SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bunker Aditi) "

Sökning: WFRF:(Bunker Aditi)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arisco, Nicholas J, et al. (författare)
  • The effect of extreme temperature and precipitation on cause-specific deaths in rural Burkina Faso : a longitudinal study
  • 2023
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 7:6, s. e478-e489
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Extreme weather is becoming more common due to climate change and threatens human health through climate-sensitive diseases, with very uneven effects around the globe. Low-income, rural populations in the Sahel region of west Africa are projected to be severely affected by climate change. Climate-sensitive disease burdens have been linked to weather conditions in areas of the Sahel, although comprehensive, disease-specific empirical evidence on these relationships is scarce. In this study, we aim to provide an analysis of the associations between weather conditions and cause-specific deaths over a 16-year period in Nouna, Burkina Faso.Methods: In this longitudinal study, we used de-identified, daily cause-of-death data from the Health and Demographic Surveillance System led by the Centre de Recherche en Santé de Nouna (CRSN) in the National Institute of Public Health of Burkina Faso, to assess temporal associations between daily and weekly weather conditions (maximum temperature and total precipitation) and deaths attributed to specific climate-sensitive diseases. We implemented distributed-lag zero-inflated Poisson models for 13 disease-age groups at daily and weekly time lags. We included all deaths from climate-sensitive diseases in the CRSN demographic surveillance area from Jan 1, 2000 to Dec 31, 2015 in the analysis. We report the exposure–response relationships at percentiles representative of the exposure distributions of temperature and precipitation in the study area.Findings: Of 8256 total deaths in the CRSN demographic surveillance area over the observation period, 6185 (74·9%) were caused by climate-sensitive diseases. Deaths from communicable diseases were most common. Heightened risk of death from all climate-sensitive communicable diseases, and malaria (both across all ages and in children younger than 5 years), was associated with 14-day lagged daily maximum temperatures at or above 41·1°C, the 90th percentile of daily maximum temperatures, compared with 36·4°C, the median (all communicable diseases: 41·9°C relative risk [RR] 1·38 [95% CI 1·08–1·77], 42·8°C 1·57 [1·13–2·18]; malaria all ages: 41·1°C 1·47 [1·05–2·05], 41·9°C 1·78 [1·21–2·61], 42·8°C 2·35 [1·37–4·03]; malaria younger than 5 years: 41·9°C 1·67 [1·02–2·73]). Heightened risk of death from communicable diseases was also associated with 14-day lagged total daily precipitation at or below 0·1 cm, the 49th percentile of total daily precipitation, compared with 1·4 cm, the median (all communicable diseases: 0·0 cm 1·04 [1·02–1·07], 0·1 cm 1·01 [1·006–1·02]; malaria all ages: 0·0 cm 1·04 [1·01–1·08], 0·1 cm 1·02 [1·00–1·03]; malaria younger than 5 years: 0·0 cm 1·05 [1·01–1·10], 0·1 cm 1·02 [1·00–1·04]). The only significant association with a non-communicable disease outcome was a heightened risk of death from climate-sensitive cardiovascular diseases in individuals aged 65 years and older associated with 7-day lagged daily maximum temperatures at or above 41·9°C (41·9°C 2·25 [1·06–4·81], 42·8°C 3·68 [1·46–9·25]). Over 8 cumulative weeks, we found that the risk of death from communicable diseases was heightened at all ages from temperatures at or above 41·1°C (41·1°C 1·23 [1·05–1·43], 41·9°C 1·30 [1·08–1·56], 42·8°C 1·35 [1·09–1·66]) and risk of death from malaria was heightened by precipitation at or above 45·3 cm (all ages: 45·3 cm 1·68 [1·31–2·14], 61·6 cm 1·72 [1·27–2·31], 87·7 cm 1·72 [1·16–2·55]; children younger than 5 years: 45·3 cm 1·81 [1·36–2·41], 61·6 cm 1·82 [1·29–2·56], 87·7 cm 1·93 [1·24–3·00]).Interpretation: Our results indicate a high burden of death related to extreme weather in the Sahel region of west Africa. This burden is likely to increase with climate change. Climate preparedness programmes—such as extreme weather alerts, passive cooling architecture, and rainwater drainage—should be tested and implemented to prevent deaths from climate-sensitive diseases in vulnerable communities in Burkina Faso and the wider Sahel region. 
  •  
2.
  • Armando, Chaibo Jose, et al. (författare)
  • Climate variability, socio-economic conditions and vulnerability to malaria infections in Mozambique 2016–2018 : a spatial temporal analysis
  • 2023
  • Ingår i: Frontiers In Public Health. - : Frontiers Media S.A.. - 2296-2565. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Temperature, precipitation, relative humidity (RH), and Normalized Different Vegetation Index (NDVI), influence malaria transmission dynamics. However, an understanding of interactions between socioeconomic indicators, environmental factors and malaria incidence can help design interventions to alleviate the high burden of malaria infections on vulnerable populations. Our study thus aimed to investigate the socioeconomic and climatological factors influencing spatial and temporal variability of malaria infections in Mozambique.Methods: We used monthly malaria cases from 2016 to 2018 at the district level. We developed an hierarchical spatial–temporal model in a Bayesian framework. Monthly malaria cases were assumed to follow a negative binomial distribution. We used integrated nested Laplace approximation (INLA) in R for Bayesian inference and distributed lag nonlinear modeling (DLNM) framework to explore exposure-response relationships between climate variables and risk of malaria infection in Mozambique, while adjusting for socioeconomic factors.Results: A total of 19,948,295 malaria cases were reported between 2016 and 2018 in Mozambique. Malaria risk increased with higher monthly mean temperatures between 20 and 29°C, at mean temperature of 25°C, the risk of malaria was 3.45 times higher (RR 3.45 [95%CI: 2.37–5.03]). Malaria risk was greatest for NDVI above 0.22. The risk of malaria was 1.34 times higher (1.34 [1.01–1.79]) at monthly RH of 55%. Malaria risk reduced by 26.1%, for total monthly precipitation of 480 mm (0.739 [95%CI: 0.61–0.90]) at lag 2 months, while for lower total monthly precipitation of 10 mm, the risk of malaria was 1.87 times higher (1.87 [1.30–2.69]). After adjusting for climate variables, having lower level of education significantly increased malaria risk (1.034 [1.014–1.054]) and having electricity (0.979 [0.967–0.992]) and sharing toilet facilities (0.957 [0.924–0.991]) significantly reduced malaria risk.Conclusion: Our current study identified lag patterns and association between climate variables and malaria incidence in Mozambique. Extremes in climate variables were associated with an increased risk of malaria transmission, peaks in transmission were varied. Our findings provide insights for designing early warning, prevention, and control strategies to minimize seasonal malaria surges and associated infections in Mozambique a region where Malaria causes substantial burden from illness and deaths.
  •  
3.
  • Bunker, Aditi, et al. (författare)
  • Effects of Air Temperature on Climate-Sensitive Mortality and Morbidity Outcomes in the Elderly; a Systematic Review and Meta-analysis of Epidemiological Evidence
  • 2016
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 6, s. 258-268
  • Forskningsöversikt (refereegranskat)abstract
    • Introduction: Climate change and rapid population ageing are significant public health challenges. Understanding which health problems are affected by temperature is important for preventing heat and cold-related deaths and illnesses, particularly in the elderly. Here we present a systematic review and meta-analysis on the effects of ambient hot and cold temperature (excluding heat/cold wave only studies) on elderly (65+ years) mortality and morbidity.Methods: Time-series or case-crossover studies comprising cause-specific cases of elderly mortality (n = 3,933,398) or morbidity (n = 12,157,782) were pooled to obtain a percent change (%) in risk for temperature exposure on cause-specific disease outcomes using a random-effects meta-analysis. Results: A 1 degrees C temperature rise increased cardiovascular (3.44%, 95% CI 3.10-3.78), respiratory (3.60%, 3.18-4.02), and cerebrovascular (1.40%, 0.06-2.75) mortality. A 1 degrees C temperature reduction increased respiratory (2.90%, 1.84-3.97) and cardiovascular (1.66%, 1.19-2.14) mortality. The greatest risk was associated with cold-induced pneumonia (6.89%, 20-12.99) and respiratory morbidity (4.93% 1.54-8.44). A 1 degrees C temperature rise increased cardiovascular, respiratory, diabetes mellitus, genitourinary, infectious disease and heat-related morbidity.Discussion: Elevated risks for the elderly were prominent for temperature-induced cerebrovascular, cardiovascular, diabetes, genitourinary, infectious disease, heat-related, and respiratory outcomes. These risks will likely increase with climate change and global ageing.
  •  
4.
  • Bunker, Aditi, et al. (författare)
  • Excess burden of non-communicable disease years of life lost from heat in rural Burkina Faso : a time series analysis of the years 2000-2010
  • 2017
  • Ingår i: BMJ Open. - : BMJ Publishing Group Ltd. - 2044-6055. ; 7:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Investigate the association of heat exposure on years of life lost (YLL) from non-communicable diseases (NCD) in Nouna, Burkina Faso, between 2000 and 2010.Design: Daily time series regression analysis using distributed lag non-linear models, assuming a quasi-Poisson distribution of YLL.Setting: Nouna Health and Demographic Surveillance System, Kossi Province, Rural Burkina Faso.Participants: 18 367 NCD-YLL corresponding to 790 NCD deaths recorded in the Nouna Health and Demographic Surveillance Site register over 11 years.Main outcome measure: Excess mean daily NCD-YLL were generated from the relative risk of maximum daily temperature on NCD-YLL, including effects delayed up to 14 days.Results: Daily average NCD-YLL were 4.6, 2.4 and 2.1 person-years for all ages, men and women, respectively. Moderate 4-day cumulative rise in maximum temperature from 36.4 degrees C (50th percentile) to 41.4 degrees C (90th percentile) resulted in 4.44 (95% CI 0.24 to 12.28) excess daily NCDYLL for all ages, rising to 7.39 (95% CI 0.32 to 24.62) at extreme temperature (42.8 degrees C; 99th percentile). The strongest health effects manifested on the day of heat exposure (lag 0), where 0.81 (95% CI 0.13 to 1.59) excess mean NCD-YLL occurred daily at 41.7 degrees C compared with 36.4 degrees C, diminishing in statistical significance after 4 days. At lag 0, daily excess mean NCD-YLL were higher for men, 0.58 (95% CI 0.11 to 1.15) compared with women, 0.15 (95% CI -0.25 to 9.63) at 41.7 degrees C vs 36.4 degrees C.Conclusion: Premature death from NCD was elevated significantly with moderate and extreme heat exposure. These findings have important implications for developing adaptation and mitigation strategies to reduce ambient heat exposure and preventive measures for limiting NCD in Africa.
  •  
5.
  • Bunker, Aditi, et al. (författare)
  • The effects of cool roofs on health, environmental, and economic outcomes in rural Africa : study protocol for a community-based cluster randomized controlled trial
  • 2024
  • Ingår i: Trials. - : BioMed Central (BMC). - 1745-6215. ; 25:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: High ambient air temperatures in Africa pose significant health and behavioral challenges in populations with limited access to cooling adaptations. The built environment can exacerbate heat exposure, making passive home cooling adaptations a potential method for protecting occupants against indoor heat exposure.Methods: We are conducting a 2-year community-based stratified cluster randomized controlled trial (cRCT) implementing sunlight-reflecting roof coatings, known as “cool roofs,” as a climate change adaptation intervention for passive indoor home cooling. Our primary research objective is to investigate the effects of cool roofs on health, indoor climate, economic, and behavioral outcomes in rural Burkina Faso. This cRCT is nested in the Nouna Health and Demographic Surveillance System (HDSS), a population-based dynamic cohort study of all people living in a geographically contiguous area covering 59 villages, 14305 households and 28610 individuals. We recruited 1200 participants, one woman and one man, each in 600 households in 25 villages in the Nouna HDSS. We stratified our sample by (i) village and (ii) two prevalent roof types in this area of Burkina Faso: mud brick and tin. We randomized the same number of people (12) and homes (6) in each stratum 1:1 to receiving vs. not receiving the cool roof. We are collecting outcome data on one primary endpoint - heart rate, (a measure of heat stress) and 22 secondary outcomes encompassing indoor climate parameters, blood pressure, body temperature, heat-related outcomes, blood glucose, sleep, cognition, mental health, health facility utilization, economic and productivity outcomes, mosquito count, life satisfaction, gender-based violence, and food consumption. We followed all participants for 2 years, conducting monthly home visits to collect objective and subjective outcomes. Approximately 12% of participants (n = 152) used smartwatches to continuously measure endpoints including heart rate, sleep and activity.Discussion: Our study demonstrates the potential of large-scale cRCTs to evaluate novel climate change adaptation interventions and provide evidence supporting investments in heat resilience in sub-Saharan Africa. By conducting this research, we will contribute to better policies and interventions to help climate-vulnerable populations ward off the detrimental effects of extreme indoor heat on health.Trial registration: German Clinical Trials Register (DRKS) DRKS00023207. Registered on April 19, 2021.
  •  
6.
  • Corvetto, Julia Feriato, et al. (författare)
  • Impact of heat on mental health emergency visits : a time series study from all public emergency centres, in Curitiba, Brazil
  • 2023
  • Ingår i: BMJ Open. - : BMJ Publishing Group Ltd. - 2044-6055. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Quantify the risk of mental health (MH)-related emergency department visits (EDVs) due to heat, in the city of Curitiba, Brazil.Design: Daily time series analysis, using quasi-Poisson combined with distributed lag non-linear model on EDV for MH disorders, from 2017 to 2021.Setting: All nine emergency centres from the public health system, in Curitiba.Participants: 101 452 EDVs for MH disorders and suicide attempts over 5 years, from patients residing inside the territory of Curitiba.Main outcome measure: Relative risk of EDV (RR EDV) due to extreme mean temperature (24.5°C, 99th percentile) relative to the median (18.02°C), controlling for long-term trends, air pollution and humidity, and measuring effects delayed up to 10 days.Results: Extreme heat was associated with higher single-lag EDV risk of RR EDV 1.03(95% CI 1.01 to 1.05 - single-lag 2), and cumulatively of RR EDV 1.15 (95% CI 1.05 to 1.26 - lag-cumulative 0-6). Strong risk was observed for patients with suicide attempts (RR EDV 1.85, 95% CI 1.08 to 3.16) and neurotic disorders (RR EDV 1.18, 95% CI 1.06 to 1.31). As to demographic subgroups, females (RR EDV 1.20, 95% CI 1.08 to 1.34) and patients aged 18-64 (RR EDV 1.18, 95% CI 1.07 to 1.30) were significantly endangered. Extreme heat resulted in lower risks of EDV for patients with organic disorders (RR EDV 0.60, 95% CI 0.40 to 0.89), personality disorders (RR EDV 0.48, 95% CI 0.26 to 0.91) and MH in general in the elderly ≥65 (RR EDV 0.77, 95% CI 0.60 to 0.98). We found no significant RR EDV among males and patients aged 0-17.Conclusion: The risk of MH-related EDV due to heat is elevated for the entire study population, but very differentiated by subgroups. This opens avenue for adaptation policies in healthcare: such as monitoring populations at risk and establishing an early warning systems to prevent exacerbation of MH episodes and to reduce suicide attempts. Further studies are welcome, why the reported risk differences occur and what, if any, role healthcare seeking barriers might play.
  •  
7.
  • Corvetto, Julia F., et al. (författare)
  • Private vs. public emergency visits for mental health due to heat : an indirect socioeconomic assessment of heat vulnerability and healthcare access, in Curitiba, Brazil
  • 2024
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 934
  • Tidskriftsartikel (refereegranskat)abstract
    • Few studies have explored the influence of socioeconomic status (SES) on the heat vulnerability of mental health (MH) patients. As individual socioeconomic data was unavailable, we aimed to fill this gap by using the healthcare system type as a proxy for SES. Brazilian national statistics indicate that public patients have lower SES than private. Therefore, we compared the risk of emergency department visits (EDVs) for MH between patients from both healthcare types. EDVs for MH disorders from all nine public (101,452 visits) and one large private facility (154,954) in Curitiba were assessed (2017–2021). Daily mean temperature was gathered and weighed from 3 stations. Distributed-lag non-linear model with quasi-Poisson (maximum 10-lags) was used to assess the risk. We stratified by private and public, age, and gender under moderate and extreme heat. Additionally, we calculated the attributable fraction (AF), which translates individual risks into population-representative burdens – especially useful for public policies. Random-effects meta-regression pooled the risk estimates between healthcare systems. Public patients showed significant risks immediately as temperatures started to increase. Their cumulative relative risk (RR) of MH-EDV was 7.5 % higher than the private patients (Q-Test 26.2 %) under moderate heat, suggesting their particular heat vulnerability. Differently, private patients showed significant risks only under extreme heat, when their RR became 4.3 % higher than public (Q-Test 6.2 %). These findings suggest that private patients have a relatively greater adaptation capacity to heat. However, when faced with extreme heat, their current adaptation means were potentially insufficient, so they needed and could access healthcare freely, unlike their public counterparts. MH patients would benefit from measures to reduce heat vulnerability and access barriers, increasing equity between the healthcare systems in Brazil. AF of EDVs due to extreme heat was 0.33 % (95%CI 0.16;0.50) for the total sample (859 EDVs). This corroborates that such broad population-level policies are urgently needed as climate change progresses.
  •  
8.
  • Geldsetzer, Pascal, et al. (författare)
  • A systematic review of healthcare provider-targeted mobile applications for non-communicable diseases in low- and middle-income countries
  • 2022
  • Ingår i: npj Digital Medicine. - : Nature Research. - 2398-6352. ; 5:1
  • Forskningsöversikt (refereegranskat)abstract
    • Mobile health (mHealth) interventions hold promise for addressing the epidemic of noncommunicable diseases (NCDs) in low- and middle-income countries (LMICs) by assisting healthcare providers managing these disorders in low-resource settings. We aimed to systematically identify and assess provider-facing mHealth applications used to screen for, diagnose, or monitor NCDs in LMICs. In this systematic review, we searched the indexing databases of PubMed, Web of Science, and Cochrane Central for studies published between January 2007 and October 2019. We included studies of technologies that were: (i) mobile phone- or tablet-based, (ii) able to screen for, diagnose, or monitor an NCD of public health importance in LMICs, and (iii) targeting health professionals as users. We extracted disease type, intervention purpose, target population, study population, sample size, study methodology, technology stage, country of development, operating system, and cost. Our initial search retrieved 13,262 studies, 315 of which met inclusion criteria and were analyzed. Cardiology was the most common clinical domain of the technologies evaluated, with 89 publications. mHealth innovations were predominantly developed using Apple's iOS operating system. Cost data were provided in only 50 studies, but most technologies for which this information was available cost less than 20 USD. Only 24 innovations targeted the ten NCDs responsible for the greatest number of disability-adjusted life years lost globally. Most publications evaluated products created in high-income countries. Reported mHealth technologies are well-developed, but their implementation in LMICs faces operating system incompatibility and a relative neglect of NCDs causing the greatest disease burden.
  •  
9.
  • Nilsson, Maria, 1957-, et al. (författare)
  • Weather, climate, and climate change research to protect human health in sub-Saharan Africa and South Asia
  • 2021
  • Ingår i: Global Health Action. - : Taylor & Francis. - 1654-9716 .- 1654-9880. ; 14
  • Forskningsöversikt (refereegranskat)abstract
    • Weather, climate, and climate change are affecting human health, with scientific evidence increasing substantially over the past two decades, but with very limited research from low- and middle-income countries. The health effects of climate change occur mainly because of the consequences of rising temperatures, rising sea levels, and an increase in extreme weather events. These exposures interact with demographic, socio-economic, and environmental factors, as well as access to and the quality of health care, to affect the magnitude and pattern of risks. Health risks are unevenly distributed around the world, and within countries and across population groups. Existing health challenges and inequalities are likely to be exacerbated by climate change. This narrative review provides an overview of the health impacts of weather, climate, and climate change, particularly on vulnerable regions and populations in sub-Saharan Africa and South Asia, and discusses the importance of protecting human health in a changing climate; such measures are critical to reducing poverty and inequality at all scales. Three case summaries from the INDEPTH Health and Demographic Surveillance Systems highlight examples of research that quantified associations between weather and health outcomes. These and comparable surveillance systems can provide critical knowledge to increase resilience and decrease inequalities in an increasingly warming world.
  •  
10.
  • Odhiambo Sewe, Maquins, et al. (författare)
  • Estimated Effect of Temperature on Years of Life Lost : A Retrospective Time-Series Study of Low-, Middle-, and High-Income Regions
  • 2018
  • Ingår i: Journal of Environmental Health Perspectives. - : Public Health Services, US Dept of Health and Human Services. - 0091-6765 .- 1552-9924. ; 126:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Numerous studies have reported a strong association between temperature and mortality. Additional insights can be gained from investigating the effects of temperature on years of life lost (YLL), considering the life expectancy at the time of death.OBJECTIVES: The goal of this work was to assess the association between temperature and YLL at seven low-, middle-, and high-income sites.METHODS: We obtained meteorological and population data for at least nine years from four Health and Demographic Surveillance Sites in Kenya (western Kenya, Nairobi), Burkina Faso (Nouna), and India (Vadu), as well as data from cities in the United States (Philadelphia, Phoenix) and Sweden (Stockholm). A distributed lag nonlinear model was used to estimate the association of daily maximum temperature and daily YLL, lagged 0-14 d. The reference value was set for each site at the temperature with the lowest YLL.RESULTS: Generally, YLL increased with higher temperature, starting day 0. In Nouna, the hottest location, with a minimum YLL temperature at the first percentile, YLL increased consistently with higher temperatures. In Vadu, YLL increased in association with heat, whereas in Nairobi, YLL increased in association with both low and high temperatures. Associations with cold and heat were evident for Phoenix (stronger for heat), Stockholm, and Philadelphia (both stronger for cold). Patterns of associations with mortality were generally similar to those with YLL.CONCLUSIONS: Both high and low temperatures are associated with YLL in high-, middle-, and low-income countries. Policy guidance and health adaptation measures might be improved with more comprehensive indicators of the health burden of high and low temperatures such as YLL.
  •  
11.
  • Rocklöv, Joacim, Professor, 1979-, et al. (författare)
  • Decision-support tools to build climate resilience against emerging infectious diseases in Europe and beyond
  • 2023
  • Ingår i: The Lancet Regional Health. - : Elsevier. - 2666-7762. ; 32
  • Forskningsöversikt (refereegranskat)abstract
    • Climate change is one of several drivers of recurrent outbreaks and geographical range expansion of infectious diseases in Europe. We propose a framework for the co-production of policy-relevant indicators and decision-support tools that track past, present, and future climate-induced disease risks across hazard, exposure, and vulnerability domains at the animal, human, and environmental interface. This entails the co-development of early warning and response systems and tools to assess the costs and benefits of climate change adaptation and mitigation measures across sectors, to increase health system resilience at regional and local levels and reveal novel policy entry points and opportunities. Our approach involves multi-level engagement, innovative methodologies, and novel data streams. We take advantage of intelligence generated locally and empirically to quantify effects in areas experiencing rapid urban transformation and heterogeneous climate-induced disease threats. Our goal is to reduce the knowledge-to-action gap by developing an integrated One Health—Climate Risk framework.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy