979 (4)
Belivanova, Veneta (4)
Callac, Nolwenn (4)
Lindgren, Paula (4)
Weihed, Pär (3)
Majka, Jaroslaw (3)
Stampanoni, Marco (3)
Sturkell, Erik, 1962 (3)
Boyce, Adrian (3)
Whitehouse, Martin J ... (2)
Bengtson, S (2)
Rattray, Jayne E. (2)
Holm, Nils G. (2)
SÖderlund, Ulf (2)
Bekker, Andrey (2)
Åström, Mats E. (2)
Bark, Glenn (2)
Pitcairn, Iain (2)
Skogby, Henrik (2)
Azer, Mokhles K. (2)
Pitcairn, Iain K. (2)
Zack, Thomas, 1968 (2)
Skelton, Alasdair (2)
Andersson, Ulf B. (2)
Mansfeld, Joakim (2)
Bach, W (2)
Drake, Henrik (2)
Fallick, Anthony E. (2)
Weihed, Pär, 1959- (2)
Årebäck, Hans (2)
Holtstam, Dan (2)
Stern, Robert J. (2)
Mohamed, Fathy H. (2)
visa färre...
Lärosäte
Stockholms universitet (65)
Naturhistoriska riksmuseet (32)
Uppsala universitet (13)
Linnéuniversitetet (10)
Göteborgs universitet (9)
Luleå tekniska universitet (7)
visa fler...
RISE (5)
Lunds universitet (2)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
Södertörns högskola (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (78)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (69)
Teknik (5)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy