SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bulla M.) "

Sökning: WFRF:(Bulla M.)

  • Resultat 1-50 av 53
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ackley, K., et al. (författare)
  • Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.
  •  
3.
  • Smartt, S. J., et al. (författare)
  • PESSTO : survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 579
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month. Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5(m) for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 angstrom between 3345-9995 angstrom. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 mu m and resolutions 23-33 angstrom) and imaging with broadband JHK(s) filters. Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically similar to 15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHK(s) imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey.
  •  
4.
  • Smartt, S. J., et al. (författare)
  • A kilonova as the electromagnetic counterpart to a gravitational-wave source
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 551:7678, s. 75-
  • Tidskriftsartikel (refereegranskat)abstract
    • Gravitational waves were discovered with the detection of binary black-hole mergers(1) and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova(2-5). The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate(6). Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short.-ray burst(7,8). The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 +/- 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 +/- 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 +/- 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
  •  
5.
  • Anand, S., et al. (författare)
  • Optical follow-up of the neutron star–black hole mergers S200105ae and S200115j
  • 2020
  • Ingår i: Nature Astronomy. - : Nature Research. - 2397-3366.
  • Tidskriftsartikel (refereegranskat)abstract
    • LIGO and Virgo’s third observing run revealed the first neutron star–black hole (NSBH) merger candidates in gravitational waves. These events are predicted to synthesize r-process elements1,2 creating optical/near-infrared ‘kilonova’ emission. The joint gravitational wave and electromagnetic detection of an NSBH merger could be used to constrain the equation of state of dense nuclear matter3, and independently measure the local expansion rate of the Universe4. Here, we present the optical follow-up and analysis of two of the only three high-significance NSBH merger candidates detected to date, S200105ae and S200115j, with the Zwicky Transient Facility5. The Zwicky Transient Facility observed ~48% of S200105ae and ~22% of S200115j’s localization probabilities, with observations sensitive to kilonovae brighter than −17.5 mag fading at 0.5 mag d−1 in the g- and r-bands; extensive searches and systematic follow-up of candidates did not yield a viable counterpart. We present state-of-the-art kilonova models tailored to NSBH systems that place constraints on the ejecta properties of these NSBH mergers. We show that with observed depths of apparent magnitude ~22 mag, attainable in metre-class, wide-field-of-view survey instruments, strong constraints on ejecta mass are possible, with the potential to rule out low mass ratios, high black hole spins and large neutron star radii.
  •  
6.
  • Anderson, J. P., et al. (författare)
  • A nearby super-luminous supernova with a long pre-maximum plateau and strong C (II) features
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Super-luminous supernovae (SLSNe) are rare events defined as being significantly more luminous than normal terminal stellar explosions. The source of the additional power needed to achieve such luminosities is still unclear. Discoveries in the local Universe (i.e. z < 0.1) are scarce, but afford dense multi-wavelength observations. Additional low-redshift objects are therefore extremely valuable.Aims. We present early-time observations of the type I SLSN ASASSN-18km/SN 2018bsz. These data are used to characterise the event and compare to literature SLSNe and spectral models. Host galaxy properties are also analysed.Methods. Optical and near-IR photometry and spectroscopy were analysed. Early-time ATLAS photometry was used to constrain the rising light curve. We identified a number of spectral features in optical-wavelength spectra and track their time evolution. Finally, we used archival host galaxy photometry together with H( II )region spectra to constrain the host environment.Results. ASASSN-18km/SN 2018bsz is found to be a type I SLSN in a galaxy at a redshift of 0.0267 (111 Mpc), making it the lowest-redshift event discovered to date. Strong C- II lines are identified in the spectra. Spectral models produced by exploding a Wolf-Rayet progenitor and injecting a magnetar power source are shown to be qualitatively similar to ASASSN-18km/SN 2018bsz, contrary to most SLSNe-I that display weak or non-existent C (II) lines. ASASSN-18km/SN 2018bsz displays along, slowly rising, red plateau of >26 days, before a steeper, faster rise to maximum. The host has an absolute magnitude of -19.8 mag (r), a mass of M-* = 1.5(-0.33)(+0.08) x 10(9) M-circle dot, and a star formation rate of =0.50(-0.19)(+2.22) M-circle dot yr(-1). A nearby H (II) region has an oxygen abundance (O3N2) of 8.31 +/- 0.01 dex.
  •  
7.
  • Miller, A. A., et al. (författare)
  • The Spectacular Ultraviolet Flash from the Peculiar Type Ia Supernova 2019yvq
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 898:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Early observations of Type Ia supernovae (SNe Ia) provide essential clues for understanding the progenitor system that gave rise to the terminal thermonuclear explosion. We present exquisite observations of SN 2019yvq, the second observed SN Ia, after iPTF 14atg, to display an early flash of emission in the ultraviolet (UV) and optical. Our analysis finds that SN 2019yvq was unusual, even when ignoring the initial flash, in that it was moderately underluminous for an SN Ia ( mag at peak) yet featured very high absorption velocities ( km s−1 for Si ii λ6355 at peak). We find that many of the observational features of SN 2019yvq, aside from the flash, can be explained if the explosive yield of radioactive 56Ni is relatively low (we measure ) and it and other iron-group elements are concentrated in the innermost layers of the ejecta. To explain both the UV/optical flash and peak properties of SN 2019yvq we consider four different models: interaction between the SN ejecta and a nondegenerate companion, extended clumps of 56Ni in the outer ejecta, a double-detonation explosion, and the violent merger of two white dwarfs. Each of these models has shortcomings when compared to the observations; it is clear additional tuning is required to better match SN 2019yvq. In closing, we predict that the nebular spectra of SN 2019yvq will feature either H or He emission, if the ejecta collided with a companion, strong [Ca ii] emission, if it was a double detonation, or narrow [O i] emission, if it was due to a violent merger.
  •  
8.
  • Ahumada, T., et al. (författare)
  • Discovery and confirmation of the shortest gamma-ray burst from a collapsar
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Nature. - 2397-3366. ; 5:9, s. 917-927
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray bursts (GRBs) are among the brightest and most energetic events in the Universe. The duration and hardness distribution of GRBs has two clusters1, now understood to reflect (at least) two different progenitors2. Short-hard GRBs (SGRBs; T90 < 2 s) arise from compact binary mergers, and long-soft GRBs (LGRBs; T90 > 2 s) have been attributed to the collapse of peculiar massive stars (collapsars)3. The discovery of SN 1998bw/GRB 980425 (ref. 4) marked the first association of an LGRB with a collapsar, and AT 2017gfo (ref. 5)/GRB 170817A/GW170817 (ref. 6) marked the first association of an SGRB with a binary neutron star merger, which also produced a gravitational wave. Here, we present the discovery of ZTF20abwysqy (AT2020scz), a fast-fading optical transient in the Fermi satellite and the Interplanetary Network localization regions of GRB 200826A; X-ray and radio emission further confirm that this is the afterglow. Follow-up imaging (at rest-frame 16.5 days) reveals excess emission above the afterglow that cannot be explained as an underlying kilonova, but which is consistent with being the supernova. Although the GRB duration is short (rest-frame T90 of 0.65 s), our panchromatic follow-up data confirm a collapsar origin. GRB 200826A is the shortest LGRB found with an associated collapsar; it appears to sit on the brink between a successful and a failed collapsar. Our discovery is consistent with the hypothesis that most collapsars fail to produce ultra-relativistic jets.
  •  
9.
  • Andrews, Jennifer E., et al. (författare)
  • SN 2017gmr : An Energetic Type II-P Supernova with Asymmetries
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 885:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high-cadence UV, optical, and near-infrared data on the luminous Type II-P supernova SN;2017gmr from hours after discovery through the first 180 days. SN;2017gmr does not show signs of narrow, high-ionization emission lines in the early optical spectra, yet the optical light-curve evolution suggests that an extra energy source from circumstellar medium (CSM) interaction must be present for at least 2 days after explosion. Modeling of the early light curve indicates a ?500 R progenitor radius, consistent with a rather compact red supergiant, and late-time luminosities indicate that up to 0.130;;0.026 M of Ni-56 are present, if the light curve is solely powered by radioactive decay, although the Ni-56 mass may be lower if CSM interaction contributes to the post-plateau luminosity. Prominent multipeaked emission lines of H? and [O i] emerge after day 154, as a result of either an asymmetric explosion or asymmetries in the CSM. The lack of narrow lines within the first 2 days of explosion in the likely presence of CSM interaction may be an example of close, dense, asymmetric CSM that is quickly enveloped by the spherical supernova ejecta.
  •  
10.
  • Galbany, L., et al. (författare)
  • Evidence for a Chandrasekhar-mass explosion in the Ca-strong 1991bg-like type la supernova 2016hnk
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 630
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We present a comprehensive dataset of optical and near-infrared photometry and spectroscopy of type Ia supernova (SN) 2016hnk, combined with integral field spectroscopy (IFS) of its host galaxy, MCG -01-06-070, and nearby environment. Our goal with this complete dataset is to understand the nature of this peculiar object.Methods. Properties of the SN local environment are characterized by means of single stellar population synthesis applied to IFS observations taken two years after the SN exploded. We performed detailed analyses of SN photometric data by studying its peculiar light and color curves. SN 2016hnk spectra were compared to other 1991bg-like SNe Ia, 2002es-like SNe Ia, and Ca-rich transients. In addition, we used abundance stratification modeling to identify the various spectral features in the early phase spectral sequence and also compared the dataset to a modified non-LTE model previously produced for the sublumnious SN 1999by.Results. SN 2016hnk is consistent with being a subluminous (M-B = -16.7 mag, S-BV =0.43 +/- 0.03), highly reddened object. The IFS of its host galaxy reveals both a significant amount of dust at the SN location, residual star formation, and a high proportion of old stellar populations in the local environment compared to other locations in the galaxy, which favors an old progenitor for SN 2016hnk. Inspection of a nebular spectrum obtained one year after maximum contains two narrow emission lines attributed to the forbidden [Ca II] lambda lambda 7291,7324 doublet with a Doppler shift of 700 km s(-1). Based on various observational diagnostics, we argue that the progenitor of SN 2016hnk was likely a near Chandrasekhar-mass (M-Ch) carbon-oxygen white dwarf that produced 0.108 M-circle dot of Ni-56. Our modeling suggests that the narrow [Ca II] features observed in the nebular spectrum are associated with Ca-48 from electron capture during the explosion, which is expected to occur only in white dwarfs that explode near or at the M-Ch limit.
  •  
11.
  • Pursiainen, M., et al. (författare)
  • SN 2018bsz : A Type I superluminous supernova with aspherical circumstellar material
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a spectroscopic analysis of the most nearby Type I superluminous supernova (SLSN-I), SN 2018bsz. The photometric evolution of SN 2018bsz has several surprising features, including an unusual pre-peak plateau and evidence for rapid formation of dust ≳200 d post-peak. We show here that the spectroscopic and polarimetric properties of SN 2018bsz are also unique. While its spectroscopic evolution closely resembles SLSNe-I, with early O II absorption and C II P Cygni profiles followed by Ca, Mg, Fe, and other O features, a multi-component Hα profile appearing at ∼30 d post-maximum is the most atypical. The Hα is at first characterised by two emission components, one at ∼+3000 km s−1 and a second at ∼ − 7500 km s−1, with a third, near-zero-velocity component appearing after a delay. The blue and central components can be described by Gaussian profiles of intermediate width (FWHM ∼ 2000–6000 km s−1), but the red component is significantly broader (FWHM ≳ 10 000 km s−1) and Lorentzian. The blue Hα component evolves towards a lower-velocity offset before abruptly fading at ∼ + 100 d post-maximum brightness, concurrently with a light curve break. Multi-component profiles are observed in other hydrogen lines, including Paβ, and in lines of Ca II and He I. Spectropolarimetry obtained before (10.2 d) and after (38.4 d) the appearance of the H lines shows a large shift on the Stokes Q – U plane consistent with SN 2018bsz undergoing radical changes in its projected geometry. Assuming the supernova is almost unpolarised at 10.2 d, the continuum polarisation at 38.4 d reaches P ∼ 1.8%, implying an aspherical configuration. We propose that the observed evolution of SN 2018bsz can be explained by highly aspherical, possibly disk-like, circumstellar material (CSM) with several emitting regions. After the supernova explosion, the CSM is quickly overtaken by the ejecta, but as the photosphere starts to recede, the different CSM regions re-emerge, producing the peculiar line profiles. Based on the first appearance of Hα, we can constrain the distance of the CSM to be less than ∼6.5 × 1015 cm (430 AU), or even lower (≲87 AU) if the pre-peak plateau is related to an eruption that created the CSM. The presence of CSM has been inferred previously for other SLSNe-I, both directly and indirectly. However, it is not clear whether the rare properties of SN 2018bsz can be generalised for SLSNe-I, for example in the context of pulsational pair instability, or whether they are the result of an uncommon evolutionary path, possibly involving a binary companion.
  •  
12.
  • Harvey, L., et al. (författare)
  • Early-time spectroscopic modelling of the transitional Type Ia Supernova 2021rhu with tardis
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:3, s. 4444-4467
  • Tidskriftsartikel (refereegranskat)abstract
    • An open question in SN Ia research is where the boundary lies between 'normal' Type Ia supernovae (SNe Ia) that are used in cosmological measurements and those that sit off the Phillips relation. We present the spectroscopic modelling of one such '86G-like' transitional SN Ia, SN 2021rhu, that has recently been employed as a local Hubble Constant calibrator using a tip of the red-giant branch measurement. We detail its modelling from -12 d until maximum brightness using the radiative-transfer spectral-synthesis code tardis. Please check and correct this paper accordingly. We base our modelling on literature delayed-detonation and deflagration models of Chandrasekhar mass white dwarfs, as well as the double-detonation models of sub-Chandrasekhar mass white dwarfs. We present a new method for 'projecting' abundance profiles to different density profiles for ease of computation. Due to the small velocity extent and low outer densities of the W7 profile, we find it inadequate to reproduce the evolution of SN 2021rhu as it fails to match the high-velocity calcium components. The host extinction of SN 2021rhu is uncertain but we use modelling with and without an extinction correction to set lower and upper limits on the abundances of individual species. Comparing these limits to literature models we conclude that the spectral evolution of SN 2021rhu is also incompatible with double-detonation scenarios, lying more in line with those resulting from the delayed-detonation mechanism (although there are some discrepancies, in particular a larger titanium abundance in SN 2021rhu compared to the literature). This suggests that SN 2021rhu is likely a lower luminosity, and hence lower temperature, version of a normal SN Ia.
  •  
13.
  • McBrien, O. R., et al. (författare)
  • PS15cey and PS17cke : prospective candidates from the Pan-STARRS Search for kilonovae
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 4213-4228
  • Tidskriftsartikel (refereegranskat)abstract
    • Time domain astronomy was revolutionized with the discovery of the first kilonova, AT2017gfo, in August 2017, which was associated with the gravitational wave signal GW170817. Since this event, numerous wide-field surveys have been optimizing search strategies to maximize their efficiency of detecting these fast and faint transients. With the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), we have been conducting a volume-limited survey for intrinsically faint and fast-fading events to a distance of D similar or equal to 200 Mpc. Two promising candidates have been identified from this archival search, with sparse data - PS15cey and PS17cke. Here, we present more detailed analysis and discussion of their nature. We observe that PS15cey was a luminous, fast-declining transient at 320 Mpc. Models of BH-NS mergers with a very stiff equation of state could possibly reproduce the luminosity and decline but the physical parameters are extreme. A more likely scenario is that this was an AT2018kzr-like merger event. PS17cke was a faint and fast-declining event at 15 Mpc. We explore several explosion scenarios of this transient including models of it as a NS-NS and BH-NS merger, the outburst of a massive luminous star, and compare it against other known fast-fading transients. Although there is uncertainty in the explosion scenario due to difficulty in measuring the explosion epoch, we find PS17cke to be a plausible kilonova candidate from the model comparisons.
  •  
14.
  • Tinyanont, S., et al. (författare)
  • Infrared spectropolarimetric detection of intrinsic polarization from a core-collapse supernova
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Nature. - 2397-3366. ; 5:6, s. 544-551
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive stars die an explosive death as a core-collapse supernova (CCSN). The exact physical processes that cause the collapsing star to rebound into an explosion are not well understood1–3, and the key to resolving this issue may lie in the measurement of the shape of CCSNe ejecta. Spectropolarimetry is the only way to perform this measurement for CCSNe outside the Milky Way and Magellanic Clouds. We present the infrared spectropolarimetric detection of a CCSN enabled by the new highly sensitive WIRC+Pol instrument at Palomar Observatory, which can observe CCSNe (magnitude M = −17 mag) out to 20 Mpc at ~0.1% polarimetric precision. Infrared spectropolarimetry is less affected than optical spectropolarimetry by dust scattering in the circumstellar and interstellar media, thereby providing a less biased probe of the intrinsic geometry of the supernova ejecta. SN 2018hna, a SN 1987A-like explosion, shows 2.0 ± 0.3% continuum polarization in the J band oriented at ~160° on sky 182 days after the explosion. Assuming a prolate geometry as in SN 1987A, we infer an ejecta axis ratio of <0.48 with the axis of symmetry pointing at a 70° position angle. The axis ratio is similar to that of SN 1987A, suggesting that the two CCSNe may share intrinsic geometry and inclination angles. Our data do not rule out oblate ejecta. We also observe one other CCSN and two thermonuclear supernovae in the J band. Supernova 2020oi, a stripped-envelope type Ic SN in Messier 100 has broadband p = 0.37 ± 0.09% at peak light, indicative of either a 10% asymmetry or host interstellar polarization. The type Ia SNe 2019ein and 2020ue have <0.33% and <1.08% polarization near peak light, indicative of asymmetries of less than 10% and 20%, respectively.
  •  
15.
  • Adams, S. M., et al. (författare)
  • iPTF Survey for Cool Transients
  • 2018
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 130:985
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a wide-area (2000 deg2) g and I band experiment as part of a two month extension to the Intermediate Palomar Transient Factory. We discovered 36 extragalactic transients including iPTF17lf, a highly reddened local SN Ia, iPTF17bkj, a new member of the rare class of transitional Ibn/IIn supernovae, and iPTF17be, a candidate luminous blue variable outburst. We do not detect any luminous red novae and place an upper limit on their rate. We show that adding a slow-cadence I band component to upcoming surveys such as the Zwicky Transient Facility will improve the photometric selection of cool and dusty transients.
  •  
16.
  • Anand, S., et al. (författare)
  • DECam-GROWTH search for the faint and distant binary neutron star and neutron star-black hole mergers in O3a
  • 2021
  • Ingår i: Revista Mexicana de Astronomia y Astrofisica. - : Universidad Nacional Autonoma de Mexico. - 1405-2059. ; , s. 91-99
  • Konferensbidrag (refereegranskat)abstract
    • Synoptic searches for the optical counterpart to a binary neutron star (BNS) or neutron star-black hole (NSBH) merger can pose significant challenges towards the discovery of kilonovae and performing multi-messenger science. In this work, we describe the advantage of a global multi-telescope network towards this end, with a particular focus on the key and complementary role the Dark Energy Camera (DECam) plays in multi-facility follow-up. We describe the Global Relay of Observatories Watching Transients Happen (GROWTH) Target-of-Opportunity (ToO) Marshal, a common web application we built to ingest events, plan observations, search for transient candidates, and retrieve performance summary statistics for all of the telescopes in our network. Our infrastructure enabled us to conduct observations of two events during O3a, S190426c and S190510g. Furthermore, our analysis of deep DECam observations of S190814bv conducted by the DESGW team, and access to a variety of global follow-up facilities allowed us to place meaningful constraints on the parameters of the kilonova and the merging binary. We emphasize the importance of a global telescope network in conjunction with a power telescope like DECam in performing searches for the counterparts to gravitational-wave sources. 
  •  
17.
  • Andreoni, Igor, et al. (författare)
  • Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 260:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of the electromagnetic counterpart to the binary neutron star (NS) merger GW170817 has opened the era of gravitational-wave multimessenger astronomy. Rapid identification of the optical/infrared kilonova enabled a precise localization of the source, which paved the way to deep multiwavelength follow-up and its myriad of related science results. Fully exploiting this new territory of exploration requires the acquisition of electromagnetic data from samples of NS mergers and other gravitational-wave sources. After GW170817, the frontier is now to map the diversity of kilonova properties and provide more stringent constraints on the Hubble constant, and enable new tests of fundamental physics. The Vera C. Rubin Observatory's Legacy Survey of Space and Time can play a key role in this field in the 2020s, when an improved network of gravitational-wave detectors is expected to reach a sensitivity that will enable the discovery of a high rate of merger events involving NSs (∼tens per year) out to distances of several hundred megaparsecs. We design comprehensive target-of-opportunity observing strategies for follow-up of gravitational-wave triggers that will make the Rubin Observatory the premier instrument for discovery and early characterization of NS and other compact-object mergers, and yet unknown classes of gravitational-wave events.
  •  
18.
  • Bellm, Eric C., et al. (författare)
  • The Zwicky Transient Facility : System Overview, Performance, and First Results
  • 2019
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:995
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg(2) field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope.
  •  
19.
  •  
20.
  • Kasliwal, Mansi M., et al. (författare)
  • Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg(2), a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10(-25) yr(-1). The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (-16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than -16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day(-1) (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than -16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than <57% (<89%) of putative kilonovae could be brighter than -16.6 mag assuming flat evolution (fading by 1 mag day(-1)) at the 90% confidence level. If we further take into account the online terrestrial probability for each GW trigger, we find that no more than <68% of putative kilonovae could be brighter than -16.6 mag. Comparing to model grids, we find that some kilonovae must have M-ej M, X-lan > 10(-4), or > 30 degrees to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of -16 mag would constrain the maximum fraction of bright kilonovae to <25%.
  •  
21.
  • Nordin, J., et al. (författare)
  • Transient processing and analysis using AMPEL : alert management, photometry, and evaluation of light curves
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 631
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Both multi-messenger astronomy and new high-throughput wide-field surveys require flexible tools for the selection and analysis of astrophysical transients.Aims. Here we introduce the alert management, photometry, and evaluation of light curves (AMPEL) system, an analysis framework designed for high-throughput surveys and suited for streamed data. AMPEL combines the functionality of an alert broker with a generic framework capable of hosting user-contributed code; it encourages provenance and keeps track of the varying information states that a transient displays. The latter concept includes information gathered over time and data policies such as access or calibration levels.Methods. We describe a novel ongoing real-time multi-messenger analysis using AMPEL to combine IceCube neutrino data with the alert streams of the Zwicky Transient Facility (ZTF). We also reprocess the first four months of ZTF public alerts, and compare the yields of more than 200 different transient selection functions to quantify efficiencies for selecting Type Ia supernovae that were reported to the Transient Name Server (TNS).Results. We highlight three channels suitable for (1) the collection of a complete sample of extragalactic transients, (2) immediate follow-up of nearby transients, and (3) follow-up campaigns targeting young, extragalactic transients. We confirm ZTF completeness in that all TNS supernovae positioned on active CCD regions were detected.Conclusions. AMPEL can assist in filtering transients in real time, running alert reaction simulations, the reprocessing of full datasets as well as in the final scientific analysis of transient data. This is made possible by a novel way of capturing transient information through sequences of evolving states, and interfaces that allow new code to be natively applied to a full stream of alerts. This text also introduces a method by which users can design their own channels for inclusion in the AMPEL live instance that parses the ZTF stream and the real-time submission of high-quality extragalactic supernova candidates to the TNS.
  •  
22.
  • Pursiainen, M., et al. (författare)
  • Polarimetry of hydrogen-poor superluminous supernovae
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • We present linear polarimetry for seven hydrogen-poor superluminous supernovae (SLSNe-I) of which only one has previously published polarimetric data. The best-studied event is SN 2017gci, for which we present two epochs of spectropolarimetry at +3 d and +29 d post-peak in rest frame, accompanied by four epochs of imaging polarimetry up to +108 d. The spectropolarimetry at +3 d shows increasing polarisation degree P towards the redder wavelengths and exhibits signs of axial symmetry, but at +29 d, P similar to 0 throughout the spectrum, implying that the photosphere of SN 2017gci evolved from a slightly aspherical configuration to a more spherical one in the first month post-peak. However, an increase of P to similar to 0.5% at similar to+55 d accompanied by a different orientation of the axial symmetry compared to +3 d implies the presence of additional sources of polarisation at this phase. The increase in polarisation is possibly caused by interaction with circumstellar matter (CSM), as already suggested by a knee in the light curve and a possible detection of broad H alpha emission at the same phase. We also analysed the sample of all 16 SLSNe-I with polarimetric measurements to date. The data taken during the early spectroscopic phase show consistently low polarisation, indicating at least nearly spherical photospheres. No clear relation between the polarimetry and spectral phase was seen when the spectra resemble Type Ic SNe during the photospheric and nebular phases. The light-curve decline rate, which spans a factor of eight, also shows no clear relation with the polarisation properties. While only slow-evolving SLSNe-I have shown non-zero polarisation, the fast-evolving ones have not been observed at sufficiently late times to conclude that none of them exhibit changing P. However, the four SLSNe-I with increasing polarisation degree also have irregular light-curve declines. For up to half of them, the photometric, spectroscopic, and polarimetric properties are affected by CSM interaction. As such, CSM interaction clearly plays an important role in understanding the polarimetric evolution of SLSNe-I.
  •  
23.
  • Ahrens, Maryon, et al. (författare)
  • Multi-messenger Observations of a Binary Neutron Star Merger
  • 2017
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 848:2
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of similar to 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40(-8)(+8) Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M-circle dot. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at similar to 40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over similar to 10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position similar to 9 and similar to 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
  •  
24.
  • Andreoni, Igor, et al. (författare)
  • Constraining the Kilonova Rate with Zwicky Transient Facility Searches Independent of Gravitational Wave and Short Gamma-Ray Burst Triggers
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 904:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The first binary neutron star merger, GW170817, was accompanied by a radioactivity-powered optical/infrared transient called a kilonova. To date, no compelling kilonova has been found in all-sky optical surveys, independently of short gamma-ray burst and gravitational-wave triggers. In this work, we searched the first 23 months of the Zwicky Transient Facility (ZTF) data stream for candidate kilonovae in the form of rapidly evolving transients. We combined ZTF alert queries with forced point-spread-function photometry and nightly flux stacking to increase our sensitivity to faint and fast transients. Automatic queries yielded >11,200 candidates, 24 of which passed quality checks and selection criteria based on a grid of kilonova models tailored for both binary neutron star and neutron star-black hole mergers. None of the candidates in our sample was deemed a possible kilonova after thorough vetting. The sources that passed our selection criteria are dominated by Galactic cataclysmic variables. We identified two fast transients at high Galactic latitude, one of which is the confirmed afterglow of long-duration GRB.190106A, the other is a possible cosmological afterglow. Using a survey simulation code, we constrained the kilonova rate for a range of models including top-hat, linearly decaying light curves, and synthetic light curves obtained with radiative transfer simulations. For prototypical GW170817-like kilonovae, we constrain the rate to be R < 1775 Gpc(-3) yr(-1) (95% confidence). By assuming a population of kilonovae with the same geometry and composition of GW170817 observed under a uniform viewing angle distribution, we obtained a constraint on the rate of R.<.4029 Gpc(-3) yr(-1).
  •  
25.
  • Andreoni, Igor, et al. (författare)
  • GROWTH on S190814bv : Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star-Black Hole Merger
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 890:2
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2019 August 14, the Advanced LIGO and Virgo interferometers detected the high-significance gravitational wave (GW) signal S190814bv. The GW data indicated that the event resulted from a neutron star-black hole (NSBH) merger, or potentially a low-mass binary BH merger. Due to the low false-alarm rate and the precise localization (23 deg(2) at 90%), S190814bv presented the community with the best opportunity yet to directly observe an optical/near-infrared counterpart to an NSBH merger. To search for potential counterparts, the GROWTH Collaboration performed real-time image subtraction on six nights of public Dark Energy Camera images acquired in the 3 weeks following the merger, covering >98% of the localization probability. Using a worldwide network of follow-up facilities, we systematically undertook spectroscopy and imaging of optical counterpart candidates. Combining these data with a photometric redshift catalog, we ruled out each candidate as the counterpart to S190814bv and placed deep, uniform limits on the optical emission associated with S190814bv. For the nearest consistent GW distance, radiative transfer simulations of NSBH mergers constrain the ejecta mass of S190814bv to be M-ej < 0.04 M-circle dot at polar viewing angles, or M-ej < 0.03 M-circle dot if the opacity is kappa < 2 cm(2)g(-1). Assuming a tidal deformability for the NS at the high end of the range compatible with GW170817 results, our limits would constrain the BH spin component aligned with the orbital momentum to be chi < 0.7 for mass ratios Q < 6, with weaker constraints for more compact NSs.
  •  
26.
  • Bulla, M., et al. (författare)
  • Predicting polarization signatures for double-detonation and delayed-detonation models of Type Ia supernovae
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462:1, s. 1039-1056
  • Tidskriftsartikel (refereegranskat)abstract
    • Calculations of synthetic spectropolarimetry are one means to test multidimensional explosion models for Type Ia supernovae. In a recent paper, we demonstrated that the violent merger of a 1.1 and 0.9 M-circle dot white dwarf binary system is too asymmetric to explain the low polarization levels commonly observed in normal Type Ia supernovae. Here, we present polarization simulations for two alternative scenarios: the sub-Chandrasekhar mass double-detonation and the Chandrasekhar mass delayed-detonation model. Specifically, we study a 2D double-detonation model and a 3D delayed-detonation model, and calculate polarization spectra for multiple observer orientations in both cases. We find modest polarization levels (<1 per cent) for both explosion models. Polarization in the continuum peaks at similar to 0.1-0.3 per cent and decreases aftermaximum light, in excellent agreement with spectropolarimetric data of normal Type Ia supernovae. Higher degrees of polarization are found across individual spectral lines. In particular, the synthetic Si II lambda 6355 profiles are polarized at levels that match remarkably well the values observed in normal Type Ia supernovae, while the low degrees of polarization predicted across the O I lambda 7774 region are consistent with the non-detection of this feature in current data. We conclude that our models can reproduce many of the characteristics of both flux and polarization spectra for well-studied Type Ia supernovae, such as SN 2001el and SN 2012fr. However, the two models considered here cannot account for the unusually high level of polarization observed in extreme cases such as SN 2004dt.
  •  
27.
  • Bulla, Mattia, et al. (författare)
  • White dwarf deflagrations for Type Iax supernovae : polarisation signatures from the explosion and companion interaction
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • Growing evidence suggests that Type Iax supernovae might be the result of thermonuclear deflagrations of Chandrasekhar-mass white dwarfs in binary systems. We carry out Monte Carlo radiative transfer simulations and predict spectropolarimetric features originating from the supernova explosion and subsequent ejecta interaction with the companion star. Specifically, we calculate viewing-angle dependent flux and polarisation spectra for a 3D model simulating the deflagration of a Chandrasekhar-mass white dwarf and, for a second model, simulating the ejecta interaction with a main-sequence star. We find that the intrinsic signal is weakly polarised and only mildly viewing-angle dependent, owing to the overall spherical symmetry of the explosion and the depolarising contribution of iron-group elements dominating the ejecta composition. The interaction with the companion star carves out a cavity in the ejecta and produces a detectable, but modest signal that is significant only at relatively blue wavelengths (less than or similar to 5000 angstrom). In particular, increasingly fainter and redder spectra are predicted for observer orientations further from the cavity, while a modest polarisation signal P similar to 0.2 per cent is found at blue wavelengths for orientations 30 degrees and 45 degrees away from the cavity. We find a reasonable agreement between the interaction model viewed from these orientations and spectropolarimetric data of SN 2005hk and interpret the maximum-light polarisation signal seen at blue wavelengths for this event as a possible signature of the ejecta-companion interaction. We encourage further polarimetric observations of SNe Iax to test whether our results can be extended and generalised to the whole SN Iax class.
  •  
28.
  • Cederroth, Christopher R., et al. (författare)
  • Screening for Circulating Inflammatory Proteins Does Not Reveal Plasma Biomarkers of Constant Tinnitus
  • 2023
  • Ingår i: Journal of the Association for Research in Otolaryngology. - 1525-3961 .- 1438-7573. ; 24:6, s. 593-606
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objective Tinnitus would benefit from an objective biomarker. The goal of this study is to identify plasma biomarkers of constant and chronic tinnitus among selected circulating inflammatory proteins.Methods A case–control retrospective study on 548 cases with constant tinnitus and 548 matched controls from the Swedish Tinnitus Outreach Project (STOP), whose plasma samples were examined using Olink’s Inflammatory panel. Replication and meta-analysis were performed using the same method on samples from the TwinsUK cohort. Participants from LifeGene, whose blood was collected in Stockholm and Umeå, were recruited to STOP for a tinnitus subtyping study. An age and sex matching was performed at the individual level. TwinsUK participants (n = 928) were selected based on self-reported tinnitus status over 2 to 10 years. Primary outcomes include normalized levels for 96 circulating proteins, which were used as an index test. No reference standard was available in this study.Results After adjustment for age, sex, BMI, smoking, hearing loss, and laboratory site, the top proteins identified were FGF-21, MCP4, GDNF, CXCL9, and MCP-1; however, these were no longer statistically significant after correction for multiple testing. Stratification by sex did not yield any significant associations. Similarly, associations with hearing loss or other tinnitus-related comorbidities such as stress, anxiety, depression, hyperacusis, temporomandibular joint disorders, and headache did not yield any significant associations. Analysis in the TwinsUK failed in replicating the top candidates. Meta-analysis of STOP and TwinsUK did not reveal any significant association. Using elastic net regularization, models exhibited poor predictive capacity tinnitus based on inflammatory markers [sensitivity = 0.52 (95% CI 0.47–0.57), specificity = 0.53 (0.48–0.58), positive predictive value = 0.52 (0.47–0.56), negative predictive values = 0.53 (0.49–0.58), and AUC = 0.53 (0.49–0.56)].Discussion Our results did not identify significant associations of the selected inflammatory proteins with constant tinnitus. Future studies examining longitudinal relations among those with more severe tinnitus and using more recent expanded proteomics platforms and sampling of cerebrospinal fluid could increase the likelihood of identifying relevant molecular biomarkers.
  •  
29.
  • Cederroth, Christopher R., et al. (författare)
  • Screening for Circulating Inflammatory Proteins Does Not Reveal Plasma Biomarkers of Constant Tinnitus
  • 2023
  • Ingår i: Journal of the Association for Research in Otolaryngology. - : Springer Nature. - 1525-3961 .- 1438-7573. ; 24:6, s. 593-606
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objective: Tinnitus would benefit from an objective biomarker. The goal of this study is to identify plasma biomarkers of constant and chronic tinnitus among selected circulating inflammatory proteins. Methods: A case–control retrospective study on 548 cases with constant tinnitus and 548 matched controls from the Swedish Tinnitus Outreach Project (STOP), whose plasma samples were examined using Olink’s Inflammatory panel. Replication and meta-analysis were performed using the same method on samples from the TwinsUK cohort. Participants from LifeGene, whose blood was collected in Stockholm and Umeå, were recruited to STOP for a tinnitus subtyping study. An age and sex matching was performed at the individual level. TwinsUK participants (n = 928) were selected based on self-reported tinnitus status over 2 to 10 years. Primary outcomes include normalized levels for 96 circulating proteins, which were used as an index test. No reference standard was available in this study. Results: After adjustment for age, sex, BMI, smoking, hearing loss, and laboratory site, the top proteins identified were FGF-21, MCP4, GDNF, CXCL9, and MCP-1; however, these were no longer statistically significant after correction for multiple testing. Stratification by sex did not yield any significant associations. Similarly, associations with hearing loss or other tinnitus-related comorbidities such as stress, anxiety, depression, hyperacusis, temporomandibular joint disorders, and headache did not yield any significant associations. Analysis in the TwinsUK failed in replicating the top candidates. Meta-analysis of STOP and TwinsUK did not reveal any significant association. Using elastic net regularization, models exhibited poor predictive capacity tinnitus based on inflammatory markers [sensitivity = 0.52 (95% CI 0.47–0.57), specificity = 0.53 (0.48–0.58), positive predictive value = 0.52 (0.47–0.56), negative predictive values = 0.53 (0.49–0.58), and AUC = 0.53 (0.49–0.56)]. Discussion: Our results did not identify significant associations of the selected inflammatory proteins with constant tinnitus. Future studies examining longitudinal relations among those with more severe tinnitus and using more recent expanded proteomics platforms and sampling of cerebrospinal fluid could increase the likelihood of identifying relevant molecular biomarkers.
  •  
30.
  •  
31.
  • Miller, A. A., et al. (författare)
  • ZTF Early Observations of Type Ia Supernovae. II. First Light, the Initial Rise, and Time to Reach Maximum Brightness
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Tidskriftsartikel (refereegranskat)abstract
    • While it is clear that Type Ia supernovae (SNe) are the result of thermonuclear explosions in C/O white dwarfs (WDs), a great deal remains uncertain about the binary companion that facilitates the explosive disruption of the WD. Here, we present a comprehensive analysis of a large, unique data set of 127 SNe Ia with exquisite coverage by the Zwicky Transient Facility (ZTF). High-cadence (six observations per night) ZTF observations allow us to measure the SN rise time and examine its initial evolution. We develop a Bayesian framework to model the early rise as a power law in time, which enables the inclusion of priors in our model. For a volume-limited subset of normal SNe Ia, we find that the mean power-law index is consistent with 2 in the r(ZTF)-band (alpha(r) = 2.01 +/- 0.02), as expected in the expanding fireball model. There are, however, individual SNe that are clearly inconsistent with alpha(r) = 2. We estimate a mean rise time of 18.9 days (with a range extending from similar to 15 to 22 days), though this is subject to the adopted prior. We identify an important, previously unknown, bias whereby the rise times for higherredshift SNe within a flux-limited survey are systematically underestimated. This effect can be partially alleviated if the power-law index is fixed to alpha = 2, in which case we estimate a mean rise time of 21.7 days (with a range from similar to 18 to 23 days). The sample includes a handful of rare and peculiar SNe Ia. Finally, we conclude with a discussion of lessons learned from the ZTF sample that can eventually be applied to observations from the Vera C..Rubin Observatory.
  •  
32.
  • Papadogiannakis, Seméli, 1989-, et al. (författare)
  • R-band light-curve properties of Type Ia supernovae from the (intermediate) Palomar Transient Factory
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 483, s. 5045-5076
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the best 265 sampled R-band light curves of spectroscopically identified Type Ia supernovae (SNe) from the Palomar Transient Factory (PTF; 2009-2012) survey and the intermediate Palomar Transient Factory (iPTF; 2013-2017). A model-independent light-curve template is built from our data-set with the purpose to investigate average properties and diversity in our sample. We searched for multiple populations in the light-curve properties using machine learning tools. We also utilized the long history of our light curves, up to 4000 days, to exclude any significant pre- or post- supernova flares. From the shapes of light curves we found the average rise time in the R band to be 16.8−0.6+0.5'>16.8 +0.5 −0.6  16.8−0.6+0.5 days. Although PTF/iPTF were single-band surveys, by modelling the residuals of the SNe in the Hubble–Lemaître diagram, we estimate the average colour excess of our sample to be ⟨E(B − V)⟩ ≈ 0.05(2) mag and thus the mean corrected peak brightness to be MR = −19.02 ± 0.02 +5log⁡(H0[kms−1Mpc−1]/70)'>+5log(H 0 [kms −1 Mpc −1 ]/70) +5log⁡(H0[kms−1Mpc−1]/70) mag with only weak dependennce on light–curve shape. The intrinsic scatter is found to be σR = 0.186 ± 0.033 mag for the redshift range 0.05 < z < 0.1, without colour corrections of individual SNe. Our analysis shows that Malmquist bias becomes very significant at z = 0.13. A similar limitation is expected for the ongoing Zwicky Transient Facility (ZTF) survey using the same telescope, but new camera expressly designed for ZTF.
  •  
33.
  • Ahumada, Tomas, et al. (författare)
  • In Search of Short Gamma-Ray Burst Optical Counterparts with the Zwicky Transient Facility
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 932:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fermi Gamma-ray Burst Monitor (GBM) triggers on-board in response to ∼40 short gamma-ray bursts (SGRBs) per year; however, their large localization regions have made the search for optical counterparts a challenging endeavour. We have developed and executed an extensive program with the wide field of view of the Zwicky Transient Facility (ZTF) camera, mounted on the Palomar 48 inch Oschin telescope (P48), to perform target-of-opportunity (ToO) observations on 10 Fermi-GBM SGRBs during 2018 and 2020–2021. Bridging the large sky areas with small field-of-view optical telescopes in order to track the evolution of potential candidates, we look for the elusive SGRB afterglows and kilonovae (KNe) associated with these high-energy events. No counterpart has yet been found, even though more than 10 ground-based telescopes, part of the Global Relay of Observatories Watching Transients Happen (GROWTH) network, have taken part in these efforts. The candidate selection procedure and the follow-up strategy have shown that ZTF is an efficient instrument for searching for poorly localized SGRBs, retrieving a reasonable number of candidates to follow up and showing promising capabilities as the community approaches the multi-messenger era. Based on the median limiting magnitude of ZTF, our searches would have been able to retrieve a GW170817-like event up to ∼200 Mpc and SGRB afterglows to z = 0.16 or 0.4, depending on the assumed underlying energy model. Future ToOs will expand the horizon to z = 0.2 and 0.7, respectively.
  •  
34.
  • Andreoni, Igor, et al. (författare)
  • Fast-transient Searches in Real Time with ZTFReST : Identification of Three Optically Discovered Gamma-Ray Burst Afterglows and New Constraints on the Kilonova Rate
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 918:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The most common way to discover extragalactic fast transients, which fade within a few nights in the optical, is via follow-up of gamma-ray burst and gravitational-wave triggers. However, wide-field surveys have the potential to identify rapidly fading transients independently of such external triggers. The volumetric survey speed of the Zwicky Transient Facility (ZTF) makes it sensitive to objects as faint and fast fading as kilonovae, the optical counterparts to binary neutron star mergers, out to almost 200 Mpc. We introduce an open-source software infrastructure, the ZTF REaltime Search and Triggering, ZTFReST, designed to identify kilonovae and fast transients in ZTF data. Using the ZTF alert stream combined with forced point-spread-function photometry, we have implemented automated candidate ranking based on their photometric evolution and fitting to kilonova models. Automated triggering, with a human in the loop for monitoring, of follow-up systems has also been implemented. In 13 months of science validation, we found several extragalactic fast transients independently of any external trigger, including two supernovae with post-shock cooling emission, two known afterglows with an associated gamma-ray burst (ZTF20abbiixp, ZTF20abwysqy), two known afterglows without any known gamma-ray counterpart (ZTF20aajnksq, ZTF21aaeyldq), and three new fast-declining sources (ZTF20abtxwfx, ZTF20acozryr, ZTF21aagwbjr) that are likely associated with GRB200817A, GRB201103B, and GRB210204A. However, we have not found any objects that appear to be kilonovae. We constrain the rate of GW170817-like kilonovae to R < 900 Gpc(-3) yr(-1) (95% confidence). A framework such as ZTFReST could become a prime tool for kilonova and fast-transient discovery with the Vera Rubin Observatory.
  •  
35.
  • Andreoni, Igor, et al. (författare)
  • GROWTH on S190510g : DECam Observation Planning and Follow-up of a Distant Binary Neutron Star Merger Candidate
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 881:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The first two months of the third Advanced LIGO and Virgo observing run (2019 April-May) showed that distant gravitational-wave (GW) events can now be readily detected. Three candidate mergers containing neutron stars (NS) were reported in a span of 15 days, all likely located more than 100 Mpc away. However, distant events such as the three new NS mergers are likely to be coarsely localized, which highlights the importance of facilities and scheduling systems that enable deep observations over hundreds to thousands of square degrees to detect the electromagnetic counterparts. On 2019 May 10 02: 59:39.292 UT the GW candidate S190510g was discovered and initially classified as a binary neutron star (BNS) merger with 98% probability. The GW event was localized within an area of 3462 deg(2), later refined to 1166 deg(2) (90%) at a distance of 227 +/- 92 Mpc. We triggered Target-of-Opportunity observations with the Dark Energy Camera (DECam), a wide-field optical imager mounted at the prime focus of the 4 m Blanco Telescope at Cerro Tololo Inter-American Observatory in Chile. This Letter describes our DECam observations and our real-time analysis results, focusing in particular on the design and implementation of the observing strategy. Within 24 hr of the merger time, we observed 65% of the total enclosed probability of the final skymap with an observing efficiency of 94%. We identified and publicly announced 13 candidate counterparts. S190510g was reclassified 1.7 days after the merger, after our observations were completed, with a BNS merger probability reduced from 98% to 42% in favor of a terrestrial classification.
  •  
36.
  • Bruch, Rachel J., et al. (författare)
  • The Prevalence and Influence of Circumstellar Material around Hydrogen-rich Supernova Progenitors
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 952:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Narrow transient emission lines (flash-ionization features) in early supernova (SN) spectra trace the presence of circumstellar material (CSM) around the massive progenitor stars of core-collapse SNe. The lines disappear within days after the SN explosion, suggesting that this material is spatially confined, and originates from enhanced mass loss shortly (months to a few years) prior to the explosion. We performed a systematic survey of H-rich (Type II) SNe discovered within less than 2 days from the explosion during the first phase of the Zwicky Transient Facility survey (2018–2020), finding 30 events for which a first spectrum was obtained within <2 days from the explosion. The measured fraction of events showing flash-ionization features (>36% at the 95% confidence level) confirms that elevated mass loss in massive stars prior to SN explosion is common. We find that SNe II showing flash-ionization features are not significantly brighter, nor bluer, nor more slowly rising than those without. This implies that CSM interaction does not contribute significantly to their early continuum emission, and that the CSM is likely optically thin. We measured the persistence duration of flash-ionization emission and find that most SNe show flash features for ≈5 days. Rarer events, with persistence timescales >10 days, are brighter and rise longer, suggesting these may be intermediate between regular SNe II and strongly interacting SNe IIn.
  •  
37.
  • Bulla, M., et al. (författare)
  • Polarization spectral synthesis for Type Ia supernova explosion models
  • 2015
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 450:1, s. 967-981
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a Monte Carlo radiative transfer technique for calculating synthetic spectropolarimetry for multidimensional supernova explosion models. The approach utilizes 'virtual-packets' that are generated during the propagation of the Monte Carlo quanta and used to compute synthetic observables for specific observer orientations. Compared to extracting synthetic observables by direct binning of emergent Monte Carlo quanta, this virtual-packet approach leads to a substantial reduction in the Monte Carlo noise. This is not only vital for calculating synthetic spectropolarimetry (since the degree of polarization is typically very small) but also useful for calculations of light curves and spectra. We first validate our approach via application of an idealized test code to simple geometries. We then describe its implementation in the Monte Carlo radiative transfer code ARTIS and present test calculations for simple models for Type Ia supernovae. Specifically, we use the well-known one-dimensional W7 model to verify that our scheme can accurately recover zero polarization from a spherical model, and to demonstrate the reduction in Monte Carlo noise compared to a simple packet-binning approach. To investigate the impact of aspherical ejecta on the polarization spectra, we then use ARTIS to calculate synthetic observables for prolate and oblate ellipsoidal models with Type Ia supernova compositions.
  •  
38.
  • Bulla, Mattia, et al. (författare)
  • Polarized kilonovae from black hole-neutron star mergers
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 501:2, s. 1891-1899
  • Tidskriftsartikel (refereegranskat)abstract
    • We predict linear polarization for a radioactively powered kilonova following the merger of a black hole and a neutron star. Specifically, we perform 3D Monte Carlo radiative transfer simulations for two different models, both featuring a lanthanide-rich dynamical ejecta component from numerical-relativity simulations while only one including an additional lanthanide-free disc-wind component. We calculate polarization spectra for nine different orientations at 1.5, 2.5, and 3.5 d after the merger and in the 0.1-2 mu m wavelength range. We find that both models are polarized at a detectable level 1.5 d after the merger while show negligible levels thereafter. The polarization spectra of the two models are significantly different. The model lacking a disc wind shows no polarization in the optical, while a signal increasing at longer wavelengths and reaching similar to 1-6 per cent at 2 mu m depending on the orientation. The model with a disc-wind component, instead, features a characteristic 'double-peak' polarization spectrum with one peak in the optical and the other in the infrared. Polarimetric observations of future events will shed light on the debated neutron richness of the disc-wind component. The detection of optical polarization would unambiguously reveal the presence of a lanthanide-free disc-wind component, while polarization increasing from zero in the optical to a peak in the infrared would suggest a lanthanide-rich composition for the whole ejecta. Future polarimetric campaigns should prioritize observations in the first similar to 48 h and in the 0.5-2 mu m range, where polarization is strongest, but also explore shorter wavelengths/later times where no signal is expected from the kilonova and the interstellar polarization can be safely estimated.
  •  
39.
  • Bulla, Mattia, et al. (författare)
  • The origin of polarization in kilonovae and the case of the gravitational-wave counterpart AT 2017gfo
  • 2019
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 3:1, s. 99-106
  • Tidskriftsartikel (refereegranskat)abstract
    • The gravitational-wave event GW 170817 was generated by the coalescence of two neutron stars and produced an electromagnetic transient, labelled AT 2017gfo, that was the target of a massive observational campaign. Polarimetry is a powerful diagnostic tool for probing the geometry and emission processes of unresolved sources, and the observed linear polarization for this event was consistent with being mostly induced by intervening dust, suggesting that the intrinsic emission was weakly polarized (P < 0.4-0.5%). Here we present a detailed analysis of the linear polarization expected from a merging neutron-star binary system by means of 3D Monte Carlo radiative transfer simulations assuming a range of possible configurations, wavelengths, epochs and viewing angles. We find that polarization originates from the non-homogeneous opacity distribution within the ejecta and can reach levels of 1% at early times (one to two days after the merger) and in the optical R band. Smaller polarization signals are expected at later epochs and different wavelengths. From the viewing-angle dependence of the polarimetric signal, we constrain the observer orientation of AT 2017gfo to within about 65 degrees from the polar direction. The detection of non-zero polarization in future events will unambiguously reveal the presence of a lanthanide-free ejecta component and unveil its spatial and angular distribution.
  •  
40.
  • Bulla, M., et al. (författare)
  • Type Ia supernovae from violent mergers of carbon-oxygen white dwarfs : polarization signatures
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 455:1, s. 1060-1070
  • Tidskriftsartikel (refereegranskat)abstract
    • The violent merger of two carbon-oxygen white dwarfs has been proposed as a viable progenitor for some Type Ia supernovae. However, it has been argued that the strong ejecta asymmetries produced by this model might be inconsistent with the low degree of polarization typically observed in Type Ia supernova explosions. Here, we test this claim by carrying out a spectropolarimetric analysis for the model proposed by Pakmor et al. for an explosion triggered during the merger of a 1.1 and 0.9 M-circle dot carbon-oxygen white dwarf binary system. Owing to the asymmetries of the ejecta, the polarization signal varies significantly with viewing angle. We find that polarization levels for observers in the equatorial plane are modest (less than or similar to 1 per cent) and show clear evidence for a dominant axis, as a consequence of the ejecta symmetry about the orbital plane. In contrast, orientations out of the plane are associated with higher degrees of polarization and departures from a dominant axis. While the particular model studied here gives a good match to highly polarized events such as SN 2004dt, it has difficulties in reproducing the low polarization levels commonly observed in normal Type Ia supernovae. Specifically, we find that significant asymmetries in the element distribution result in a wealth of strong polarization features that are not observed in the majority of currently available spectropolarimetric data of Type Ia supernovae. Future studies will map out the parameter space of the merger scenario to investigate if alternative models can provide better agreement with observations.
  •  
41.
  • Bulla, Mattia, et al. (författare)
  • ZTF Early Observations of Type Ia Supernovae. III. Early-time Colors As a Test for Explosion Models and Multiple Populations
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Colors of Type Ia supernovae (SNe Ia) in the first few days after explosion provide a potential discriminant between different models. In this paper, we present g - r colors of 65 SNe Ia discovered within 5 days from first light by the Zwicky Transient Facility in 2018, a sample that is about three times larger than that in the literature. We find that g - r colors are intrinsically rather homogeneous at early phases, with about half of the dispersion attributable to photometric uncertainties (0.18 mag). Colors are nearly constant starting from 6 days after first light (g-r similar to -0.15 mag), while the time evolution at earlier epochs is characterized by a continuous range of slopes, from events rapidly transitioning from redder to bluer colors (slope of similar to-0.25 mag day(-1)) to events with a flatter evolution. The continuum in the slope distribution is in good agreement both with models requiring some amount of Ni-56 mixed in the outermost regions of the ejecta and with double-detonation models having thin helium layers (M-He = 0.01 M-circle dot) and varying carbon-oxygen core masses. At the same time, six events show evidence for a distinctive red bump signature predicted by double-detonation models with larger helium masses. We finally identify a significant correlation between the early-timeg - rslopes and supernova brightness, with brighter events associated to flatter color evolution (p-value = 0.006). The distribution of slopes, however, is consistent with being drawn from a single population, with no evidence for two components as claimed in the literature based on B - V colors.
  •  
42.
  • Coughlin, M. W., et al. (författare)
  • Standardizing kilonovae and their use as standard candles to measure the Hubble constant
  • 2020
  • Ingår i: Physical Review Research. - : American Physical Society (APS). - 2643-1564. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of GW170817 is revolutionizing many areas of astrophysics with the joint observation of gravitational waves and electromagnetic emissions. These multimessenger events provide a new approach to determine the Hubble constant, thus, they are a promising candidate for mitigating the tension between measurements of type-Ia supernovae via the local distance ladder and the cosmic microwave background. In addition to the "standard siren"provided by the gravitational-wave measurement, the kilonova itself has characteristics that allow one to improve existing measurements or to perform yet another, independent measurement of the Hubble constant without gravitational-wave information. Here, we employ standardization techniques borrowed from the type-Ia community and apply them to kilonovae, not using any information from the gravitational-wave signal. We use two versions of this technique, one derived from direct observables measured from the light curve, and the other based on inferred ejecta parameters, e.g., mass, velocity, and composition, for two different models. These lead to Hubble constant measurements of H0=109-35+49 km s-1 Mpc-1 for the measured analysis, and H0=85-17+22 km s-1 Mpc-1 and H0=79-15+23 km s-1 Mpc-1 for the inferred analyses. This measurement has error bars within ∼2 to the gravitational-wave measurements (H0=74-8+16 km s-1 Mpc-1), showing its promise as an independent constraint on H0.
  •  
43.
  • Dominoni, Davide M., et al. (författare)
  • Methods in field chronobiology
  • 2017
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 1471-2970 .- 0962-8436. ; 372:1734
  • Forskningsöversikt (refereegranskat)abstract
    • Chronobiological research has seen a continuous development of novel approaches and techniques to measure rhythmicity at different levels of biological organization from locomotor activity (e.g. migratory restlessness) to physiology (e.g. temperature and hormone rhythms, and relatively recently also in genes, proteins and metabolites). However, the methodological advancements in this field have been mostly and sometimes exclusively used only in indoor laboratory settings. In parallel, there has been an unprecedented and rapid improvement in our ability to track animals and their behaviour in the wild. However, while the spatial analysis of tracking data is widespread, its temporal aspect is largely unexplored. Here, we review the tools that are available or have potential to record rhythms in thewild animals with emphasis on currently overlooked approaches and monitoring systems. We then demonstrate, in three question-driven case studies, how the integration of traditional and newer approaches can help answer novel chronobiological questions in free-living animals. Finally, we highlight unresolved issues in field chronobiology that may benefit from technological development in the future. As most of the studies in the field are descriptive, the future challenge lies in applying the diverse technologies to experimental set-ups in the wild.
  •  
44.
  •  
45.
  •  
46.
  • Heinzel, J., et al. (författare)
  • Comparing inclination-dependent analyses of kilonova transients
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 502:2, s. 3057-3065
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of the optical transient AT2017gfo proved that binary neutron star mergers are progenitors of kilonovae (KNe). Using a combination of numerical-relativity and radiative-transfer simulations, the community has developed sophisticated models for these transients for a wide portion of the expected parameter space. Using these simulations and surrogate models made from them, it has been possible to perform Bayesian inference of the observed signals to infer properties of the ejected matter. It has been pointed out that combining inclination constraints derived from the KN with gravitational-wave measurements increases the accuracy with which binary parameters can be estimated, in particular breaking the distance-inclination degeneracy from gravitational wave inference. To avoid bias from the unknown ejecta geometry, constraints on the inclination angle for AT2017gfo should be insensitive to the employed models. In this work, we compare different assumptions about the ejecta and radiative reprocesses used by the community and we investigate their impact on the parameter inference. While most inferred parameters agree, we find disagreement between posteriors for the inclination angle for different geometries that have been used in the current literature. According to our study, the inclusion of reprocessing of the photons between different ejecta types improves the modeling fits to AT2017gfo and, in some cases, affects the inferred constraints. Our study motivates the inclusion of large similar to 1-mag uncertainties in the KN models employed for Bayesian analysis to capture yet unknown systematics, especially when inferring inclination angles, although smaller uncertainties seem appropriate to capture model systematics for other intrinsic parameters. We can use this method to impose soft constraints on the ejecta geometry of the KN AT2017gfo.
  •  
47.
  • Maguire, Kate, et al. (författare)
  • SN 2020udy : an SN Iax with strict limits on interaction consistent with a helium-star companion
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 525:1, s. 1210-1228
  • Tidskriftsartikel (refereegranskat)abstract
    • Early observations of transient explosions can provide vital clues to their progenitor origins. In this paper, we present the nearby Type Iax (02cx-like) supernova (SN), SN 2020udy, that was discovered within hours (∼7 h) of estimated first light. An extensive data set of ultra-violet, optical, and near-infrared observations was obtained, covering out to ∼150 d after explosion. SN 2020udy peaked at −17.86 ± 0.43 mag in the r band and evolved similarly to other ‘luminous’ SNe Iax, such as SNe 2005hk and 2012Z. Its well-sampled early light curve allows strict limits on companion interaction to be placed. Main-sequence companion stars with masses of 2 and 6 M⊙ are ruled out at all viewing angles, while a helium-star companion is allowed from a narrow range of angles (140–180° away from the companion). The spectra and light curves of SN 2020udy are in good agreement with those of the ‘N5def’ deflagration model of a near Chandrasekhar-mass carbon–oxygen white dwarf. However, as has been seen in previous studies of similar luminosity events, SN 2020udy evolves slower than the model. Broad-band linear polarization measurements taken at and after peak are consistent with no polarization, in agreement with the predictions of the companion-star configuration from the early light-curve measurements. The host galaxy environment is low metallicity and is consistent with a young stellar population. Overall, we find the most plausible explosion scenario to be the incomplete disruption of a CO white dwarf near the Chandrasekhar-mass limit, with a helium-star companion.
  •  
48.
  • Mohite, Siddharth R., et al. (författare)
  • Inferring Kilonova Population Properties with a Hierarchical Bayesian Framework. I. Nondetection Methodology and Single-event Analyses
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 925:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present nimbus: a hierarchical Bayesian framework to infer the intrinsic luminosity parameters of kilonovae (KNe) associated with gravitational-wave (GW) events, based purely on nondetections. This framework makes use of GW 3D distance information and electromagnetic upper limits from multiple surveys for multiple events and self-consistently accounts for the finite sky coverage and probability of astrophysical origin. The framework is agnostic to the brightness evolution assumed and can account for multiple electromagnetic passbands simultaneously. Our analyses highlight the importance of accounting for model selection effects, especially in the context of nondetections. We show our methodology using a simple, two-parameter linear brightness model, taking the follow-up of GW190425 with the Zwicky Transient Facility as a single-event test case for two different prior choices of model parameters: (i) uniform/uninformative priors and (ii) astrophysical priors based on surrogate models of Monte Carlo radiative-transfer simulations of KNe. We present results under the assumption that the KN is within the searched region to demonstrate functionality and the importance of prior choice. Our results show consistency with simsurvey-an astronomical survey simulation tool used previously in the literature to constrain the population of KNe. While our results based on uniform priors strongly constrain the parameter space, those based on astrophysical priors are largely uninformative, highlighting the need for deeper constraints. Future studies with multiple events having electromagnetic follow-up from multiple surveys should make it possible to constrain the KN population further.
  •  
49.
  • Pérez-García, M. A., et al. (författare)
  • Hubble constant and nuclear equation of state from kilonova spectro-photometric light curves
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • The merger of two compact objects of which at least one is a neutron star is signalled by transient electromagnetic emission in a kilonova (KN). This event is accompanied by gravitational waves and possibly other radiation messengers such as neutrinos or cosmic rays. The electromagnetic emission arises from the radioactive decay of heavy r-process elements synthesized in the material ejected during and after the merger. In this paper we show that the analysis of KNe light curves can provide cosmological distance measurements and constrain the properties of the ejecta. In this respect, MAAT, the new Integral Field Unit in the OSIRIS spectrograph on the 10.4 m Gran Telescopio CANARIAS (GTC), is well suited for the study of KNe by performing absolute spectro-photometry over the entire 3600 − 10 000 Å spectral range. Here, we study the most representative cases regarding the scientific interest of KNe from binary neutron stars, and we evaluate the observational prospects and performance of MAAT on the GTC to do the following: (a) study the impact of the equation of state on the KN light curve, and determine to what extent bounds on neutron star (NS) radii or compactness deriving from KN peak magnitudes can be identified and (b) measure the Hubble constant, H0, with precision improved by up to 40%, when both gravitational wave data and photometric-light curves are used. In this context we discuss how the equation of state, the viewing angle, and the distance affect the precision and estimated value of H0.
  •  
50.
  • Petrushevska, Tanja, et al. (författare)
  • Testing for redshift evolution of Type Ia supernovae using the strongly lensed PS1-10afx at z=1.4
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 603
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The light from distant supernovae (SNe) can be magnified through gravitational lensing when a foreground galaxy is located along the line of sight. This line-up allows for detailed studies of SNe at high redshift that otherwise would not be possible. Spectroscopic observations of lensed high-redshift Type Ia supernovae (SNe Ia) are of particular interest since they can be used to test for evolution of their intrinsic properties. The use of SNe Ia for probing the cosmic expansion history has proven to be an extremely powerful method for measuring cosmological parameters. However, if systematic redshift-dependent properties are found, their usefulness for future surveys could be challenged. Aims. We investigate whether the spectroscopic properties of the strongly lensed and very distant SN Ia PS1-10afx at z = 1.4, deviates from the well-studied populations of normal SNe Ia at nearby or intermediate distance. Methods. We created median spectra from nearby and intermediate-redshift spectroscopically normal SNe Ia from the literature at -5 and + 1 days from light-curve maximum. We then compared these median spectra to those of PS1-10afx. Results. We do not find signs of spectral evolution in PS1-10afx. The observed deviation between PS1-10afx and the median templates are within what is found for SNe at low and intermediate redshift. There is a noticeable broad feature centred at lambda similar to 3500 angstrom which is present only to a lesser extent in individual low-and intermediate-redshift SN Ia spectra. From a comparison with a recently developed explosion model, we find this feature to be dominated by iron peak elements, in particular, singly ionized cobalt and chromium.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 53
Typ av publikation
tidskriftsartikel (51)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (53)
Författare/redaktör
Bulla, Mattia (38)
Sollerman, Jesper (16)
Kasliwal, Mansi M. (14)
Goobar, Ariel (14)
Kool, Erik C. (10)
Maguire, K. (10)
visa fler...
Kulkarni, S. R. (10)
Coughlin, Michael W. (10)
Gal-Yam, A. (9)
Inserra, C. (9)
De, Kishalay (9)
Bellm, Eric C. (9)
Sagués Carracedo, An ... (8)
Anand, Shreya (8)
Andreoni, Igor (8)
Cenko, S. Bradley (8)
Graham, Matthew J. (8)
Laher, Russ R. (8)
Smartt, S. J. (7)
Galbany, L. (7)
Kasliwal, M. M. (7)
Fremling, C. (7)
Ahumada, Tomas (7)
Singer, Leo P. (7)
Masci, Frank J. (7)
Fraser, M. (6)
Gromadzki, M. (6)
Kankare, E. (6)
Leloudas, G. (6)
Nicholl, M. (6)
Young, D. R. (6)
Fremling, Christoffe ... (6)
Sollerman, Jesper, 1 ... (6)
Coughlin, M. W. (6)
Kaplan, David L. (6)
Yao, Yuhan (6)
Bloom, Joshua S. (5)
Perley, Daniel A. (5)
Gutierrez, C. P. (5)
Smith, K. W. (5)
Miller, A. A. (5)
Taddia, Francesco (5)
Schulze, S. (5)
Feindt, Ulrich (5)
Gatkine, Pradip (5)
Ho, Anna Y. Q. (5)
Rusholme, Ben (5)
Patat, F. (5)
Taubenberger, S. (5)
Anderson, J. P. (5)
visa färre...
Lärosäte
Stockholms universitet (46)
Kungliga Tekniska Högskolan (18)
Karolinska Institutet (7)
Uppsala universitet (2)
Lunds universitet (1)
Chalmers tekniska högskola (1)
visa fler...
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (53)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (46)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy