SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bruno Maribel) "

Sökning: WFRF:(Bruno Maribel)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Ge, Yue, et al. (författare)
  • Environmental OMICS: Current Status and Future Directions
  • 2013
  • Ingår i: JOURNAL OF INTEGRATED OMICS. - : Proteomass Scientific Society. - 2182-0287. ; 3:2, s. 75-87
  • Tidskriftsartikel (refereegranskat)abstract
    • Applications of OMICS to high throughput studies of changes of genes, RNAs, proteins, metabolites, and their associated functionsin cells or organisms exposed to environmental chemicals has led to the emergence of a very active research field: environmental OMICS.This developing field holds an important key for improving the scientific basis for understanding the potential impacts of environmentalchemicals on both health and the environment. Here we describe the state of environmental OMICS with an emphasis on its recent accomplishmentsand its problems and potential solutions to facilitate the incorporation of OMICS into mainstream environmental and healthresearch.Data sources: We reviewed relevant and recently published studies on the applicability and usefulness of OMICS technologies to the identificationof toxicity pathways, mechanisms, and biomarkers of environmental chemicals for environmental and health risk monitoring andassessment, including recent presentations and discussions on these issues at The First International Conference on Environmental OMICS(ICEO), held in Guangzhou, China during November 8-12, 2011. This paper summarizes our review.Synthesis: Environmental OMICS aims to take advantage of powerful genomics, transcriptomics, proteomics, and metabolomics tools toidentify novel toxicity pathways/signatures/biomarkers so as to better understand toxicity mechanisms/modes of action, to identify/categorize/prioritize/screen environmental chemicals, and to monitor and predict the risks associated with exposure to environmental chemicalson human health and the environment. To improve the field, some lessons learned from previous studies need to be summarized, aresearch agenda and guidelines for future studies need to be established, and a focus for the field needs to be developed.Conclusions: OMICS technologies for identification of RNA, protein, and metabolic profiles and endpoints have already significantly improvedour understanding of how environmental chemicals affect our ecosystem and human health. OMICS breakthroughs are empoweringthe fields of environmental toxicology, chemical toxicity characterization, and health risk assessment. However, environmental OMICS is stillin the data generation and collection stage. Important data gaps in linking and/or integrating toxicity data with OMICS endpoints/profilesneed to be filled to enable understanding of the potential impacts of chemicals on human health and the environment. It is expected thatfuture environmental OMICS will focus more on real environmental issues and challenges such as the characterization of chemical mixturetoxicity, the identification of environmental and health biomarkers, and the development of innovative environmental OMICS approachesand assays. These innovative approaches and assays will inform chemical toxicity testing and prediction, ecological and health risk monitoringand assessment, and natural resource utilization in ways that maintain human health and protects the environment in a sustainable manner.
  •  
3.
  • Moraes, Gustavo Hermínio Salati Marcondes de, et al. (författare)
  • An inquiry into the linkages between university ecosystem and students’ entrepreneurial intention and self-efficacy
  • 2023
  • Ingår i: Innovations in Education and Teaching International. - : Informa UK Limited. - 1470-3297 .- 1470-3300. ; 60:1, s. 134-145
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this article is to evaluate the impact of university ecosystems on entrepreneurial intention and self-efficacy of Brazilian undergraduate students. The empirical exercise relies on Structural Equations Modelling based on data of 468 students from 70 universities across the country. Results indicate that traditional approaches to foment entrepreneurship are less effective than nurturing linkages between universities and the broader entrepreneurial ecosystem, and that private universities are more effective in promoting entrepreneurial behaviour. From a practical standpoint, our assessment suggests the need for universities to approach entrepreneurial education in a more flexible way, fostering interactions with businesses.
  •  
4.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (4)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Diaz, Sandra (1)
Kelly, Daniel (1)
Bengtsson-Palme, Joh ... (1)
Ostonen, Ivika (1)
Tedersoo, Leho (1)
Nilsson, Henrik (1)
visa fler...
Bond-Lamberty, Ben (1)
Kelly, Ryan (1)
Li, Ying (1)
Moore, Matthew D. (1)
Liu, Fang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Kahan, Thomas (1)
Moretti, Marco (1)
Wang, Feng (1)
Verheyen, Kris (1)
Graae, Bente Jessen (1)
Sörelius, Karl, 1981 ... (1)
Batra, Jyotsna (1)
Roobol, Monique J (1)
Backman, Lars (1)
Yan, Hong (1)
Schmidt, Axel (1)
Lorkowski, Stefan (1)
Thrift, Amanda G. (1)
Zhang, Wei (1)
Hammerschmidt, Sven (1)
Patil, Chandrashekha ... (1)
Wang, Jun (1)
Pollesello, Piero (1)
Conesa, Ana (1)
El-Esawi, Mohamed A. (1)
Isaac, Marney (1)
Zhang, Weijia (1)
Lewis, Simon L. (1)
Zieminska, Kasia (1)
Phillips, Oliver L. (1)
Jackson, Robert B. (1)
Reichstein, Markus (1)
Li, Jian (1)
Marinello, Francesco (1)
Frilander, Mikko J. (1)
Wei, Pan (1)
Badie, Christophe (1)
Hickler, Thomas (1)
visa färre...
Lärosäte
Göteborgs universitet (2)
Stockholms universitet (2)
Lunds universitet (2)
Uppsala universitet (1)
Högskolan i Halmstad (1)
Linköpings universitet (1)
visa fler...
Chalmers tekniska högskola (1)
Karlstads universitet (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (3)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy