SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brus Jiri) "

Sökning: WFRF:(Brus Jiri)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mahun, Andrii, et al. (författare)
  • Reconstructing Reliable Powder Patterns from Spikelets (Q)CPMG NMR Spectra : Simplification of UWNMR Crystallography Analysis
  • 2021
  • Ingår i: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 26:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Spikelets NMR spectra are very popular as they enable the shortening of experimental time and give the possibility to obtain required NMR parameters for nuclei with ultrawide NMR patterns. Unfortunately, these resulted ssNMR spectra cannot be fitted directly in common software. For this reason, we developed UWNMRSpectralShape (USS) software which transforms spikelets NMR patterns into single continuous lines. Subsequently, these reconstructed spectral envelopes of the (Q)CPMG spikelets patterns can be loaded into common NMR software and automatically fitted, independently of experimental settings. This allows the quadrupole and chemical shift parameters to be accurately determined. Moreover, it makes fitting of spikelets NMR spectra exact, fast and straightforward.
  •  
2.
  • Chen, Haiyang, et al. (författare)
  • A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents
  • 2021
  • Ingår i: Nature Energy. - : NATURE PORTFOLIO. - 2058-7546. ; 6:11, s. 1045-1053
  • Tidskriftsartikel (refereegranskat)abstract
    • The power conversion efficiencies (PCEs) of laboratory-sized organic solar cells (OSCs), usually processed from low-boiling-point and toxic solvents, have reached high values of over 18%. However, there is usually a notable drop of the PCEs when green solvents are used, limiting practical development of OSCs. Herein, we obtain certificated PCEs over 17% in OSCs processed from a green solvent paraxylene (PX) by a guest-assisted assembly strategy, where a third component (guest) is employed to manipulate the molecular interaction of the binary blend. In addition, the high-boiling-point green solvent PX also enables us to deposit a uniform large-area module (36 cm(2)) with a high efficiency of over 14%. The strong molecular interaction between the host and guest molecules also enhances the operational stability of the devices. Our guest-assisted assembly strategy provides a unique approach to develop large-area and high-efficiency OSCs processed from green solvents, paving the way for industrial development of OSCs. Organic solar cells processed from green solvents are easier to implement in manufacturing yet their efficiency is low. Chen et al. devise a guest molecule to improve the molecular packing, enabling devices with over 17% efficiency.
  •  
3.
  •  
4.
  • Ji, Fuxiang, et al. (författare)
  • Near-Infrared Light-Responsive Cu-Doped Cs2AgBiBr6
  • 2020
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 30:51
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead-free halide double perovskites (A(2)B(I)B(III)X(6)) with attractive optical and electronic features are considered to be a promising candidate to overcome the toxicity and stability issues of lead halide perovskites (APbX(3)). However, their poor absorption profiles limit device performance. Here the absorption band edge of Cs(2)AgBiBr(6)double perovskite to the near-infrared range is significantly broadened by developing doped double perovskites, Cs-2(Ag:Cu)BiBr6. The partial replacement of Ag ions by Cu ions in the crystal lattice is confirmed by the X-ray photoelectron spectroscopy (XPS) and solid-state nuclear magnetic resonance (ssNMR) measurements. Cu doping barely affects the bandgap of Cs2AgBiBr6; instead it introduces subbandgap states with strong absorption to the near-infrared range. More interestingly, the near-infrared absorption can generate band carriers upon excitation, as indicated by the photoconductivity measurement. This work sheds new light on the absorption modulation of halide double perovskites for future efficient optoelectronic devices.
  •  
5.
  • Ji, Fuxiang, et al. (författare)
  • The atomic-level structure of bandgap engineered double perovskite alloys Cs2AgIn1-xFexCl6
  • 2021
  • Ingår i: Chemical Science. - : Royal Society of Chemistry. - 2041-6520 .- 2041-6539. ; 12:5, s. 1730-1735
  • Tidskriftsartikel (refereegranskat)abstract
    • Although lead-free halide double perovskites are considered as promising alternatives to lead halide perovskites for optoelectronic applications, state-of-the-art double perovskites are limited by their large bandgap. The doping/alloying strategy, key to bandgap engineering in traditional semiconductors, has also been employed to tune the bandgap of halide double perovskites. However, this strategy has yet to generate new double perovskites with suitable bandgaps for practical applications, partially due to the lack of fundamental understanding of how the doping/alloying affects the atomic-level structure. Here, we take the benchmark double perovskite Cs2AgInCl6 as an example to reveal the atomic-level structure of double perovskite alloys (DPAs) Cs2AgIn1-xFexCl6 (x = 0-1) by employing solid-state nuclear magnetic resonance (ssNMR). The presence of paramagnetic alloying ions (e.g. Fe3+ in this case) in double perovskites makes it possible to investigate the nuclear relaxation times, providing a straightforward approach to understand the distribution of paramagnetic alloying ions. Our results indicate that paramagnetic Fe3+ replaces diamagnetic In3+ in the Cs2AgInCl6 lattice with the formation of [FeCl6](3-)center dot[AgCl6](5-) domains, which show different sizes and distribution modes in different alloying ratios. This work provides new insights into the atomic-level structure of bandgap engineered DPAs, which is of critical significance in developing efficient optoelectronic/spintronic devices.
  •  
6.
  • Kuang, Chaoyang, et al. (författare)
  • Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes
  • 2021
  • Ingår i: Joule. - : Cell Press. - 2542-4351. ; 5:3, s. 618-630
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite rapid improvements in efficiency and brightness of perovskite light-emitting diodes (PeLEDs), the poor operational stability remains a critical challenge hindering their practical applications. Here, we demonstrate greatly improved operational stability of high-efficiency PeLEDs, enabled by incorporating dicarboxylic acids into the precursor for perovskite depositions. We reveal that the dicarboxylic acids efficiently eliminate reactive organic ingredients in perovskite emissive layers through an in situ amidation process, which is catalyzed by the alkaline zinc oxide substrate. The formed stable amides prohibit detrimental reactions between the perovskites and the charge injection layer underneath, stabilizing the perovskites and the interfacial contacts and ensuring the excellent operational stability of the resulting PeLEDs. Through rationally optimizing the amidation reaction in the perovskite emissive layers, we achieve efficient PeLEDs with a peak external quantum efficiency of 18.6% and a long half-life time of 682 h at 20 mA cm(-2), presenting an important breakthrough in PeLEDs.
  •  
7.
  • Ning, Weihua, et al. (författare)
  • Magnetizing lead-free halide double perovskites
  • 2020
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 6:45
  • Tidskriftsartikel (refereegranskat)abstract
    • Spintronics holds great potential for next-generation high-speed and low-power consumption information technology. Recently, lead halide perovskites (LHPs), which have gained great success in optoelectronics, also show interesting magnetic properties. However, the spin-related properties in LHPs originate from the spin-orbit coupling of Pb, limiting further development of these materials in spintronics. Here, we demonstrate a new generation of halide perovskites, by alloying magnetic elements into optoelectronic double perovskites, which provide rich chemical and structural diversities to host different magnetic elements. In our iron-alloyed double perovskite, Cs2Ag(Bi:Fe)Br-6, Fe3+ replaces Bi3+ and forms FeBr6 clusters that homogenously distribute throughout the double perovskite crystals. We observe a strong temperature-dependent magnetic response at temperatures below 30 K, which is tentatively attributed to a weak ferromagnetic or antiferromagnetic response from localized regions. We anticipate that this work will stimulate future efforts in exploring this simple yet efficient approach to develop new spintronic materials based on lead-free double perovskites.
  •  
8.
  • Nkosi, Funeka P., et al. (författare)
  • Garnet-Poly(epsilon-caprolactone-co-trimethylene carbonate) Polymer-in-Ceramic Composite Electrolyte for All-Solid-State Lithium-Ion Batteries
  • 2021
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 4:3, s. 2531-2542
  • Tidskriftsartikel (refereegranskat)abstract
    • A composite electrolyte based on a garnet electrolyte (LLZO) and polyester-based co-polymer (80:20 epsilon-caprolactone (CL)-trimethylene carbonate, PCL-PTMC with LiTFSI salt) is prepared. Integrating the merits of both ceramic and co-polymer electrolytes is expected to address the poor ionic conductivity and high interfacial resistance in solid-state lithium-ion batteries. The composite electrolyte with 80 wt % LLZO and 20 wt % polymer (PCL-PTMC and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) at 72:28 wt %) exhibited a Li-ion conductivity of 1.31 X 10(-4) S/cm and a transference number (t(Li+)) of 0.84 at 60 degrees C, notably higher than those of the pristine PCL-PTMC electrolyte. The prepared composite electrolyte also exhibited an electrochemical stability of up to 5.4 V vs Li+/Li. The interface between the composite electrolyte and a LiFePO4 (LFP) cathode was also improved by direct incorporation of the polymer electrolyte as a binder in the cathode coating. A Li/composite electrolyte/LFP solid-state cell provided a discharge capacity of ca. 140 mAh/g and suitable cycling stability at 55 degrees C after 40 cycles. This study clearly suggests that this type of amorphous polyester-based polymers can be applied in polymer-in-ceramic composite electrolytes for the realization of advanced all-solid-state lithium-ion batteries.
  •  
9.
  • Nkosi, Funeka P., et al. (författare)
  • Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes
  • 2024
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 7:10, s. 4609-4619
  • Tidskriftsartikel (refereegranskat)abstract
    • Composite electrolytes comprising distinctive polyether (PEO) or polyester (PCL, P(CL-co-TMC)) polymers in combination with a high loading of Li1.4Al0.4Ti1.6(PO4)3 NASICON-type ceramic powders (LATP, 70 wt %) are investigated to gain insights into the limitations of their ion conductivity in resulting polymer-in-ceramic solid-state electrolyte systems. Here, LATP constitutes an advantageous ceramic Li-ion conductor with fair ionic conductivity that does not immediately suffer from limitations arising from interface issues due to the detrimental formation of surface species (e.g., Li2CO3) in contact with air and/or surrounding polymers. The Li-ion transport in all these composite electrolytes is found to follow a slow-motion regime in the polymer matrix, regardless of the nature of the polymer used. Interestingly, the weakly Li-coordinating polyester-based polymers PCL and P(CL-co-TMC) exhibit an exchange of Li+ ions between the polymer and ceramic phases and high Li-ion transference numbers compared to the polyether PEO matrix, which has strong Li–polymer coordination. LATP particle agglomeration is nevertheless observed in all the composite electrolytes, and this most likely represents a dominating cause for the lower Li-ion conductivity values of these composites when compared to those of their solid polymer electrolyte (SPE) counterparts. These findings add another step toward the development of functional composite electrolytes for all-solid-state batteries.
  •  
10.
  • Wang, Heyong, et al. (författare)
  • Perovskite-molecule composite thin films for efficient and stable light-emitting diodes
  • 2020
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Although perovskite light-emitting diodes (PeLEDs) have recently experienced significant progress, there are only scattered reports of PeLEDs with both high efficiency and long operational stability, calling for additional strategies to address this challenge. Here, we develop perovskite-molecule composite thin films for efficient and stable PeLEDs. The perovskite-molecule composite thin films consist of in-situ formed high-quality perovskite nanocrystals embedded in the electron-transport molecular matrix, which controls nucleation process of perovskites, leading to PeLEDs with a peak external quantum efficiency of 17.3% and half-lifetime of approximately 100 h. In addition, we find that the device degradation mechanism at high driving voltages is different from that at low driving voltages. This work provides an effective strategy and deep understanding for achieving efficient and stable PeLEDs from both material and device perspectives.
  •  
11.
  • Xu, Chao, 1988-, et al. (författare)
  • Unraveling and Mitigating the Storage Instability of Fluoroethylene Carbonate-Containing LiPF6 Electrolytes To Stabilize Lithium Metal Anodes for High-Temperature Rechargeable Batteries
  • 2019
  • Ingår i: ACS Applied Energy Materials. - : AMER CHEMICAL SOC. - 2574-0962. ; 2:7, s. 4925-4935
  • Tidskriftsartikel (refereegranskat)abstract
    • Implementing Li metal anodes provides the potential of substantially boosting the energy density of current Li-ion battery technology. However, it suffers greatly from fast performance fading largely due to substantial volume change during cycling and the poor stability of the solid electrolyte interphase (SEI). Fluoroethylene carbonate (FEC) is widely acknowledged as an effective electrolyte additive for improving the cycling performance of batteries consisting of electrode materials that undergo large volume changes during cycling such as Li metal. In this study, we report that while FEC can form a robust SEI on the electrode, it also deteriorates the shelf life of electrolytes containing LiPF6. The degradation mechanism of LiPF6 in FEC solutions is unraveled by liquid-and solid-state NMR. Specifically, traces of water residues induce the hydrolysis of LiPF6, releasing HF and PF5 which further trigger ring-opening of FEC and its subsequent polymerization. These reactions are significantly accelerated at elevated temperatures leading to the formation of a three-dimensional fluorinated solid polymer network. Moisture scavenger additives, such as lithium 4,5-dicyano-2-(trifluoromethyl)imidazole (LiTDI), can delay the degradation reaction as well as improve the cycling stability of LiNi1/3Mn1/3Co1/3O2/Li metal batteries at 55 degrees C. This work highlights the poor shelf life of electrolytes containing FEC in combination with LiPF6 and thereby the great importance of developing proper storage methods as well as optimizing the content of FEC in practical cells.
  •  
12.
  • Zhang, Tiankai, et al. (författare)
  • Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells
  • 2022
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 377:6605, s. 495-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Record power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) have been obtained with the organic hole transporter 2,2,7,7-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9-spirobifluorene (spiro-OMeTAD). Conventional doping of spiro-OMeTAD with hygroscopic lithium salts and volatile 4-tert-butylpyridine is a time-consuming process and also leads to poor device stability. We developed a new doping strategy for spiro-OMeTAD that avoids post-oxidation by using stable organic radicals as the dopant and ionic salts as the doping modulator (referred to as ion-modulated radical doping). We achieved PCEs of >25% and much-improved device stability under harsh conditions. The radicals provide hole polarons that instantly increase the conductivity and work function (WF), and ionic salts further modulate the WF by affecting the energetics of the hole polarons. This organic semiconductor doping strategy, which decouples conductivity and WF tunability, could inspire further optimization in other optoelectronic devices.
  •  
13.
  • Zou, Yatao, et al. (författare)
  • Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular additives are widely utilized to minimize non-radiative recombination in metal halide perovskite emitters due to their passivation effects from chemical bonds with ionic defects. However, a general and puzzling observation that can hardly be rationalized by passivation alone is that most of the molecular additives enabling high-efficiency perovskite light-emitting diodes (PeLEDs) are chelating (multidentate) molecules, while their respective monodentate counterparts receive limited attention. Here, we reveal the largely ignored yet critical role of the chelate effect on governing crystallization dynamics of perovskite emitters and mitigating trap-mediated non-radiative losses. Specifically, we discover that the chelate effect enhances lead-additive coordination affinity, enabling the formation of thermodynamically stable intermediate phases and inhibiting halide coordination-driven perovskite nucleation. The retarded perovskite nucleation and crystal growth are key to high crystal quality and thus efficient electroluminescence. Our work elucidates the full effects of molecular additives on PeLEDs by uncovering the chelate effect as an important feature within perovskite crystallization. As such, we open new prospects for the rationalized screening of highly effective molecular additives.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy