SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bromme D) "

Sökning: WFRF:(Bromme D)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Wieczerzak, Ewa, et al. (författare)
  • Azapeptides structurally based upon inhibitory sites of cystatins as potent and selective inhibitors of cysteine proteases
  • 2002
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 1520-4804 .- 0022-2623. ; 45:19, s. 4202-4211
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of azapeptides as potential inhibitors of cysteine proteases were synthesized. Their structures, based on the binding center of cystatins, contain an azaglycine residue (Agly) in place of the evolutionarily conserved glycine residue in the N-terminal part of the enzyme binding region of cystatins. Incorporation of Agly should lead to deactivation of the acyl-enzyme complex formed against nucleophilic attack by water molecules in the final step of peptide bond hydrolysis. The majority of synthesized azapeptides shows high inhibitory potency toward the investigated cysteine proteases, papain, cathepsin B, and cathepsin K. One of them, Z-Arg-Leu-Val-Agly-Ile-Val-OMe (compound 17), which contains in its sequence the amino acid residues from the N-terminal binding segment as well as the hydrophobic residues from the first binding loop of human cystatin C, proved to be a highly potent and selective inhibitor of cathepsin B. It inhibits cathepsin B with a K-i value of 0.088 nM. To investigate the influence of the structure of compound 17 for its inhibitory properties, we determined its conformation by means of NMR studies and theoretical calculations. The Z-Arg-Leu-Val-Agly fragment, covalently linked to Cys29 of cathepsin B, was also developed and modeled, in the catalytic pocket of the enzyme, through a molecular dynamics approach, to analyze ligand-protein interactions in detail. Analysis of the simulation trajectories generated using the AMBER force field provided us with atomic-level understanding of the conformational variability of this inhibitor, which is discussed in the context of other experimental and theoretical data.
  •  
4.
  • Wieczerzak, E, et al. (författare)
  • Novel azapeptide inhibitors of cathepsins B and K. Structural background to increased specificity for cathepsin B
  • 2005
  • Ingår i: Journal of Peptide Research. - : Wiley. - 1397-002X .- 1399-3011. ; 66:S1, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • We have designed and synthesized a new series of azapeptides which act as potential inhibitors of cathepsin B and/or cathepsin K. Their structures are based upon the inhibitory sites of natural cysteine protease inhibitors, cystatins. For the synthesized azapeptides, the equilibrium constants for dissociation of inhibitor-enzyme complex, K-i, were determined. Comparison of these values indicated that all of the azainhibitors act much stronger toward cathepsin B. Z-Arg-Leu-His-Agly-Ile-Val-OMe (7) proved to be approximately 500 times more potent for cathepsin B than for cathepsin K. To be able to explain the obtained experimental values we used the molecular dynamics procedures to analyze the interactions between cathepsin B and compound 7. We also determined the structure of the most potent and selective cathepsin B azainhibitor by means of NMR studies and theoretical calculations. In this report, we describe SAR studies of azapeptide inhibitors indicating the influence of the conformational flexibility of the examined compounds on inhibition of cathepsins B and K.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy