SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Brouwer A. M.) "

Search: WFRF:(Brouwer A. M.)

  • Result 1-50 of 111
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Ruilope, LM, et al. (author)
  • Design and Baseline Characteristics of the Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease Trial
  • 2019
  • In: American journal of nephrology. - : S. Karger AG. - 1421-9670 .- 0250-8095. ; 50:5, s. 345-356
  • Journal article (peer-reviewed)abstract
    • <b><i>Background:</i></b> Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. <b><i>Patients and</i></b> <b><i>Methods:</i></b> The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate ≥25 mL/min/1.73 m<sup>2</sup> and albuminuria (urinary albumin-to-creatinine ratio ≥30 to ≤5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level α = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. <b><i>Conclusions:</i></b> FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049.
  •  
3.
  •  
4.
  •  
5.
  • Menden, MP, et al. (author)
  • Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 2674-
  • Journal article (peer-reviewed)abstract
    • The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
  •  
6.
  •  
7.
  • Zaborowski, AM, et al. (author)
  • Microsatellite instability in young patients with rectal cancer: molecular findings and treatment response
  • 2022
  • In: The British journal of surgery. - : Oxford University Press (OUP). - 1365-2168 .- 0007-1323. ; 109:3, s. 251-255
  • Journal article (peer-reviewed)abstract
    • In this study of 400 patients with early-onset rectal cancer, 12.5 per cent demonstrated microsatellite instability (MSI). MSI was associated with a reduced likelihood of nodal positivity, an increased rate of pathological complete response, and improved disease-specific survival.
  •  
8.
  • Ching, C. R. K., et al. (author)
  • What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group
  • 2022
  • In: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 56-82
  • Journal article (peer-reviewed)abstract
    • MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
  •  
9.
  • Hibar, Derrek P., et al. (author)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
10.
  • Satizabal, Claudia L., et al. (author)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Journal article (peer-reviewed)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
11.
  •  
12.
  •  
13.
  • Hu, H., et al. (author)
  • X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes
  • 2016
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 21:1, s. 133-148
  • Journal article (peer-reviewed)abstract
    • X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.
  •  
14.
  • Thompson, Paul M., et al. (author)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • In: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Journal article (peer-reviewed)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
15.
  • Dima, Danai, et al. (author)
  • Subcortical volumes across the lifespan : Data from 18,605 healthy individuals aged 3-90 years.
  • 2022
  • In: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 452-469
  • Journal article (peer-reviewed)abstract
    • Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
  •  
16.
  • Frangou, Sophia, et al. (author)
  • Cortical thickness across the lifespan : Data from 17,075 healthy individuals aged 3-90 years
  • 2022
  • In: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 431-451
  • Journal article (peer-reviewed)abstract
    • Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
  •  
17.
  • Laguzzi, F., et al. (author)
  • Role of Polyunsaturated Fat in Modifying Cardiovascular Risk Associated With Family History of Cardiovascular Disease : Pooled De Novo Results From 15 Observational Studies
  • 2024
  • In: Circulation. - : Wolters Kluwer. - 0009-7322 .- 1524-4539. ; 149:4, s. 305-316
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: It is unknown whether dietary intake of polyunsaturated fatty acids (PUFA) modifies the cardiovascular disease (CVD) risk associated with a family history of CVD. We assessed interactions between biomarkers of low PUFA intake and a family history in relation to long-term CVD risk in a large consortium.METHODS: Blood and tissue PUFA data from 40 885 CVD-free adults were assessed. PUFA levels ≤25th percentile were considered to reflect low intake of linoleic, alpha-linolenic, and eicosapentaenoic/docosahexaenoic acids (EPA/DHA). Family history was defined as having ≥1 first-degree relative who experienced a CVD event. Relative risks with 95% CI of CVD were estimated using Cox regression and meta-analyzed. Interactions were assessed by analyzing product terms and calculating relative excess risk due to interaction.RESULTS: After multivariable adjustments, a significant interaction between low EPA/DHA and family history was observed (product term pooled RR, 1.09 [95% CI, 1.02-1.16]; P=0.01). The pooled relative risk of CVD associated with the combined exposure to low EPA/DHA, and family history was 1.41 (95% CI, 1.30-1.54), whereas it was 1.25 (95% CI, 1.16-1.33) for family history alone and 1.06 (95% CI, 0.98-1.14) for EPA/DHA alone, compared with those with neither exposure. The relative excess risk due to interaction results indicated no interactions.CONCLUSIONS: A significant interaction between biomarkers of low EPA/DHA intake, but not the other PUFA, and a family history was observed. This novel finding might suggest a need to emphasize the benefit of consuming oily fish for individuals with a family history of CVD.
  •  
18.
  •  
19.
  • Ken-Dror, G., et al. (author)
  • Genome-Wide Association Study Identifies First Locus Associated with Susceptibility to Cerebral Venous Thrombosis
  • 2021
  • In: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 90:5, s. 777-788
  • Journal article (peer-reviewed)abstract
    • Objective Cerebral venous thrombosis (CVT) is an uncommon form of stroke affecting mostly young individuals. Although genetic factors are thought to play a role in this cerebrovascular condition, its genetic etiology is not well understood. Methods A genome-wide association study was performed to identify genetic variants influencing susceptibility to CVT. A 2-stage genome-wide study was undertaken in 882 Europeans diagnosed with CVT and 1,205 ethnicity-matched control subjects divided into discovery and independent replication datasets. Results In the overall case-control cohort, we identified highly significant associations with 37 single nucleotide polymorphisms (SNPs) within the 9q34.2 region. The strongest association was with rs8176645 (combined p = 9.15 x 10(-24); odds ratio [OR] = 2.01, 95% confidence interval [CI] = 1.76-2.31). The discovery set findings were validated across an independent European cohort. Genetic risk score for this 9q34.2 region increases CVT risk by a pooled estimate OR = 2.65 (95% CI = 2.21-3.20, p = 2.00 x 10(-16)). SNPs within this region were in strong linkage disequilibrium (LD) with coding regions of the ABO gene. The ABO blood group was determined using allele combination of SNPs rs8176746 and rs8176645. Blood groups A, B, or AB, were at 2.85 times (95% CI = 2.32-3.52, p = 2.00 x 10(-16)) increased risk of CVT compared with individuals with blood group O. Interpretation We present the first chromosomal region to robustly associate with a genetic susceptibility to CVT. This region more than doubles the likelihood of CVT, a risk greater than any previously identified thrombophilia genetic risk marker. That the identified variant is in strong LD with the coding region of the ABO gene with differences in blood group prevalence provides important new insights into the pathophysiology of CVT. ANN NEUROL 2021
  •  
20.
  • de Zwarte, Sonja M. C., et al. (author)
  • Intelligence, educational attainment, and brain structure in those at familial high-risk for schizophrenia or bipolar disorder
  • 2022
  • In: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 414-430
  • Journal article (peer-reviewed)abstract
    • First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = -0.42, p = 3 × 10-5 ), with weak evidence of IQ reductions among BD-FDRs (d = -0.23, p = .045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment.
  •  
21.
  • Ranjan, R., et al. (author)
  • Age of onset of cerebral venous thrombosis: the BEAST study
  • 2023
  • In: European Stroke Journal. - : SAGE Publications. - 2396-9873 .- 2396-9881. ; 8:1, s. 344-350
  • Journal article (peer-reviewed)abstract
    • Background: Cerebral venous thrombosis (CVT) is an uncommon cause of stroke in young adults. We aimed to determine the impact of age, gender and risk factors (including sex-specific) on CVT onset. Methods: We used data from the BEAST (Biorepository to Establish the Aetiology of Sinovenous Thrombosis), a multicentre multinational prospective observational study on CVT. Composite factors analysis (CFA) was performed to determine the impact on the age of CVT onset in males and females. Results: A total of 1309 CVT patients (75.3% females) aged > 18 years were recruited. The overall median (IQR-interquartile range) age for males and females was 46 (35-58) years and 37 (28-47) years (p < 0.001), respectively. However, the presence of antibiotic-requiring sepsis (p = 0.03, 95% CI 27-47 years) among males and gender-specific risk factors like pregnancy (p < 0.001, 95% CI 29-34 years), puerperium (p < 0.001, 95% CI 26-34 years) and oral contraceptive use (p < 0.001, 95% CI 33-36 years) were significantly associated with earlier onset of CVT among females. CFA demonstrated a significantly earlier onset of CVT in females, similar to 12 years younger, in those with multiple (> 1) compared to '0' risk factors (p < 0.001, 95% CI 32-35 years). Conclusions: Women suffer CVT 9 years earlier in comparison to men. Female patients with multiple (> 1) risk factors suffer CVT similar to 12 years earlier compared to those with no identifiable risk factors.
  •  
22.
  • Sønderby, Ida E., et al. (author)
  • 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans
  • 2021
  • In: Translational Psychiatry. - : Nature Publishing Group. - 2158-3188. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers-the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function.
  •  
23.
  • de Zwarte, Sonja M. C., et al. (author)
  • The association between familial risk and brain abnormalities is disease specific : an ENIGMA-relatives study of schizophrenia and bipolar disorder
  • 2019
  • In: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 86:7, s. 545-556
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Schizophrenia and bipolar disorder share genetic liability, and some structural brain abnormalities are common to both conditions. First-degree relatives of patients with schizophrenia (FDRs-SZ) show similar brain abnormalities to patients, albeit with smaller effect sizes. Imaging findings in first-degree relatives of patients with bipolar disorder (FDRs-BD) have been inconsistent in the past, but recent studies report regionally greater volumes compared with control subjects.METHODS: We performed a meta-analysis of global and subcortical brain measures of 6008 individuals (1228 FDRs-SZ, 852 FDRs-BD, 2246 control subjects, 1016 patients with schizophrenia, 666 patients with bipolar disorder) from 34 schizophrenia and/or bipolar disorder family cohorts with standardized methods. Analyses were repeated with a correction for intracranial volume (ICV) and for the presence of any psychopathology in the relatives and control subjects.RESULTS: FDRs-BD had significantly larger ICV (d = +0.16, q < .05 corrected), whereas FDRs-SZ showed smaller thalamic volumes than control subjects (d = -0.12, q < .05 corrected). ICV explained the enlargements in the brain measures in FDRs-BD. In FDRs-SZ, after correction for ICV, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, and thalamus volumes were significantly smaller; the cortex was thinner (d < -0.09, q < .05 corrected); and third ventricle was larger (d = +0.15, q < .05 corrected). The findings were not explained by psychopathology in the relatives or control subjects.CONCLUSIONS: Despite shared genetic liability, FDRs-SZ and FDRs-BD show a differential pattern of structural brain abnormalities, specifically a divergent effect in ICV. This may imply that the neurodevelopmental trajectories leading to brain anomalies in schizophrenia or bipolar disorder are distinct.
  •  
24.
  • van der Meer, Dennis, et al. (author)
  • Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition
  • 2020
  • In: JAMA psychiatry. - : American Medical Association (AMA). - 2168-6238 .- 2168-622X. ; 77:4, s. 420-430
  • Journal article (peer-reviewed)abstract
    • Importance: Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities.Objective: To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance.Design, Setting, and Participants: In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019.Main Outcomes and Measures: The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort.Results: Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = -0.41; SE, 0.08; P = 4.9 × 10-8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10-7), and a smaller nucleus accumbens (Cohen d = -0.27; SE, 0.07; P = 7.3 × 10-5). There was also a significant negative dose response on cortical thickness (β = -0.24; SE, 0.05; P = 6.8 × 10-7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks.Conclusions and Relevance: These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders.
  •  
25.
  • Wierenga, Lara M., et al. (author)
  • Greater male than female variability in regional brain structure across the lifespan
  • 2022
  • In: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 470-499
  • Journal article (peer-reviewed)abstract
    • For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
  •  
26.
  •  
27.
  • Maas, R. R., et al. (author)
  • Progressive deafness–dystonia due to SERAC1 mutations: A study of 67 cases
  • 2017
  • In: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 82:6, s. 1004-1015
  • Journal article (peer-reviewed)abstract
    • Objective: 3-Methylglutaconic aciduria, dystonia–deafness, hepatopathy, encephalopathy, Leigh-like syndrome (MEGDHEL) syndrome is caused by biallelic variants in SERAC1. Methods: This multicenter study addressed the course of disease for each organ system. Metabolic, neuroradiological, and genetic findings are reported. Results: Sixty-seven individuals (39 previously unreported) from 59 families were included (age range = 5 days–33.4 years, median age = 9 years). A total of 41 different SERAC1 variants were identified, including 20 that have not been reported before. With the exception of 2 families with a milder phenotype, all affected individuals showed a strikingly homogeneous phenotype and time course. Severe, reversible neonatal liver dysfunction and hypoglycemia were seen in >40% of all cases. Starting at a median age of 6 months, muscular hypotonia (91%) was seen, followed by progressive spasticity (82%, median onset = 15 months) and dystonia (82%, 18 months). The majority of affected individuals never learned to walk (68%). Seventy-nine percent suffered hearing loss, 58% never learned to speak, and nearly all had significant intellectual disability (88%). Magnetic resonance imaging features were accordingly homogenous, with bilateral basal ganglia involvement (98%); the characteristic “putaminal eye” was seen in 53%. The urinary marker 3-methylglutaconic aciduria was present in virtually all patients (98%). Supportive treatment focused on spasticity and drooling, and was effective in the individuals treated; hearing aids or cochlear implants did not improve communication skills. Interpretation: MEGDHEL syndrome is a progressive deafness–dystonia syndrome with frequent and reversible neonatal liver involvement and a strikingly homogenous course of disease. Ann Neurol 2017;82:1004–1015. © 2017 American Neurological Association
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  • Sonderby, Ida E., et al. (author)
  • Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia
  • 2020
  • In: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 25:3, s. 584-602
  • Journal article (peer-reviewed)abstract
    • Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = −0.71 to −1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = −0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10−6, 1.7 × 10−9, 3.5 × 10−12 and 1.0 × 10−4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.
  •  
33.
  • Thompson, PM, et al. (author)
  • ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries
  • 2020
  • In: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 10:1, s. 100-
  • Journal article (peer-reviewed)abstract
    • This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of “big data” (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA’s activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors.
  •  
34.
  • Chioza, B., et al. (author)
  • Evaluation of CACNA1H in European patients with childhood absence epilepsy
  • 2006
  • In: Epilepsy Res. - : Elsevier BV. - 0920-1211. ; 69:2, s. 177-81
  • Journal article (peer-reviewed)abstract
    • CACNA1H was evaluated in a resource of Caucasian European patients with childhood absence epilepsy by linkage analysis and typing of sequence variants previously identified in Chinese patients. Linkage analysis of 44 pedigrees provided no evidence for a locus in the CACNA1H region and none of the Chinese variants were found in 220 unrelated patients.
  •  
35.
  • Everett, K. V., et al. (author)
  • Linkage and association analysis of CACNG3 in childhood absence epilepsy
  • 2007
  • In: Eur J Hum Genet. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 15:4, s. 463-72
  • Journal article (peer-reviewed)abstract
    • Childhood absence epilepsy (CAE) is an idiopathic generalised epilepsy characterised by absence seizures manifested by transitory loss of awareness with 2.5-4 Hz spike-wave complexes on ictal EEG. A genetic component to aetiology is established but the mechanism of inheritance and the genes involved are not fully defined. Available evidence suggests that genes encoding brain expressed voltage-gated calcium channels, including CACNG3 on chromosome 16p12-p13.1, may represent susceptibility loci for CAE. The aim of this work was to further evaluate CACNG3 as a susceptibility locus by linkage and association analysis. Assuming locus heterogeneity, a significant HLOD score (HLOD = 3.54, alpha = 0.62) was obtained for markers encompassing CACNG3 in 65 nuclear families with a proband with CAE. The maximum non-parametric linkage score was 2.87 (P < 0.002). Re-sequencing of the coding exons in 59 patients did not identify any putative causal variants. A linkage disequilibrium (LD) map of CACNG3 was constructed using 23 single nucleotide polymorphisms (SNPs). Transmission disequilibrium was sought using individual SNPs and SNP-based haplotypes with the pedigree disequilibrium test in 217 CAE trios and the 65 nuclear pedigrees. Evidence for transmission disequilibrium (P < or = 0.01) was found for SNPs within a approximately 35 kb region of high LD encompassing the 5'UTR, exon 1 and part of intron 1 of CACNG3. Re-sequencing of this interval was undertaken in 24 affected individuals. Seventy-two variants were identified: 45 upstream; two 5'UTR; and 25 intronic SNPs. No coding sequence variants were identified, although four variants are predicted to affect exonic splicing. This evidence supports CACNG3 as a susceptibility locus in a subset of CAE patients.
  •  
36.
  • Knevel, R., et al. (author)
  • A genetic variant in granzyme B is associated with progression of joint destruction in rheumatoid arthritis
  • 2013
  • In: Arthritis and Rheumatism. - : Wiley. - 1529-0131 .- 0004-3591. ; 65:3, s. 582-589
  • Journal article (peer-reviewed)abstract
    • Objective Genetic factors account for an estimated 4558% of the variance in joint destruction in rheumatoid arthritis (RA). The serine proteinase granzyme B induces target cell apoptosis, and several in vitro studies suggest that granzyme B is involved in apoptosis of chondrocytes. Serum levels of granzyme B are increased in RA and are also associated with radiographic erosions. The aim of this study was to investigate GZMB as a candidate gene accounting for the severity of joint destruction in RA. Methods A total of 1,418 patients with 4,885 radiograph sets of the hands and feet from 4 independent cohorts were studied. First, explorative analyses were performed in 600 RA patients in the Leiden Early Arthritis Clinic cohort. Fifteen single-nucleotide polymorphisms (SNPs) tagging GZMB were tested. Significantly associated SNPs were genotyped in data sets representing patients from the Groningen, Sheffield, and Lund cohorts. In each data set, the relative increase in the annual rate of progression in the presence of a genotype was assessed. Data were summarized in a meta-analysis. The association of GZMB with the RNA expression level of the GZMB genomic region was tested by mapping expression quantitative trait loci (QTLs) on 1,469 whole blood samples. Results SNP rs8192916 was significantly associated with the rate of joint destruction in the first cohort and in the meta-analysis of all data sets. Patients homozygous for the minor allele of rs8192916 had a higher rate of joint destruction per year compared with other patients (P = 7.8 x 104). Expression QTL of GZMB identified higher expression in the presence of the minor allele of rs8192916 (P = 2.27 x 105). Conclusion SNP rs8192916 located in GZMB is associated with the progression of joint destruction in RA as well as with RNA expression in whole blood.
  •  
37.
  •  
38.
  •  
39.
  • Marklund, Matti, et al. (author)
  • Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular Disease and Mortality : An Individual-Level Pooled Analysis of 30 Cohort Studies
  • 2019
  • In: Circulation. - : American Heart Association. - 0009-7322 .- 1524-4539. ; 139:21, s. 2422-2436
  • Journal article (peer-reviewed)abstract
    • Background:Global dietary recommendations for and cardiovascular effects of linoleic acid, the major dietary omega-6 fatty acid, and its major metabolite, arachidonic acid, remain controversial. To address this uncertainty and inform international recommendations, we evaluated how in vivo circulating and tissue levels of linoleic acid (LA) and arachidonic acid (AA) relate to incident cardiovascular disease (CVD) across multiple international studies.Methods:We performed harmonized, de novo, individual-level analyses in a global consortium of 30 prospective observational studies from 13 countries. Multivariable-adjusted associations of circulating and adipose tissue LA and AA biomarkers with incident total CVD and subtypes (coronary heart disease, ischemic stroke, cardiovascular mortality) were investigated according to a prespecified analytic plan. Levels of LA and AA, measured as the percentage of total fatty acids, were evaluated linearly according to their interquintile range (ie, the range between the midpoint of the first and fifth quintiles), and categorically by quintiles. Study-specific results were pooled using inverse-variance-weighted meta-analysis. Heterogeneity was explored by age, sex, race, diabetes mellitus, statin use, aspirin use, omega-3 levels, and fatty acid desaturase 1 genotype (when available).Results:In 30 prospective studies with medians of follow-up ranging 2.5 to 31.9 years, 15198 incident cardiovascular events occurred among 68659 participants. Higher levels of LA were significantly associated with lower risks of total CVD, cardiovascular mortality, and ischemic stroke, with hazard ratios per interquintile range of 0.93 (95% CI, 0.88-0.99), 0.78 (0.70-0.85), and 0.88 (0.79-0.98), respectively, and nonsignificantly with lower coronary heart disease risk (0.94; 0.88-1.00). Relationships were similar for LA evaluated across quintiles. AA levels were not associated with higher risk of cardiovascular outcomes; in a comparison of extreme quintiles, higher levels were associated with lower risk of total CVD (0.92; 0.86-0.99). No consistent heterogeneity by population subgroups was identified in the observed relationships.Conclusions:In pooled global analyses, higher in vivo circulating and tissue levels of LA and possibly AA were associated with lower risk of major cardiovascular events. These results support a favorable role for LA in CVD prevention.
  •  
40.
  •  
41.
  • Clarke, Robert, et al. (author)
  • Lowering blood homocysteine with folic acid based supplements : Meta-analysis of randomised trials
  • 1998
  • In: British Medical Journal. - : BMJ. - 0959-8146. ; 316:7135, s. 894-898
  • Research review (peer-reviewed)abstract
    • Objective: To determine the size of reduction in homocysteine concentrations produced by dietary supplementation with folic acid and with vitamins B-12 or B-6. Design: Meta-analysis of randomised controlled trials that assessed the effects of folic acid based supplements on blood homocysteine concentration. Multivariate regression analysis was used to determine the effects on homocysteine concentrations of different doses of folic acid and of the addition of vitamin B-12 or B-6. Subjects: Individual data on 1114 people included in 12 trials. Findings: The proportional and absolute reductions in blood homocysteine produced by folic acid supplements were greater at higher pretreatment blood homocysteine concentrations (P < 0.001) and at lower pretreatment blood folate concentrations (P < 0.001). After standardisation to pretreatment blood concentrations of homocysteine of 12 μmol/l and of folate of 12 nmol/l (approximate average concentrations for Western populations), dietary folic acid reduced blood homocysteine concentrations by 25% (95% confidence interval 23% to 28%; P < 0.001), with similar effects in the range of 0.5-5 mg folic acid daily. Vitamin B-12 (mean 0.5 mg daily) produced an additional 7% (3% to 10%) reduction in blood homocysteine. Vitamin B-6 (mean 16.5 mg daily) did not have a significant additional effect. Conclusions: Typically in Western populations, daily supplementation with both 0.5-5 mg folic acid and about 0.5 mg vitamin B-12 would be expected to reduce blood homocysteine concentrations by about a quarter to a third (for example, from about 12 μmol/l to 8-9 μmol/l). Large scale randomised trials of such regimens in high risk populations are now needed to determine whether lowering blood homocysteine concentrations reduces the risk of vascular disease.
  •  
42.
  • Reinders, I., et al. (author)
  • Effectiveness and cost-effectiveness of personalised dietary advice aiming at increasing protein intake on physical functioning in community-dwelling older adults with lower habitual protein intake: rationale and design of the PROMISS randomised controlled trial
  • 2020
  • In: BMJ Open. - : BMJ. - 2044-6055. ; 10:11
  • Journal article (peer-reviewed)abstract
    • Introduction Short-term metabolic and observational studies suggest that protein intake above the recommended dietary allowance of 0.83 g/kg body weight (BW)/day may support preservation of lean body mass and physical function in old age, but evidence from randomised controlled trials is inconclusive. Methods and analysis The PRevention Of Malnutrition In Senior Subjects in the EU (PROMISS) trial examines the effect of personalised dietary advice aiming at increasing protein intake with or without advice regarding timing of protein intake to close proximity of usual physical activity, on change in physical functioning after 6 months among community-dwelling older adults (>= 65 years) with a habitual protein intake of <1.0 g/kg adjusted (a)BW/day. Participants (n=264) will be recruited in Finland and the Netherlands, and will be randomised into three groups; two intervention groups and one control group. Intervention group 1 (n=88) receives personalised dietary advice and protein-enriched food products in order to increase their protein intake to at least 1.2 g/kg aBW/day. Intervention group 2 (n=88) receives the same advice as described for intervention group 1, and in addition advice to consume 7.5-10 g protein through protein-(en)rich(ed) foods within half an hour after performing usual physical activity. The control group (n=88) receives no intervention. All participants will be invited to attend lectures not related to health. The primary outcome is a 6-month change in physical functioning measured by change in walk time using a 400 m walk test. Secondary outcomes are: 6-month change in the Short Physical Performance Battery score, muscle strength, body composition, self-reported mobility limitations, quality of life, incidence of frailty, incidence of sarcopenia risk and incidence of malnutrition. We also investigate cost-effectiveness by change in healthcare costs. Discussion The PROMISS trial will provide evidence whether increasing protein intake, and additionally optimising the timing of protein intake, has a positive effect on the course of physical functioning after 6 months among community-dwelling older adults with a habitual protein intake of Ethics and dissemination The study has been approved by the Ethics Committee of the Helsinki University Central Hospital, Finland (ID of the approval: HUS/1530/2018) and The Medical Ethical Committee of the Amsterdam UMC, location VUmc, Amsterdam, the Netherlands (ID of the approval: 2018.399). All participants provided written informed consent prior to being enrolled onto the study. Results will be submitted for publication in peer-reviewed journals and will be made available to stakeholders (ie, older adults, healthcare professionals and industry).
  •  
43.
  •  
44.
  •  
45.
  • Abé, Christoph, et al. (author)
  • Longitudinal Structural Brain Changes in Bipolar Disorder: A Multicenter Neuroimaging Study of 1232 Individuals by the ENIGMA Bipolar Disorder Working Group.
  • 2022
  • In: Biological psychiatry. - : Elsevier BV. - 1873-2402 .- 0006-3223. ; 91:6, s. 582-592
  • Journal article (peer-reviewed)abstract
    • Bipolar disorder (BD) is associated with cortical and subcortical structural brain abnormalities. It is unclear whether such alterations progressively change over time, and how this is related to the number of mood episodes. To address this question, we analyzed a large and diverse international sample with longitudinal magnetic resonance imaging (MRI) and clinical data to examine structural brain changes over time in BD.Longitudinal structural MRI and clinical data from the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) BD Working Group, including 307 patients with BD and 925 healthy control subjects, were collected from 14 sites worldwide. Male and female participants, aged 40 ± 17 years, underwent MRI at 2 time points. Cortical thickness, surface area, and subcortical volumes were estimated using FreeSurfer. Annualized change rates for each imaging phenotype were compared between patients with BD and healthy control subjects. Within patients, we related brain change rates to the number of mood episodes between time points and tested for effects of demographic and clinical variables.Compared with healthy control subjects, patients with BD showed faster enlargement of ventricular volumes and slower thinning of the fusiform and parahippocampal cortex (0.18
  •  
46.
  •  
47.
  •  
48.
  • Knevel, R., et al. (author)
  • Genetic variants in IL15 associate with progression of joint destruction in rheumatoid arthritis: a multicohort study
  • 2012
  • In: Annals of the Rheumatic Diseases. - : BMJ. - 1468-2060 .- 0003-4967. ; 71:10, s. 1651-1657
  • Journal article (peer-reviewed)abstract
    • Background Interleukin (IL)-15 levels are increased in serum, synovium and bone marrow of patients with rheumatoid arthritis (RA). IL-15 influences both the innate and the adaptive immune response; its major role is activation and proliferation of T cells. There are also emerging data that IL-15 affects osteoclastogenesis. The authors investigated the association of genetic variants in IL15 with the rate of joint destruction in RA. Method 1418 patients with 4885 x-ray sets of both hands and feet of four independent data sets were studied. First, explorative analyses were performed on 600 patients with early RA enrolled in the Leiden Early Arthritis Clinic. Twenty-five single-nucleotide polymorphisms (SNPs) tagging IL-15 were tested. Second, SNPs with significant associations in the explorative phase were genotyped in data sets from Groningen, Sheffield and Lund. In each data set, the relative increase of the progression rate per year in the presence of a genotype was assessed. Subsequently, data were summarised in an inverse weighting meta-analysis. Results Five SNPs were significantly associated with rate of joint destruction in phase 1 and typed in the other data sets. Patients homozygous for rs7667746, rs7665842, rs2322182, rs6821171 and rs4371699 had respectively 0.94-, 1.04-, 1.09-, 1.09- and 1.09- fold rate of joint destruction compared to other patients (p = 4.0x10(-6), p = 3.8x10(-4), p = 5.0x10(-3), p = 5.0x10(-3) and p = 9.4x10(-3)). Discussion Independent replication was not obtained, possibly due to insufficient power. Meta-analyses of all data sets combined resulted in significant results for four SNPs (rs7667746, p < 0.001; rs7665842, p < 0.001; rs4371699, p = 0.01; rs6821171, p = 0.01). These SNPs were also significant after correction for multiple testing. Conclusion Genetic variants in IL-15 are associated with progression of joint destruction in RA.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 111
Type of publication
journal article (102)
conference paper (6)
research review (1)
book chapter (1)
Type of content
peer-reviewed (100)
other academic/artistic (10)
Author/Editor
Agartz, Ingrid (12)
Brouwer, Rachel M (12)
Andreassen, Ole A (12)
Soderman, M (12)
Ching, Christopher R ... (11)
Thompson, Paul M (11)
show more...
Jahanshad, Neda (11)
Westlye, Lars T (10)
Brouwer, PA (10)
Andersson, Micael (9)
de Geus, Eco J. C. (9)
Martin, Nicholas G. (9)
Boomsma, Dorret I. (9)
Wittfeld, Katharina (9)
de Zubicaray, Greig ... (9)
Schmidt, H. (8)
Agartz, I (8)
Cannon, Dara M (8)
McDonald, Colm (8)
Jahanshad, N (8)
Marklund, Matti (8)
Meyer-Lindenberg, An ... (8)
Schofield, Peter R (8)
Heinz, Andreas (8)
Crespo-Facorro, Bene ... (8)
Tordesillas-Gutierre ... (8)
Sachdev, Perminder S ... (8)
Wright, Margaret J. (8)
Schumann, Gunter (8)
Brodaty, Henry (8)
Franke, Barbara (7)
Andersson, T. (7)
Thompson, PM (7)
Desrivieres, S (7)
Ehrlich, S (7)
Teumer, A (7)
Whelan, CD (7)
Brouwer, RM (7)
Crespo-Facorro, B (7)
Donohoe, G (7)
Gudnason, V (7)
Van Haren, NEM (7)
Walter, H (7)
Schumann, G (7)
Franke, B (7)
Risérus, Ulf, 1967- (7)
Nyberg, Lars, 1966- (7)
Gudnason, Vilmundur (7)
Stein, Dan J (7)
Medland, Sarah E (7)
show less...
University
Karolinska Institutet (75)
Uppsala University (24)
Umeå University (14)
University of Gothenburg (11)
Lund University (11)
Royal Institute of Technology (3)
show more...
Stockholm University (2)
Chalmers University of Technology (2)
Örebro University (1)
Linköping University (1)
Jönköping University (1)
Linnaeus University (1)
Högskolan Dalarna (1)
show less...
Language
English (111)
Research subject (UKÄ/SCB)
Medical and Health Sciences (51)
Natural sciences (6)
Social Sciences (3)
Engineering and Technology (1)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view