SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bryzgalova G) "

Sökning: WFRF:(Bryzgalova G)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Al-Qahtani, SM, et al. (författare)
  • 17β-Estradiol suppresses visceral adipogenesis and activates brown adipose tissue-specific gene expression
  • 2017
  • Ingår i: Hormone molecular biology and clinical investigation. - : Walter de Gruyter GmbH. - 1868-1891 .- 1868-1883. ; 29:1, s. 13-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Both functional ovaries and estrogen replacement therapy (ERT) reduce the risk of type 2 diabetes (T2D). Understanding the mechanisms underlying the antidiabetic effects of 17β-estradiol (E2) may permit the development of a molecular targeting strategy for the treatment of metabolic disease. This study examines how the promotion of insulin sensitivity and weight loss by E2 treatment in high-fat-diet (HFD)-fed mice involve several anti-adipogenic processes in the visceral adipose tissue. Magnetic resonance imaging (MRI) revealed specific reductions in visceral adipose tissue volume in HFD+E2 mice, compared with HFD mice. This loss of adiposity was associated with diminished visceral adipocyte size and reductions in expression of lipogenic genes, adipokines and of the nuclear receptor
  •  
5.
  • Antonson, P., et al. (författare)
  • aP2-Cre-Mediated Inactivation of Estrogen Receptor Alpha Causes Hydrometra
  • 2014
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we describe the reproductive phenotypes of a novel mouse model in which Cre-mediated deletion of ER alpha is regulated by the aP2 (fatty acid binding protein 4) promoter. ER alpha-floxed mice were crossed with transgenic mice expressing Cre-recombinase under the control of the aP2 promoter to generate aP2-Cre/ER alpha(flox/flox) mice. As expected, ER alpha mRNA levels were reduced in adipose tissue, but in addition we also detected an 80% reduction of ER alpha levels in the hypothalamus of aP2-Cre/ER alpha(flox/flox) mice. Phenotypic analysis revealed that aP2-Cre/ER alpha(flox/flox) female mice were infertile. In line with this, aP2-Cre/ER alpha(flox/flox) female mice did not cycle and presented 3.8-fold elevated estrogen levels. That elevated estrogen levels were associated with increased estrogen signaling was evidenced by increased mRNA levels of the estrogen-regulated genes lactoferrin and aquaporin 5 in the uterus. Furthermore, aP2-Cre/ER alpha(flox/flox) female mice showed an accumulation of intra-uterine fluid, hydrometra, without overt indications for causative anatomical anomalies. However, the vagina and cervix displayed advanced keratosis with abnormal quantities of accumulating squamous epithelial cells suggesting functional obstruction by keratin plugs. Importantly, treatment of aP2-Cre/ER alpha(flox/flox) mice with the aromatase inhibitor Letrozole caused regression of the hydrometra phenotype linking increased estrogen levels to the observed phenotype. We propose that in aP2-Cre/ER alpha(flox/flox) mice, increased serum estrogen levels cause over-stimulation in the uterus and genital tracts resulting in hydrometra and vaginal obstruction.
  •  
6.
  •  
7.
  • Bryzgalova, G, et al. (författare)
  • Evidence that oestrogen receptor-alpha plays an important role in the regulation of glucose homeostasis in mice: insulin sensitivity in the liver
  • 2006
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 49:3, s. 588-597
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: We used oestrogen receptor-alpha (ER alpha) knockout (ERKO) and receptor-beta (ER beta) knockout (BERKO) mice to investigate the mechanism(s) behind the effects of oestrogens on glucose homeostasis. Methods: Endogenous glucose production (EGP) was measured in ERKO mice using a euglycaemic-hyperinsulinaemic clamp. Insulin secretion was determined from isolated islets. In isolated muscles, glucose uptake was assayed by using radiolabelled isotopes. Genome-wide expression profiles were analysed by high-density oligonucleotide microarray assay, and the expression of the genes encoding steroyl-CoA desaturase and the Leptin receptor (Scd1 and Lepr, respectively) was confirmed by RT-PCR. Results: ERKO mice had higher fasting blood glucose, plasma insulin levels and IGT. The plasma leptin level was increased, while the adiponectin concentration was decreased in ERKO mice. Levels of both glucose- and arginine-induced insulin secretion from isolated islets were similar in ERKO and wild-type mice. The euglycaemic-hyperinsulinaemic clamp revealed that suppression of EGP by increased insulin levels was blunted in ERKO mice, which suggests a pronounced hepatic insulin resistance. Microarray analysis revealed that in ERKO mice, the genes involved in hepatic lipid biosynthesis were upregulated, while genes involved in lipid transport were downregulated. Notably, hepatic Lepr expression was decreased in ERKO mice. In vitro studies showed a modest decrease in insulin-mediated glucose uptake in soleus and extensor digitorum longus (EDL) muscles of ERKO mice. BERKO mice demonstrated normal glucose tolerance and insulin release. Conclusions/interpretation: We conclude that oestrogens, acting via ER alpha, regulate glucose homeostasis mainly by modulating hepatic insulin sensitivity, which can be due to the upregulation of lipogenic genes via the suppression of Lepr expression.
  •  
8.
  • Bryzgalova, G, et al. (författare)
  • Mechanisms of antidiabetogenic and body weight-lowering effects of estrogen in high-fat diet-fed mice
  • 2008
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 295:4, s. E904-E912
  • Tidskriftsartikel (refereegranskat)abstract
    • The high-fat diet (HFD)-fed mouse is a model of obesity, impaired glucose tolerance, and insulin resistance. The main objective of this study was to elucidate the molecular mechanisms underlying the antidiabetogenic and weight-lowering effects of 17β-estradiol (E2) in this mouse model. C57BL/6 female mice (8 wk old) were fed on a HFD for 10 mo. E2, given daily (50 μg/kg sc) during the last month of feeding, decreased body weight and markedly improved glucose tolerance and insulin sensitivity. Plasma levels of insulin, leptin, resistin, and adiponectin were decreased. We demonstrated that E2treatment decreased the expression of genes encoding resistin and leptin in white adipose tissue (WAT), whereas adiponectin expression was unchanged. Furthermore, in WAT we demonstrated decreased expression levels of sterol regulatory element-binding protein 1c (SREBP1c) and its lipogenic target genes, such as fatty acid synthase and stearoyl-CoA desaturase 1 (SCD1). In the liver, the expression levels of transcription factors such as liver X receptor α and SREBP1c were not changed by E2treatment, but the expression of the key lipogenic gene SCD1 was reduced. This was accompanied by decreased hepatic triglyceride content. Importantly, E2decreased the hepatic expression of glucose-6-phosphatase (G-6-Pase). We conclude that E2treatment exerts antidiabetic and antiobesity effects in HFD mice and suggest that this is related to decreased expression of lipogenic genes in WAT and liver and suppression of hepatic expression of G-6-Pase. Decreased plasma levels of resistin probably also play an important role in this context.
  •  
9.
  •  
10.
  • Davani, B, et al. (författare)
  • Aged transgenic mice with increased glucocorticoid sensitivity in pancreatic beta-cells develop diabetes
  • 2004
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 5353 Suppl 1, s. S51-S59
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucocorticoids are diabetogenic hormones because they decrease glucose uptake, increase hepatic glucose production, and inhibit insulin release. To study the long-term effects of increased glucocorticoid sensitivity in β-cells, we studied transgenic mice overexpressing the rat glucocorticoid receptor targeted to the β-cells using the rat insulin I promoter. Here we report that these mice developed hyperglycemia both in the fed and the overnight-fasted states at 12–15 months of age. Progression from impaired glucose tolerance, previously observed in the same colony at the age of 3 months, to manifest diabetes was not associated with morphological changes or increased apoptosis in the β-cells. Instead, our current results suggest that the development of diabetes is due to augmented inhibition of insulin secretion through α2-adrenergic receptors (α2-ARs). Thus, we found a significantly higher density of α2-ARs in the islets of transgenic mice compared with controls, based on binding studies with the α2-AR agonist UK 14304. Furthermore, incubation of islets with benextramine, a selective antagonist of the α2-AR, restored insulin secretion in response to glucose in isolated islets from transgenic mice, whereas it had no effect on control islets. These results indicate that the chronic enhancement of glucocorticoid signaling in pancreatic β-cells results in hyperglycemia and impaired glucose tolerance. This effect may involve signaling pathways that participate in the regulation of insulin secretion via the α2-AR.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Ilegems, E, et al. (författare)
  • HIF-1α inhibitor PX-478 preserves pancreatic β cell function in diabetes
  • 2022
  • Ingår i: Science translational medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6242 .- 1946-6234. ; 14:638, s. eaba9112-
  • Tidskriftsartikel (refereegranskat)abstract
    • During progression of type 2 diabetes, pancreatic β cells are subjected to sustained metabolic overload. We postulated that this state mediates a hypoxic phenotype driven by hypoxia-inducible factor–1α (HIF-1α) and that treatment with the HIF-1α inhibitor PX-478 would improve β cell function. Our studies showed that the HIF-1α protein was present in pancreatic β cells of diabetic mouse models. In mouse islets with high glucose metabolism, the emergence of intracellular Ca2+oscillations at low glucose concentration and the abnormally high basal release of insulin were suppressed by treatment with the HIF-1α inhibitor PX-478, indicating improvement of β cell function. Treatment of db/db mice with PX-478 prevented the rise of glycemia and diabetes progression by maintenance of elevated plasma insulin concentration. In streptozotocin-induced diabetic mice, PX-478 improved the recovery of glucose homeostasis. Islets isolated from these mice showed hallmarks of improved β cell function including elevation of insulin content, increased expression of genes involved in β cell function and maturity, inhibition of dedifferentiation markers, and formation of mature insulin granules. In response to PX-478 treatment, human islet organoids chronically exposed to high glucose presented improved stimulation index of glucose-induced insulin secretion. These results suggest that the HIF-1α inhibitor PX-478 has the potential to act as an antidiabetic therapeutic agent that preserves β cell function under metabolic overload.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Lundholm, L, et al. (författare)
  • The estrogen receptor {alpha}-selective agonist propyl pyrazole triol improves glucose tolerance in ob/ob mice; potential molecular mechanisms
  • 2008
  • Ingår i: Journal of Endocrinology. - 0022-0795 .- 1479-6805. ; 199:2, s. 275-286
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to validate the role of estrogen receptor alpha (ERalpha) signaling in the regulation of glucose metabolism, and to compare the molecular events upon treatment with the ERalpha-selective agonist propyl pyrazole triol (PPT) or 17beta-estradiol (E(2)) in ob/ob mice. Female ob/ob mice were treated with PPT, E(2) or vehicle for 7 or 30 days. Intraperitoneal glucose and insulin tolerance tests were performed, and insulin secretion was determined from isolated islets. Glucose uptake was assayed in isolated skeletal muscle and adipocytes. Gene expression profiling in the liver was performed using Affymetrix microarrays, and the expression of selected genes was studied by real-time PCR analysis. PPT and E(2) treatment improved glucose tolerance and insulin sensitivity. Fasting blood glucose levels decreased after 30 days of PPT and E(2) treatment. However, PPT and E(2) had no effect on insulin secretion from isolated islets. Basal and insulin-stimulated glucose uptake in skeletal muscle and adipose tissue were similar in PPT and vehicle-treated ob/ob mice. Hepatic lipid content was decreased after E(2) treatment. In the liver, treatment with E(2) and PPT increased and decreased the respective expression levels of the transcription factor signal transducer and activator of transcription 3, and of glucose-6-phosphatase. In summary, our data demonstrate that PPT exerts anti-diabetic effects, and these effects are mediated via ERalpha.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Paschen, M, et al. (författare)
  • Non-invasive cell type selective in vivo monitoring of insulin resistance dynamics
  • 2016
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6, s. 21448-
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin resistance contributes to the development of cardio-vascular disease and diabetes. An important but unresolved task is to study the dynamics of insulin resistance in selective cell types of insulin target tissues in vivo. Here we present a novel technique to monitor insulin resistance dynamics non-invasively and longitudinally in vivo in a cell type-specific manner, exemplified by the pancreatic β-cell situated within the micro-organ the islet of Langerhans. We utilize the anterior chamber of the eye (ACE) as a transplantation site and the cornea as a natural body-window to study the development and reversibility of insulin resistance. Engrafted islets in the ACE that express a FoxO1-GFP-based biosensor in their β-cells, report on insulin resistance measured by fluorescence microscopy at single-cell resolution in the living mouse. This technique allows monitoring of cell type specific insulin sensitivity/resistance in real-time in the context of whole body insulin resistance during progression and intervention of disease.
  •  
24.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy