SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bukkuri Anuraag) "

Sökning: WFRF:(Bukkuri Anuraag)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bukkuri, Anuraag, et al. (författare)
  • A life history model of the ecological and evolutionary dynamics of polyaneuploid cancer cells
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Therapeutic resistance is one of the main reasons for treatment failure in cancer patients. The polyaneuploid cancer cell (PACC) state has been shown to promote resistance by providing a refuge for cancer cells from the effects of therapy and by helping them adapt to a variety of environmental stressors. This state is the result of aneuploid cancer cells undergoing whole genome doubling and skipping mitosis, cytokinesis, or both. In this paper, we create a novel mathematical framework for modeling the eco-evolutionary dynamics of state-structured populations and use this framework to construct a model of cancer populations with an aneuploid and a PACC state. Using in silico simulations, we explore how the PACC state allows cancer cells to (1) survive extreme environmental conditions by exiting the cell cycle after S phase and protecting genomic material and (2) aid in adaptation to environmental stressors by increasing the cancer cell’s ability to generate heritable variation (evolvability) through the increase in genomic content that accompanies polyploidization. In doing so, we demonstrate the ability of the PACC state to allow cancer cells to persist under therapy and evolve therapeutic resistance. By eliminating cells in the PACC state through appropriately-timed PACC-targeted therapies, we show how we can prevent the emergence of resistance and promote cancer eradication.
  •  
2.
  • Bukkuri, Anuraag, et al. (författare)
  • A mathematical investigation of polyaneuploid cancer cell memory and cross-resistance in state-structured cancer populations
  • 2023
  • Ingår i: Scientific Reports. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The polyaneuploid cancer cell (PACC) state promotes cancer lethality by contributing to survival in extreme conditions and metastasis. Recent experimental evidence suggests that post-therapy PACC-derived recurrent populations display cross-resistance to classes of therapies with independent mechanisms of action. We hypothesize that this can occur through PACC memory, whereby cancer cells that have undergone a polyaneuploid transition (PAT) reenter the PACC state more quickly or have higher levels of innate resistance. In this paper, we build on our prior mathematical models of the eco-evolutionary dynamics of cells in the 2N+ and PACC states to investigate these two hypotheses. We show that although an increase in innate resistance is more effective at promoting cross-resistance, this trend can also be produced via PACC memory. We also find that resensitization of cells that acquire increased innate resistance through the PAT have a considerable impact on eco-evolutionary dynamics and extinction probabilities. This study, though theoretical in nature, can help inspire future experimentation to tease apart hypotheses surrounding how cross-resistance in structured cancer populations arises.
  •  
3.
  • Bukkuri, Anuraag, et al. (författare)
  • Biomarkers or biotargets? Using competition to lure cancer cells into evolutionary traps
  • 2023
  • Ingår i: Evolution, Medicine and Public Health. - 2050-6201. ; 11:1, s. 264-276
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives: Cancer biomarkers provide information on the characteristics and extent of cancer progression and help inform clinical decision-making. However, they can also play functional roles in oncogenesis, from enabling metastases and inducing angiogenesis to promoting resistance to chemotherapy. The resulting evolution could bias estimates of cancer progression and lead to suboptimal treatment decisions. Methodology: We create an evolutionary game theoretic model of cell-cell competition among cancer cells with different levels of biomarker production. We design and simulate therapies on top of this pre-existing game and examine population and biomarker dynamics. Results: Using total biomarker as a proxy for population size generally underestimates chemotherapy efficacy and overestimates targeted therapy efficacy. If biomarker production promotes resistance and a targeted therapy against the biomarker exists, this dynamic can be used to set an evolutionary trap. After chemotherapy selects for a high biomarker-producing cancer cell population, targeted therapy could be highly effective for cancer extinction. Rather than using the most effective therapy given the cancer's current biomarker level and population size, it is more effective to 'overshoot' and utilize an evolutionary trap when the aim is extinction. Increasing cell-cell competition, as influenced by biomarker levels, can help prime and set these traps. Conclusion and Implications: Evolution of functional biomarkers amplify the limitations of using total biomarker levels as a measure of tumor size when designing therapeutic protocols. Evolutionarily enlightened therapeutic strategies may be highly effective, assuming a targeted therapy against the biomarker is available.
  •  
4.
  • Bukkuri, Anuraag, et al. (författare)
  • Integrating eco-evolutionary dynamics into matrix population models for structured populations : Discrete and continuous frameworks
  • 2023
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 14:6, s. 1475-1488
  • Tidskriftsartikel (refereegranskat)abstract
    • State-structured populations are ubiquitous in biology, from the age-structure of animal societies to the life cycles of parasitic species. Understanding how this structure contributes to eco-evolutionary dynamics is critical not only for fundamental understanding but also for conservation and treatment purposes. Although some methods have been developed in the literature for modelling eco-evolutionary dynamics in structured population, such methods are wholly lacking in the (Formula presented.) function evolutionary game theoretic framework. In this paper, we integrate standard matrix population modelling into the (Formula presented.) function framework to create a theoretical framework to probe eco-evolutionary dynamics in structured populations. This framework encompasses age- and stage-structured matrix models with basic density- and frequency-dependent transition rates and probabilities. For both discrete and continuous time models, we define and characterize asymptotic properties of the system such as eco-evolutionary equilibria (including ESSs) and the convergence stability of these equilibria. For multistate structured populations, we introduce an ergodic flow preserving folding method for analysing such models. The methods developed in this paper for state-structured populations and their extensions to multistate-structured populations provide a simple way to create, analyse and simulate eco-evolutionary dynamics in structured populations. Furthermore, their generality allows these techniques to be applied to a variety of problems in ecology and evolution.
  •  
5.
  • Bukkuri, Anuraag, et al. (författare)
  • Modeling cancer’s ecological and evolutionary dynamics
  • 2023
  • Ingår i: Medical Oncology. - : Springer Science and Business Media LLC. - 1357-0560 .- 1559-131X. ; 40:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In this didactic paper, we present a theoretical modeling framework, called the G-function, that integrates both the ecology and evolution of cancer to understand oncogenesis. The G-function has been used in evolutionary ecology, but has not been widely applied to problems in cancer. Here, we build the G-function framework from fundamental Darwinian principles and discuss how cancer can be seen through the lens of ecology, evolution, and game theory. We begin with a simple model of cancer growth and add on components of cancer cell competition and drug resistance. To aid in exploration of eco-evolutionary modeling with this approach, we also present a user-friendly software tool. By the end of this paper, we hope that readers will be able to construct basic G function models and grasp the usefulness of the framework to understand the games cancer plays in a biologically mechanistic fashion.
  •  
6.
  • Bukkuri, Anuraag (författare)
  • Modeling stress-induced responses : plasticity in continuous state space and gradual clonal evolution
  • Ingår i: Theory in Biosciences. - 1431-7613.
  • Tidskriftsartikel (refereegranskat)abstract
    • Mathematical models of cancer and bacterial evolution have generally stemmed from a gene-centric framework, assuming clonal evolution via acquisition of resistance-conferring mutations and selection of their corresponding subpopulations. More recently, the role of phenotypic plasticity has been recognized and models accounting for phenotypic switching between discrete cell states (e.g., epithelial and mesenchymal) have been developed. However, seldom do models incorporate both plasticity and mutationally driven resistance, particularly when the state space is continuous and resistance evolves in a continuous fashion. In this paper, we develop a framework to model plastic and mutational mechanisms of acquiring resistance in a continuous gradual fashion. We use this framework to examine ways in which cancer and bacterial populations can respond to stress and consider implications for therapeutic strategies. Although we primarily discuss our framework in the context of cancer and bacteria, it applies broadly to any system capable of evolving via plasticity and genetic evolution.
  •  
7.
  • Bukkuri, Anuraag, et al. (författare)
  • Stochastic models of Mendelian and reverse transcriptional inheritance in state-structured cancer populations
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent evidence suggests that a polyaneuploid cancer cell (PACC) state may play a key role in the adaptation of cancer cells to stressful environments and in promoting therapeutic resistance. The PACC state allows cancer cells to pause cell division and to avoid DNA damage and programmed cell death. Transition to the PACC state may also lead to an increase in the cancer cell’s ability to generate heritable variation (evolvability). One way this can occur is through evolutionary triage. Under this framework, cells gradually gain resistance by scaling hills on a fitness landscape through a process of mutation and selection. Another way this can happen is through self-genetic modification whereby cells in the PACC state find a viable solution to the stressor and then undergo depolyploidization, passing it on to their heritably resistant progeny. Here, we develop a stochastic model to simulate both of these evolutionary frameworks. We examine the impact of treatment dosage and extent of self-genetic modification on eco-evolutionary dynamics of cancer cells with aneuploid and PACC states. We find that under low doses of therapy, evolutionary triage performs better whereas under high doses of therapy, self-genetic modification is favored. This study generates predictions for teasing apart these biological hypotheses, examines the implications of each in the context of cancer, and provides a modeling framework to compare Mendelian and non-traditional forms of inheritance.
  •  
8.
  • Bukkuri, Anuraag, et al. (författare)
  • The contribution of evolvability to the eco-evolutionary dynamics of competing species
  • 2023
  • Ingår i: Ecology and Evolution. - 2045-7758. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Evolvability is the capacity of a population to generate heritable variation that can be acted upon by natural selection. This ability influences the adaptations and fitness of individual organisms. By viewing this capacity as a trait, evolvability is subject to natural selection and thus plays a critical role in eco-evolutionary dynamics. Understanding this role provides insight into how species respond to changes in their environment and how species coexistence can arise and be maintained. Here, we create a G-function model of competing species, each with a different evolvability. We analyze population and strategy (= heritable phenotype) dynamics of the two populations under clade initiation (when species are introduced into a population), evolutionary tracking (constant, small changes in the environment), adaptive radiation (availability of multiple ecological niches), and evolutionary rescue (extreme environmental disturbances). We find that when species are far from an eco-evolutionary equilibrium, faster-evolving species reach higher population sizes, and when species are close to an equilibrium, slower-evolving species are more successful. Frequent, minor environmental changes promote the extinction of species with small population sizes, regardless of their evolvability. When several niches are available for a species to occupy, coexistence is possible, though slower-evolving species perform slightly better than faster-evolving ones due to the well-recognized inherent cost of evolvability. Finally, disrupting the environment at intermediate frequencies can result in coexistence with cyclical population dynamics of species with different rates of evolution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy