SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Busch Susann) "

Sökning: WFRF:(Busch Susann)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björner, Sofie, et al. (författare)
  • Downregulation of miR-92a Is Associated with Aggressive Breast Cancer Features and Increased Tumour Macrophage Infiltration.
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: MicroRNAs are small non-coding RNAs involved in the regulation of gene expression on a posttranscriptional level. These regulatory RNAs have been implicated in numerous cellular processes and are further deregulated in different cancer types, including breast cancer. MiR-92a is part of the miR-17∼92 cluster, which was first reported to be linked to tumourigenesis. However, little is known about the expression of miR-92a in breast cancer and potential associations to tumour properties. The expression of miR-92a was therefore characterized in 144 invasive breast cancer samples using in situ hybridization and related to clinico-pathological data as well as to selected key properties of the tumour stroma, including the presence of macrophages (CD68) and cancer activated fibroblasts (alpha-SMA). METHODOLOGY/PRINCIPAL FINDINGS: To measure miR-92a levels, an in situ hybridisation protocol was developed and validated using cell lines and miR-92a inhibitors. The expression in the tumour samples was objectively evaluated using digital image analysis program subtracting background activities. We found that the miR-92a expression varied between tumours and was inversely correlated to tumour grade (r = -0.276, p = 0.003) and recurrence-free survival (p = 0.008) and provided independent prognostic information in multivariate Cox analysis (HR: 0.375, CI: 0.145-0.972, p = 0.043). MiR-92a was moreover inversely correlated to the number of infiltrating macrophages in the tumour stroma (r = -0.357, p<0.001), and downregulation of miR-92a promoted cell migration (p<0.01). CONCLUSIONS/SIGNIFICANCE: This study demonstrates that downregulation of miR-92a in breast cancer is linked to key epithelial and stromal properties as well as clinical outcome.
  •  
2.
  • Busch, Susann, et al. (författare)
  • Cellular organization and molecular differentiation model of breast cancer-associated fibroblasts
  • 2017
  • Ingår i: Molecular Cancer. - : Springer Science and Business Media LLC. - 1476-4598. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The role of cancer-associated fibroblasts (CAFs) during tumour progression is obscured by the inherently complex, heterotypic nature of fibroblast cells and behaviours in various subtypes of malignancies. Therefore, we sought to identify distinct fibroblast subpopulations at the single-cell level. Methods: Using single-cell quantitative PCR as a powerful tool to study heterogeneity and rare cell events, in a high-throughput manner a panel of gene targets are run simultaneously on transcripts isolated from single cells obtained by fluorescence-activated cell sort. Assessment of cells with stem-like characteristics was attained by anchorage-independent, anoikis-resistant culture. Results: Single-cell analysis of fibroblasts and their tumour-activated counterparts demonstrated molecularly distinct cell types defined by differential expression of characteristic mesenchymal and fibroblast activation markers. Identified subpopulations presented overlapping gene expression patterns indicating transitional molecular states during fibroblast differentiation. Using single-cell resolution data we generated a molecular differentiation model which enabled the classification of patient-derived fibroblasts, validating our modelling approach. Remarkably, a subset of fibroblasts displayed expression of pluripotency markers, which was enriched for in non-adherent conditions. Yet the ability to form single-cell derived spheres was generally reduced in CAFs and upon fibroblast activation through TGF beta 1 ligand and cancer cell-secreted factors. Hence, our data imply the existence of putative stem/progenitor cells as a physiological feature of undifferentiated fibroblasts. Conclusions: Within this comprehensive study we have identified distinct and intersecting molecular profiles defining fibroblast activation states and propose that underlying cellular heterogeneity, fibroblasts are hierarchically organized. Understanding the molecular make-up of cellular organization and differentiation routes will facilitate the discovery of more specific markers for stromal subtypes and targets for anti-stromal therapies.
  •  
3.
  • Busch, Susann, et al. (författare)
  • Loss of TGF beta Receptor Type 2 Expression Impairs Estrogen Response and Confers Tamoxifen Resistance
  • 2015
  • Ingår i: Cancer Research. - : American Association for Cancer Research (AACR). - 0008-5472 .- 1538-7445. ; 75:7, s. 1457-1469
  • Tidskriftsartikel (refereegranskat)abstract
    • One third of the patients with estrogen receptor alpha (ER alpha)-positive breast cancer who are treated with the antiestrogen tamoxifen will either not respond to initial therapy or will develop drug resistance. Endocrine response involves crosstalk between ER alpha and TGF beta signaling, such that tamoxifen non-responsiveness or resistance in breast cancer might involve aberrant TGF beta signaling. In this study, we analyzed TGF beta receptor type 2 (TGFBR2) expression and correlated it with ER alpha status and phosphorylation in a cohort of 564 patients who had been randomized to tamoxifen or no-adjuvant treatment for invasive breast carcinoma. We also evaluated an additional four independent genetic datasets in invasive breast cancer. In all the cohorts we analyzed, we documented an association of low TGFBR2 protein and mRNA expression with tamoxifen resistance. Functional investigations confirmed that cell cycle or apoptosis responses to estrogen or tamoxifen in ER alpha-positive breast cancer cells were impaired by TGFBR2 silencing, as was ER alpha phosphorylation, tamoxifen-induced transcriptional activation of TGF beta, and upregulation of the multidrug resistance protein ABCG2. Acquisition of low TGFBR2 expression as a contributing factor to endocrine resistance was validated prospectively in a tamoxifen-resistant cell line generated by long-term drug treatment. Collectively, our results established a central contribution of TGF beta signaling in endocrine resistance in breast cancer and offered evidence that TGFBR2 can serve as an independent biomarker to predict treatment outcomes in ER alpha-positive forms of this disease. (C)2015 AACR.
  •  
4.
  • Busch, Susann, et al. (författare)
  • Loss of TGF beta Receptor Type 2 Expression Impairs Estrogen Response and Confers Tamoxifen Resistance
  • 2015
  • Ingår i: Cancer Research. - : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 75:7, s. 1457-1469
  • Tidskriftsartikel (refereegranskat)abstract
    • One third of the patients with estrogen receptor alpha (ER alpha)-positive breast cancer who are treated with the antiestrogen tamoxifen will either not respond to initial therapy or will develop drug resistance. Endocrine response involves crosstalk between ER alpha and TGF beta signaling, such that tamoxifen non-responsiveness or resistance in breast cancer might involve aberrant TGF beta signaling. In this study, we analyzed TGF beta receptor type 2 (TGFBR2) expression and correlated it with ER alpha status and phosphorylation in a cohort of 564 patients who had been randomized to tamoxifen or no-adjuvant treatment for invasive breast carcinoma. We also evaluated an additional four independent genetic datasets in invasive breast cancer. In all the cohorts we analyzed, we documented an association of low TGFBR2 protein and mRNA expression with tamoxifen resistance. Functional investigations confirmed that cell cycle or apoptosis responses to estrogen or tamoxifen in ER alpha-positive breast cancer cells were impaired by TGFBR2 silencing, as was ER alpha phosphorylation, tamoxifen-induced transcriptional activation of TGF beta, and upregulation of the multidrug resistance protein ABCG2. Acquisition of low TGFBR2 expression as a contributing factor to endocrine resistance was validated prospectively in a tamoxifen-resistant cell line generated by long-term drug treatment. Collectively, our results established a central contribution of TGF beta signaling in endocrine resistance in breast cancer and offered evidence that TGFBR2 can serve as an independent biomarker to predict treatment outcomes in ER alpha-positive forms of this disease.
  •  
5.
  • Busch, Susann, et al. (författare)
  • TGF-beta receptor type-2 expression in cancer-associated fibroblasts regulates breast cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer
  • 2015
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 34:1, s. 27-38
  • Tidskriftsartikel (refereegranskat)abstract
    • Transforming growth factor-beta (TGF-beta) is a pleiotropic cytokine with the capability to act as tumour suppressor or tumour promoter depending on the cellular context. TGF-beta receptor type-2 (TGFBR2) is the ligand-binding receptor for all members of the TGF-beta family. Data from mouse model experiments demonstrated that loss of Tgfbr2 expression in mammary fibroblasts was linked to tumour initiation and metastasis. Using a randomised tamoxifen trial cohort including in total 564 invasive breast carcinomas, we examined TGFBR2 expression (n = 252) and phosphorylation level of downstream target SMAD2 (pSMAD2) (n = 319) in cancer-associated fibroblasts (CAFs) and assessed links to clinicopathological markers, prognostic and treatment-predictive values. The study revealed that CAF-specific TGFBR2 expression correlated with improved recurrence-free survival. Multivariate analysis confirmed CAF-TGFBR2 to be an independent prognostic marker (multivariate Cox regression, hazard ratio: 0.534, 95% (CI): 0.360-0.793, P = 0.002). CAF-specific pSMAD2 levels, however, did not associate with survival outcome. Experimentally, TGF-beta signalling in fibroblasts was modulated using a TGF-beta ligand and inhibitor or through lentiviral short hairpin RNA-mediated TGFBR2-specific knockdown. To determine the role of fibroblastic TGF-beta pathway on breast cancer cells, we used cell contact-dependent cell growth and clonogenicity assays, which showed that knockdown of TGFBR2 in CAFs resulted in increased cell growth, proliferation and clonogenic survival. Further, in a mouse model transfected CAFs were co-injected with MCF7 and tumour weight and proportion was monitored. We found that mouse xenograft tumours comprising TGFBR2 knockdown fibroblasts were slightly bigger and displayed increased tumour cell capacity. Overall, our data demonstrate that fibroblast-related biomarkers possess clinically relevant information and that fibroblasts confer effects on breast cancer cell growth and survival. Regulation of tumour-stromal cross-talk through fibroblastic TGF-beta pathway may depend on fibroblast phenotype, emphasising the importance to characterise tumour microenvironment subtypes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy