SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bruton JD) "

Sökning: WFRF:(Bruton JD)

  • Resultat 1-50 av 64
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbate, F, et al. (författare)
  • Prolonged force increase following a high-frequency burst is not due to a sustained elevation of [Ca2+]i
  • 2002
  • Ingår i: American journal of physiology. Cell physiology. - : American Physiological Society. - 0363-6143 .- 1522-1563. ; 283:1, s. C42-C47
  • Tidskriftsartikel (refereegranskat)abstract
    • A brief high-frequency burst of action potentials results in a sustained force increase in skeletal muscle. The present study investigates whether this force potentiation is the result of a sustained increase of the free myoplasmic [Ca2+] ([Ca2+]i). Single fibers from mouse flexor brevis muscles were stimulated with three impulses at 150 Hz (triplet) at the start of a 350-ms tetanus or in the middle of a 700-ms tetanus; the stimulation frequency of the rest of the tetanus ranged from 20 to 60 Hz. After the triplet, force was significantly ( P < 0.05) increased between 17 and 20% when the triplet was given at the start of the tetanus and between 5 and 18% when the triplet was given in the middle ( n = 7). However, during this potentiation, [Ca2+]iwas not consistently increased. Hence, the increased force following a high-frequency burst is likely due to changes in the myofibrillar properties.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Bruton, JD, et al. (författare)
  • Effects of CO2-induced acidification on the fatigue resistance of single mouse muscle fibers at 28 degrees C
  • 1998
  • Ingår i: Journal of applied physiology (Bethesda, Md. : 1985). - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 85:2, s. 478-483
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of reduced muscle pH in the development of skeletal muscle fatigue is unclear. This study investigated the effects of lowering skeletal muscle intracellular pH by exposure to 30% CO2on the number of isometric tetani needed to induce significant fatigue. Isolated single mouse muscle fibers were stimulated repetitively at intervals of 4–2.5 s by using 80-Hz, 400-ms tetani at 28°C in Tyrode solution bubbled with either 5 or 30% CO2. Stimulation continued until tetanic force had fallen to 40% of the initial value. Exposure to 30% CO2caused a significant fall in intracellular pH of ∼0.3 pH unit but did not cause any significant changes in initial peak tetanic force. During the course of repetitive stimulation, intracellular pH fell by ∼0.3 pH unit in both normal and acidified fibers. The number of tetani needed to reduce force to 40% of the initial value was not significantly different in 5 and 30% CO2Tyrode. The sole effect of acidosis was to reduce the rate of relaxation of force, especially in fatigued fibers. It is concluded that, at 28°C, acidosis per se does not accelerate the development of fatigue during repeated tetanic stimulation of isolated mouse skeletal muscle fibers.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Bruton, JD, et al. (författare)
  • Methods to detect Ca(2+) in living cells
  • 2012
  • Ingår i: Advances in experimental medicine and biology. - Dordrecht : Springer Netherlands. - 0065-2598. ; 740, s. 27-43
  • Tidskriftsartikel (refereegranskat)
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Fauconnier, J, et al. (författare)
  • Effects of palmitate on Ca(2+) handling in adult control and ob/ob cardiomyocytes: impact of mitochondrial reactive oxygen species
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:4, s. 1136-1142
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity and insulin resistance are associated with enhanced fatty acid utilization, which may play a central role in diabetic cardiomyopathy. We now assess the effect of the saturated fatty acid palmitate (1.2 mmol/l) on Ca2+ handling, cell shortening, and mitochondrial production of reactive oxygen species (ROS) in freshly isolated ventricular cardiomyocytes from normal (wild-type) and obese, insulin-resistant ob/ob mice. Cardiomyocytes were electrically stimulated at 1 Hz, and the signal of fluorescent indicators was measured with confocal microscopy. Palmitate decreased the amplitude of cytosolic Ca2+ transients (measured with fluo-3), the sarcoplasmic reticulum Ca2+ load, and cell shortening by ∼20% in wild-type cardiomyocytes; these decreases were prevented by the general antioxidant N-acetylcysteine. In contrast, palmitate accelerated Ca2+ transients and increased cell shortening in ob/ob cardiomyocytes. Application of palmitate rapidly dissipated the mitochondrial membrane potential (measured with tetra-methyl rhodamine-ethyl ester) and increased the mitochondrial ROS production (measured with MitoSOX Red) in wild-type but not in ob/ob cardiomyocytes. In conclusion, increased saturated fatty acid levels impair cellular Ca2+ handling and contraction in a ROS-dependent manner in normal cardiomyocytes. Conversely, high fatty acid levels may be vital to sustain cardiac Ca2+ handling and contraction in obesity and insulin-resistant conditions.
  •  
24.
  • Fauconnier, J, et al. (författare)
  • Insulin and inositol 1,4,5-trisphosphate trigger abnormal cytosolic Ca2+ transients and reveal mitochondrial Ca2+ handling defects in cardiomyocytes of ob/ob mice
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:8, s. 2375-2381
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity, insulin resistance, and type 2 diabetes are leading causes of heart failure, and defective cellular Ca2+ handling seems to be a fundamental problem in diabetes. Therefore, we studied the effect of insulin on Ca2+ homeostasis in normal, freshly isolated mouse ventricular cardiomyocytes and whether Ca2+ handling was changed in an animal model of obesity and type 2 diabetes, ob/ob mice. Electrically evoked Ca2+ transients were smaller and slower in ob/ob compared with wild-type cardiomyocytes. Application of insulin (6 or 60 nmol/l) increased the amplitude of Ca2+ transients in wild-type cells by ∼30%, whereas it broadened the transients and triggered extra Ca2+ transients in ob/ob cells. The effects of insulin in ob/ob cells could be reproduced by application of a membrane-permeant inositol trisphosphate (IP3) analog and blocked by a frequently used IP3 receptor inhibitor, 2-aminoethoxydiphenyl borate. In ob/ob cardiomyocytes, insulin increased the IP3 concentration and mitochondrial Ca2+ handling was impaired. In conclusion, we propose a model where insulin increases IP3 in ob/ob cardiomyocytes, which prolongs the electrically evoked Ca2+ release. This, together with an impaired mitochondrial Ca2+ handling, results in insulin-mediated extra Ca2+ transients in ob/ob cardiomyocytes that may predispose for arrhythmias in vivo.
  •  
25.
  •  
26.
  •  
27.
  • Gilliam, LAA, et al. (författare)
  • Doxorubicin acts through tumor necrosis factor receptor subtype 1 to cause dysfunction of murine skeletal muscle
  • 2009
  • Ingår i: Journal of applied physiology (Bethesda, Md. : 1985). - : American Physiological Society. - 1522-1601 .- 8750-7587. ; 107:6, s. 1935-1942
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer patients receiving doxorubicin chemotherapy experience both muscle weakness and fatigue. One postulated mediator of the muscle dysfunction is an increase in tumor necrosis factor-α (TNF), a proinflammatory cytokine that mediates limb muscle contractile dysfunction through the TNF receptor subtype 1 (TNFR1). Our main hypothesis was that systemic doxorubicin administration would cause muscle weakness and fatigue. Systemic doxorubicin administration (20 mg/kg) depressed maximal force of the extensor digitorum longus (EDL; P < 0.01), accelerated EDL fatigue ( P < 0.01), and elevated serum TNF levels ( P < 0.05) 72 h postinjection. Genetic TNFR1 deficiency prevented the fall in specific force caused by systemic doxorubicin, without protecting against fatigue ( P < 0.01). These results demonstrate that clinical doxorubicin concentrations disrupt limb muscle function in a TNFR1-dependent manner.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  • Lanner, JT, et al. (författare)
  • The role of Ca2+ influx for insulin-mediated glucose uptake in skeletal muscle
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:7, s. 2077-2083
  • Tidskriftsartikel (refereegranskat)abstract
    • The involvement of Ca2+ in insulin-mediated glucose uptake is uncertain. We measured Ca2+ influx (as Mn2+ quenching or Ba2+ influx) and 2-deoxyglucose (2-DG) uptake in single muscle fibers isolated from limbs of adult mice; 2-DG uptake was also measured in isolated whole muscles. Exposure to insulin increased the Ca2+ influx in single muscle cells. Ca2+ influx in the presence of insulin was decreased by 2-aminoethoxydiphenyl borate (2-APB) and increased by the membrane-permeable diacylglycerol analog 1-oleyl-2-acetyl-sn-glycerol (OAG), agents frequently used to block and activate, respectively, nonselective cation channels. Maneuvers that decreased Ca2+ influx in the presence of insulin also decreased 2-DG uptake, whereas increased Ca2+ influx was associated with increased insulin-mediated glucose uptake in isolated single cells and whole muscles from both normal and insulin-resistant obese ob/ob mice. 2-APB and OAG affected neither basal nor hypoxia- or contraction-mediated 2-DG uptake. 2-APB did not inhibit the insulin-mediated activation of protein kinase B or extracellular signal–related kinase 1/2 in whole muscles. In conclusion, alterations in Ca2+ influx specifically modulate insulin-mediated glucose uptake in both normal and insulin-resistant skeletal muscle. Moreover, the present results indicate that Ca2+ acts late in the insulin signaling pathway, for instance, in the GLUT4 translocation to the plasma membrane.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  •  
48.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 64

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy