SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bykov Igor) "

Sökning: WFRF:(Bykov Igor)

  • Resultat 1-50 av 369
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cufar, Aljaz, et al. (författare)
  • Calculations to support JET neutron yield calibration : Modelling of neutron emission from a compact DT neutron generator
  • 2017
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : ELSEVIER. - 0168-9002 .- 1872-9576. ; 847, s. 199-204
  • Tidskriftsartikel (refereegranskat)abstract
    • At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.
  •  
2.
  • Lengar, Igor, et al. (författare)
  • Activation material selection for multiple foil activation detectors in JET TT campaign
  • 2018
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 136, s. 988-992
  • Tidskriftsartikel (refereegranskat)abstract
    • In the preparation for the Deuterium-Tritium campaign, JET will operate with a tritium plasma. The T + T reaction consists of two notable channels: (1) T + T -> He-4 + 2n, (2) T + T -> He-5 + n -> He-4 + 2n. The reaction channel (1) is the reaction with the highest branching ratio and a continuum of neutron energies being produced. Reaction channel (2) produces a spectrum with a peak at 8.8 MeV. A particular problem is the ratio between the individual TT reaction channels, which is highly dependent on the energy of the reacting tritium ions. There are very few measurements on the TT spectrum and the study at JET would be interesting. The work is focused on the determination of the spectral characteristics in the TT plasma discharges, especially on the presence of the 8.8 MeV peak, a consequence of channel (2) of the TT reaction. The possibility to use an optimized set of activation materials in order to target the measurement of the 8.8 MeV peak is studied. The lower limit of detection for the channel (2) ratio within the TT reaction is estimated and the influence of DT source neutrons, which are a consequence of deuterium traces in the plasma, is investigated.
  •  
3.
  • Lengar, Igor, et al. (författare)
  • Radiation damage and nuclear heating studies in selected functional materials during the JET DT campaign
  • 2016
  • Ingår i: Fusion engineering and design. - : Elsevier. - 0920-3796 .- 1873-7196. ; 109, s. 1011-1015
  • Tidskriftsartikel (refereegranskat)abstract
    • A new Deuterium-Tritium campaign (DTE2) is planned at JET in the next years, with a proposed 14 MeV neutron budget of 1.7 x 10(21), which is nearly an order of magnitude higher than any previous DT campaigns. The neutron and gamma ray fields inside the JET device during DT plasma operations at specific locations have previously been evaluated. It is estimated that a total neutron fluence on the first wall of JET of up to 10(20) n/m(2) could be achieved, which is comparable to the fluence occurring in ITER at the end of life in the rear part of the port plug, where several diagnostic components will be located. The purpose of the present work is to evaluate the radiation damage and nuclear heating in selected functional materials to be irradiated at JET during DT plasma operation. These quantities are calculated with the use of the MCNP6 code and the FISPACT II code. In particular the neutron and gamma ray fields at specific locations inside the JET device, dedicated to material damage studies, were characterized. The emphasis is on a potential longterm irradiation station located close to the first wall at outboard midplane, offering the opportunity to irradiate samples of functional materials used in ITER diagnostics, to assess the degradation of the physical properties. The radiation damage and the nuclear heating were calculated for selected materials irradiated in these positions and for the neutron flux and fluence expected in DTE2. The studied candidate functional materials include, among others, Sapphire, YAG, ZnS, Spinel, Diamond. In addition the activation of the internal irradiation holder itself was calculated with FISPACT. Damage levels in the range of 10(-5) dpa were found. 2016 EURATOM.
  •  
4.
  • Snoj, Luka, et al. (författare)
  • Neutronic analysis of JET external neutron monitor response
  • 2016
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 109, s. 99-103
  • Tidskriftsartikel (refereegranskat)abstract
    • The power output of fusion devices is measured in terms of the neutron yield which relates directly to the fusion yield. JET made a transition from Carbon wall to ITER-Like Wall (Beryllium/Tungsten/Carbon) during 2010-11. Absolutely calibrated measurement of the neutron yield by JET neutron monitors was ensured by direct measurements using a calibrated Cf-252 neutron source (NS) deployed by the in-vessel remote handling system (RHS) inside the JET vacuum vessel. Neutronic calculations were required in order to understand the neutron transport from the source in the vacuum vessel to the fission chamber detectors mounted outside the vessel on the transformer limbs of the tokamak. We developed a simplified computational model of JET and the JET RHS in Monte Carlo neutron transport code MCNP and analyzed the paths and structures through which neutrons reach the detectors and the effect of the JET RHS on the neutron monitor response. In addition we performed several sensitivity studies of the effect of substantial massive structures blocking the ports on the external neutron monitor response. As the simplified model provided a qualitative picture of the process only, some calculations were repeated using a more detailed full 3D model of the JET tokamak. (C) 2016 EURATOM. Published by Elsevier B.V. All rights reserved.
  •  
5.
  • Aho-Mantila, L., et al. (författare)
  • Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The divertor solutions obtained with the plasma edge modelling tool SOLPS5.0 are discussed. The code results are benchmarked against carefully analysed L-mode discharges at various density levels with and without impurity seeding in the full-metal tokamaks ASDEX Upgrade and JET. The role of the cross-field drifts and currents in the solutions is analysed in detail, and the improvements achieved by fully activating the drift and current terms in view of matching the experimental signals are addressed. The persisting discrepancies are also discussed.
  •  
6.
  • Alegre, Daniel, et al. (författare)
  • Study of correlation of deuterium content in a-C:D dust induced by laser irradiation from the co-deposited surface with the grain size and velocity
  • 2014
  • Ingår i: Physica Scripta. - : Institute of Physics (IOP). - 0031-8949 .- 1402-4896. ; T161, s. 014010-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the study described here, the laser ablation method was applied to clean thick (40-60 m) a-C: D co-deposits on the ALT-II limiter blade from the TEXTOR tokamak, and at the same time to characterize the ejected particles formed during ablation and measure the amount of fuel carried by them. Ablation was accomplished by similar to 3.5 ns, 0.5 J Nd: YAG laser pulses in either vacuum or an O-2 atmosphere at different pressures. Fast camera tracking of the process provided an estimate of the population and velocity of up to 100ms(-1) for larger dust particles. In the same experiment, the dust particles were caught using ultra-light Si aerogel collectors placed in front of the ablation target. SEM analysis of aerogel surfaces verified the speed estimate, providing the trapped particles' size distribution and particle yield during ablation. The D/C atomic concentration ratio was measured with the 3HE ion beam nuclear reaction analysis method in deposited layers before ablation and with a micro-ion beam in individual particles on aerogel collectors. This indicated that most of the D was thermally released during ablation, leaving no more than 5% of its original amount in the particles. The effect of ablation conditions on the acceleration of ejected particles, their population, composition and D content is the main subject of this paper.
  •  
7.
  •  
8.
  • Andersson Sundén, Erik, et al. (författare)
  • An assessment of nitrogen concentrations from spectroscopic measurements in the JET and ASDEX upgrade divertor
  • 2019
  • Ingår i: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 18, s. 147-152
  • Tidskriftsartikel (refereegranskat)abstract
    • The impurity concentration in the tokamak divertor plasma is a necessary input for predictive scaling of divertor detachment, however direct measurements from existing tokamaks in different divertor plasma conditions are limited. To address this, we have applied a recently developed spectroscopic N II line ratio technique for measuring the N concentration in the divertor to a range of H-mode and L-mode plasma from the ASDEX Upgrade and JET tokamaks, respectively. The results from both devices show that as the power crossing the separatrix, P-sep, is increased under otherwise similar core conditions (e.g. density), a higher N concentration is required to achieve the same detachment state. For example, the N concentrations at the start of detachment increase from approximate to 2% to approximate to 9% as P-sep, is increased from approximate to 2.5 MW to approximate to 7 MW. These results tentatively agree with scaling law predictions (e.g. Goldston et al.) motivating a further study examining the parameters which affect the N concentration required to reach detachment. Finally, the N concentrations from spectroscopy and the ratio of D and N gas valve fluxes agree within experimental uncertainty only when the vessel surfaces are fully-loaded with N.
  •  
9.
  • Angioni, C., et al. (författare)
  • Dependence of the turbulent particle flux on hydrogen isotopes induced by collisionality
  • 2018
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674 .- 1070-6631 .- 1089-7666. ; 25:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of the change of the mass of hydrogen isotopes on the turbulent particle flux is studied. The trapped electron component of the turbulent particle convection induced by collisionality, which is outward in ion temperature gradient turbulence, increases with decreasing thermal velocity of the isotope. Thereby, the lighter is the isotope, the stronger is the turbulent pinch, and the larger is the predicted density gradient at the null of the particle flux. The passing particle component of the flux increases with decreasing mass of the isotope and can also affect the predicted density gradient. This effect is however subdominant for usual core plasma parameters. The analytical results are confirmed by means of both quasi-linear and nonlinear gyrokinetic simulations, and an estimate of the difference in local density gradient produced by this effect as a function of collisionality has been obtained for typical plasma parameters at mid-radius. Analysis of currently available experimental data from the JET and the ASDEX Upgrade tokamaks does not show any clear and general evidence of inconsistency with this theoretically predicted effect outside the errorbars and also allows the identification of cases providing weak evidence of qualitative consistency.
  •  
10.
  • Angioni, C., et al. (författare)
  • Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In tokamaks, the role of turbulent transport of heavy impurities, relative to that of neoclassical transport, increases with increasing size of the plasma, as clarified by means of general scalings, which use the ITER standard scenario parameters as reference, and by actual results from a selection of discharges from ASDEX Upgrade and JET. This motivates the theoretical investigation of the properties of the turbulent convection of heavy impurities by nonlinear gyrokinetic simulations in the experimentally relevant conditions of comparable ion and electron heat fluxes. These conditions also correspond to an intermediate regime between dominant ion temperature gradient turbulence and trapped electron mode turbulence. At moderate plasma toroidal rotation, the turbulent convection of heavy impurities, computed with nonlinear gyrokinetic simulations, is found to be directed outward, in contrast to that obtained by quasi-linear calculations based on the most unstable linear mode, which is directed inward. In this mixed turbulence regime, with comparable electron and ion heat fluxes, the nonlinear results of the impurity transport can be explained by the coexistence of both ion temperature gradient and trapped electron modes in the turbulent state, both contributing to the turbulent convection and diffusion of the impurity. The impact of toroidal rotation on the turbulent convection is also clarified.
  •  
11.
  • Angioni, C., et al. (författare)
  • The impact of poloidal asymmetries on tungsten transport in the core of JET H-mode plasmas
  • 2015
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 22:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent progress in the understanding and prediction of the tungsten behaviour in the core of JET H-mode plasmas with ITER-like wall is presented. Particular emphasis is given to the impact of poloidal asymmetries of the impurity density. In particular, it is shown that the predicted reduction of temperature screening induced by the presence of low field side localization of the tungsten density produced by the centrifugal force is consistent with the observed tungsten behaviour in a JET discharge in H-mode baseline scenario. This provides first evidence of the role of poloidal asymmetries in reducing the strength of temperature screening. The main differences between plasma parameters in JET baseline and hybrid scenario discharges which affect the impact of poloidally asymmetric density on the tungsten radial transport are identified. This allows the conditions by which tungsten accumulation can be avoided to be more precisely defined.
  •  
12.
  • Appel, L. C., et al. (författare)
  • Equilibrium reconstruction in an iron core tokamak using a deterministic magnetisation model
  • 2018
  • Ingår i: Computer Physics Communications. - : ELSEVIER. - 0010-4655 .- 1879-2944. ; 223, s. 1-17
  • Tidskriftsartikel (refereegranskat)abstract
    • In many tokamaks ferromagnetic material, usually referred to as an iron-core, is present in order to improve the magnetic coupling between the solenoid and the plasma. The presence of the iron core in proximity to the plasma changes the magnetic topology with consequent effects on the magnetic field structure and the plasma boundary. This paper considers the problem of obtaining the free-boundary plasma equilibrium solution in the presence of ferromagnetic material based on measured constraints. The current approach employs, a model described by O'Brien et al. (1992) in which the magnetisation currents at the iron-air boundary are represented by a set of free parameters and appropriate boundary conditions are enforced via a set of quasi-measurements on the material boundary. This can lead to the possibility of overfitting the data and hiding underlying issues with the measured signals. Although the model typically achieves good fits to measured magnetic signals there are significant discrepancies in the inferred magnetic topology compared with other plasma diagnostic measurements that are independent of the magnetic field. An alternative approach for equilibrium reconstruction in iron-core tokamaks, termed the deterministic magnetisation model is developed and implemented in EFIT++. The iron is represented by a boundary current with the gradients in the magnetisation dipole state generating macroscopic internal magnetisation currents. A model for the boundary magnetisation currents at the iron-air interface is developed using B-Splines enabling continuity to arbitrary order; internal magnetisation currents are allocated to triangulated regions within the iron, and a method to enable adaptive refinement is implemented. The deterministic model has been validated by comparing it with a synthetic 2-D electromagnetic model of JET. It is established that the maximum field discrepancy is less than 1.5 mT throughout the vacuum region enclosing the plasma. The discrepancies of simulated magnetic probe signals are accurate to within 1% for signals with absolute magnitude greater than 100 mT; in all other cases agreement is to within 1 mT. The effect of neglecting the internal magnetisation currents increases the maximum discrepancy in the vacuum region to >20 mT, resulting in errors of 5%-10% in the simulated probe signals. The fact that the previous model neglects the internal magnetisation currents (and also has additional free parameters when fitting the measured data) makes it unsuitable for analysing data in the absence of plasma current. The discrepancy of the poloidal magnetic flux within the vacuum vessel is to within 0.1 Wb. Finally the deterministic model is applied to an equilibrium force-balance solution of a JET discharge using experimental data. It is shown that the discrepancies of the outboard separatrix position, and the outer strike-point position inferred from Thomson Scattering and Infrared camera data are much improved beyond the routine equilibrium reconstruction, whereas the discrepancy of the inner strike-point position is similar.
  •  
13.
  • Arnichand, H., et al. (författare)
  • Discriminating the trapped electron modes contribution in density fluctuation spectra
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Quasi-coherent (QC) modes have been reported for more than 10 years in reflectometry fluctuations spectra in the core region of fusion plasmas. They have characteristics in-between coherent and broadband fluctuations as they oscillate at a marked frequency but have a wide spectrum. This work presents further evidences of the link recently established between QC modes and the trapped electron modes (TEM) instabilities (Arnichand et al 2014 Nucl. Fusion 54 123017). In electron cyclotron resonance heated discharges of Tore Supra, an enhancement of QC modes amplitude is observed in a region where TEM cause impurity transport and turbulence. In JET Ohmic plasmas, QC modes disappear during density ramp-up and current ramp-down. This is reminiscent of Tore Supra and TEXTOR observations during transitions from the linear Ohmic confinement (LOC) to the saturated Ohmic confinement (SOC) regimes. Evidencing TEM activity then becomes experimentally possible via analysis of fluctuation spectra.
  •  
14.
  • Aslanyan, V, et al. (författare)
  • Gyrokinetic simulations of toroidal Alfven eigenmodes excited by energetic ions and external antennas on the Joint European Torus
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 59:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The gyrokinetic toroidal code (GTC) has been used to study toroidal Alfven eigenmodes (TAEs) in high-performance plasmas. Experiments performed at the Joint European Torus (JET), where TAEs were driven by energetic particles arising from neutral beams, ion cyclotron resonant heating, and resonantly excited by dedicated external antennas, have been simulated. Modes driven by populations of energetic particles are observed, matching the TAE frequency seen with magnetic probes in JET experiments. A synthetic antenna, composed of one toroidal and two neighboring poloidal harmonics has been used to probe the modes' damping rates and quantify mechanisms for this damping in GTC simulations. This method was also applied to frequency and damping rate measurements of stable TAEs made by the Alfven eigenmode active diagnostic in these discharges.
  •  
15.
  • Baiocchi, B., et al. (författare)
  • Transport analysis and modelling of the evolution of hollow density profiles plasmas in JET and implication for ITER
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The density evolution during the transient phase just after the L-H transition is investigated using theoretical transport models. Cases characterized by core densities which evolve in longer timescales than the edge densities, leading to hollow density profiles (R/L-n = -R del n/n < 0) are modelled. This density evolution is particularly interesting because it has been shown to be beneficial in the view of the access to burning plasma conditions in ITER (Loarte et al 2013 Nucl. Fusion 53 083031). Self-consistent simulations of the JET discharge 79676 of the density-only, and of the density and the temperatures are carried out using a quasilinear gyrokinetic code, QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501), coupled with a transport code CRONOS (Artaud et al 2010 Nucl. Fusion 50 043001). The slow evolution of the hollow density, associated with the self-consistently calculated hollow NBI particle deposition, is well reproduced in the plasma core. Indeed, QuaLiKiz is shown to reproduce nonlinear gyrokinetic heat and particle fluxes well for both positive and negative R/L-n. That gives a theoretical and general basis for the persistence of the hollowness, laying the groundwork for the extrapolation to ITER.
  •  
16.
  • Baiocchi, B., et al. (författare)
  • Turbulent transport analysis of JET H-mode and hybrid plasmas using QuaLiKiz and Trapped Gyro Landau Fluid
  • 2015
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 57:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The physical transport processes at the basis of JET typical inductive H-mode scenarios and advanced hybrid regimes, with improved thermal confinement, are analyzed by means of some of the newest and more sophisticated quasi-linear transport models: trapped gyro Landau fluid (TGLF) and QuaLiKiz. The temporal evolution of JET pulses is modelled by CRONOS where the turbulent transport is modelled by either QuaLiKiz or TGLF. Both are first principle models with a more comprehensive physics than the models previously developed and therefore allow the analysis of the physics at the basis of the investigated scenarios. For H-modes, ion temperature gradient (ITG) modes are found to be dominant and the transport models are able to properly reproduce temperature profiles in self-consistent simulations. However, for hybrid regimes, in addition to ITG trapped electron modes (TEM) are also found to be important and different physical mechanisms for turbulence reduction play a decisive role. Whereas E x B flow shear and plasma geometry have a limited impact on turbulence, the presence of a large population of fast ions, quite important in low density regimes, can stabilize core turbulence mainly when the electromagnetic effects are taken into account. The TGLF transport model properly captures these mechanisms and correctly reproduces temperatures.
  •  
17.
  • Baron-Wiechec, A., et al. (författare)
  • Thermal desorption spectrometry of beryllium plasma facing tiles exposed in the JET tokamak
  • 2018
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 133, s. 135-141
  • Tidskriftsartikel (refereegranskat)abstract
    • The phenomena of retention and de-trapping of deuterium (D) and tritium (T) in plasma facing components (PFC) and supporting structures must be understood in order to limit or control total T inventory in larger future fusion devices such as ITER, DEMO and commercial machines. The goal of this paper is to present details of the thermal desorption spectrometry (TDS) system applied in total fuel retention assessment of PFC at the Joint European Torus (JET). Examples of TDS results from beryllium (Be) wall tile samples exposed to JET plasma in PFC configuration mirroring the planned ITER PFC is shown for the first time. The method for quantifying D by comparison of results from a sample of known D content was confirmed acceptable. The D inventory calculations obtained from Ion Beam Analysis (IBA) and TDS agree well within an error associated with the extrapolation from very few data points to a large surface area.
  •  
18.
  •  
19.
  • Basiuk, V., et al. (författare)
  • Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth : effects on transport coefficients
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.
  •  
20.
  • Batistoni, P., et al. (författare)
  • 14 MeV calibration of JET neutron detectors-phase 2 : in-vessel calibration
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:10
  • Tidskriftsartikel (refereegranskat)abstract
    • A new DT campaign (DTE2) is planned at JET in 2020 to minimize the risks of ITER operations. In view of DT operations, a calibration of the JET neutron monitors at 14 MeV neutron energy has been performed using a well calibrated 14 MeV neutron generator (NG) deployed, together with its power supply and control unit, inside the vacuum vessel by the JET remote handling system. The NG was equipped with two calibrated diamond detectors, which continuously monitored its neutron emission rate during the calibration, and activation foils which provided the time integrated yield. Cables embedded in the remote handling boom were used to power the neutron generator, the active detectors and pre-amplifier, and to transport the detectors' signal. The monitoring activation foils were retrieved at the end of each day for decay gamma-ray counting, and replaced by fresh ones. About 76 hours of irradiation, in 9 days, were needed with the neutron generator in 73 different poloidal and toroidal positions in order to calibrate the two neutron yield measuring systems available at JET, the U-235 fission chambers (KN1) and the inner activation system (KN2). The NG neutron emission rates provided by the monitoring detectors were in agreement within 3%. Neutronics calculations have been performed using MCNP code and a detailed model of JET to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the NG neutrons, and taking into account the anisotropy of the neutron generator and all the calibration circumstances. These calculations have made use of a very detailed and validated geometrical description of the neutron generator and of the modified. MNCP neutron source subroutine producing neutron energy-angle distribution for the neutrons emitted by the NG. The KN1 calibration factor for a DT plasma has been determined with +/- 4.2%' experimental uncertainty. Corrections due to NG and remote handling effects and the plasma volume effect have been calculated by simulation modelling. The related additional uncertainties are difficult to estimate, however the results of the previous calibration in 2013 have demonstrated that such uncertainties due to modelling are globally <= +/- 3%. It has been found that the difference between KN1 response to DD neutrons and that to DT neutrons is within the uncertainties in the derived responses. KN2 has been calibrated using the Nb-93(n,2n)Nb-92m and Al-27(n,a)Na-24 activation reactions (energy thresholds 10 MeV and 5 MeV respectively). The total uncertainty on the calibration factors is +/- 6% for Nb-93(n,2n)Nb-92m and +/- 8% Al-27(n,a)Na-24 (1 sigma). The calibration factors of the two independent systems KN1 and KN2 will be validated during DT operations. The experience gained and the lessons learnt are presented and discussed in particular with regard to the 14 MeV neutron calibrations in ITER.
  •  
21.
  • Batistoni, P., et al. (författare)
  • Benchmark experiments on neutron streaming through JET Torus Hall penetrations
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutronics experiments are performed at JET for validating in a real fusion environment the neutronics codes and nuclear data applied in ITER nuclear analyses. In particular, the neutron fluence through the penetrations of the JET torus hall is measured and compared with calculations to assess the capability of state-of-art numerical tools to correctly predict the radiation streaming in the ITER biological shield penetrations up to large distances from the neutron source, in large and complex geometries. Neutron streaming experiments started in 2012 when several hundreds of very sensitive thermo-luminescence detectors (TLDs), enriched to different levels in (LiF)-Li-6/(LiF)-Li-7, were used to measure the neutron and gamma dose separately. Lessons learnt from this first experiment led to significant improvements in the experimental arrangements to reduce the effects due to directional neutron source and self-shielding of TLDs. Here we report the results of measurements performed during the 2013-2014 JET campaign. Data from new positions, at further locations in the South West labyrinth and down to the Torus Hall basement through the air duct chimney, were obtained up to about a 40m distance from the plasma neutron source. In order to avoid interference between TLDs due to self-shielding effects, only TLDs containing natural Lithium and 99.97% Li-7 were used. All TLDs were located in the centre of large polyethylene (PE) moderators, with Li-nat and Li-7 crystals evenly arranged within two PE containers, one in horizontal and the other in vertical orientation, to investigate the shadowing effect in the directional neutron field. All TLDs were calibrated in the quantities of air kerma and neutron fluence. This improved experimental arrangement led to reduced statistical spread in the experimental data. The Monte Carlo N-Particle (MCNP) code was used to calculate the air kerma due to neutrons and the neutron fluence at detector positions, using a JET model validated up to the magnetic limbs. JET biological shield and penetrations, the PE moderators and TLDs were modelled in detail. Different tallying methods were used in the calculations, which are routinely used in ITER nuclear analyses: the mesh tally and the track length estimator with multiple steps calculations using the surface source write/read capability available in MCNP. In both cases, the calculated neutron fluence (C) was compared to the measured fluence (E) and hence C/E comparisons have been obtained and are discussed. These results provide a validation of neutronics numerical tools, codes and nuclear data, used for ITER design.
  •  
22.
  • Batistoni, Paola, et al. (författare)
  • Calibration of neutron detectors on the Joint European Torus
  • 2017
  • Ingår i: Review of Scientific Instruments. - : AMER INST PHYSICS. - 0034-6748 .- 1089-7623. ; 88:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a Cf-252 source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) Cf-252 source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.
  •  
23.
  • Batistoni, P., et al. (författare)
  • Overview of neutron measurements in jet fusion device
  • 2018
  • Ingår i: Radiation Protection Dosimetry. - : OXFORD UNIV PRESS. - 0144-8420 .- 1742-3406. ; 180:1-4, s. 102-108
  • Tidskriftsartikel (refereegranskat)abstract
    • The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation.
  •  
24.
  • Batistoni, P., et al. (författare)
  • Technical preparations for the in-vessel 14 MeV neutron calibration at JET
  • 2017
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 117, s. 107-114
  • Tidskriftsartikel (refereegranskat)abstract
    • The power output of fusion devices is measured from their neutron yields which relate directly to the fusion yield. In this paper we describe the devices and methods that have been prepared to perform a new in situ 14 MeV neutron calibration at JET in view of the new DT campaign planned at JET in the next years. The target accuracy of this calibration is 10% as required for ITER, where a precise neutron yield measurement is important, e.g., for tritium accountancy. In this paper, the constraints and early decisions which defined the main calibration approach are discussed, e.g., the choice of 14 MeV neutron source and the deployment method. The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are also discussed. The existing JET remote-handling system will be used to deploy the neutron source inside the JET vessel. For this purpose, compatible tooling and systems necessary to ensure safe and efficient deployment have been developed. The scientific programme of the preparatory phase is devoted to fully characterizing the selected 14 MeV neutron generator to be used as the calibrating source, obtain a better understanding of the limitations of the calibration, optimise the measurements and other provisions, and to provide corrections for perturbing factors (e.g., anisotropy of the neutron generator, neutron energy spectrum dependence on emission angle). Much of this work has been based on an extensive programme of Monte-Carlo calculations which provide support and guidance in developing the calibration strategy.
  •  
25.
  • Batistoni, P., et al. (författare)
  • Technological exploitation of Deuterium-Tritium operations at JET in support of ITER design, operation and safety
  • 2016
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 109, s. 278-285
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the framework of the EUROfusion programme, a work-package of technology projects (WPJET3) is being carried out in conjunction with the planned Deuterium-Tritium experiment on JET (DTE2) with the objective of maximising the scientific and technological return of DT operations at JET in support of ITER. This paper presents the progress since the start of the project in 2014 in the preparatory experiments, analyses and studies in the areas of neutronics, neutron induced activation and damage in ITER materials, nuclear safety, tritium retention, permeation and outgassing, and waste production in preparation of DTE2.
  •  
26.
  • Beal, J., et al. (författare)
  • Deposition in the inner and outer corners of the JET divertor with carbon wall and metallic ITER-like wall
  • 2016
  • Ingår i: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; T167
  • Tidskriftsartikel (refereegranskat)abstract
    • Rotating collectors and quartz microbalances (QMBs) are used in JET to provide time-dependent measurements of erosion and deposition. Rotation of collector discs behind apertures allows recording of the long term evolution of deposition. QMBs measure mass change via the frequency deviations of vibrating quartz crystals. These diagnostics are used to investigate erosion/deposition during JET-C carbon operation and JET-ILW (ITER-like wall) beryllium/tungsten operation. A simple geometrical model utilising experimental data is used to model the time-dependent collector deposition profiles, demonstrating good qualitative agreement with experimental results. Overall, the JET-ILW collector deposition is reduced by an order of magnitude relative to JET-C, with beryllium replacing carbon as the dominant deposit. However, contrary to JET-C, in JET-ILW there is more deposition on the outer collector than the inner. This reversal of deposition asymmetry is investigated using an analysis of QMB data and is attributed to the different chemical properties of carbon and beryllium.
  •  
27.
  • Bergsåker, B. Henric M., et al. (författare)
  • Deep deuterium retention and Be/W mixing at tungsten coated surfaces in the JET divertor
  • 2016
  • Ingår i: Physica Scripta. - : Institute of Physics Publishing (IOPP). - 0031-8949 .- 1402-4896. ; T167
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface samples from a full poloidal set of divertor tiles exposed in JET through operations 2010-2012 with ITER-like wall have been investigated using SEM, SIMS, ICP-AES analysis and micro beam nuclear reaction analysis (μ-NRA). Deposition of Be and retention of D is microscopically inhomogeneous. With careful overlaying of μ-NRA elemental maps with SEM images, it is possible to separate surface roughness effects from depth profiles at microscopically flat surface regions, without pits. With (3He, p) μ-NRA at 3-5 MeV beam energy the accessible depth for D analysis in W is about 9 μm, sufficient to access the W/Mo and Mo/W interfaces in the coatings and beyond, while for Be in W it is about 6 μm. In these conditions, at all plasma wetted surfaces, D was found throughout the whole accessible depth at concentrations in the range 0.2-0.7 at% in W. Deuterium was found to be preferentially trapped at the W/Mo and Mo/W interfaces. Comparison is made with SIMS profiling, which also shows significant D trapping at the W/Mo interface. Mixing of Be and W occurs mainly in deposited layers.
  •  
28.
  • Bergsåker, Henric, et al. (författare)
  • Assessment of the strength of kinetic effects of parallel electron transport in the SOL and divertor of JET high radiative H-mode plasmas using EDGE2D-EIRENE and KIPP codes
  • 2018
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 60:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The kinetic code for plasma periphery (KIPP) was used to assess the importance of the kinetic effects of parallel electron transport in the scrape-off layer (SOL) and divertor of JET high radiative H-mode inter-ELM plasma conditions with the ITER-like wall and strong nitrogen (N-2) injection. Plasma parameter profiles along a magnetic field from one of the EDGE2D-EIRENE simulation cases were used as an input for KIPP runs. Profiles were maintained by particle and power sources. KIPP generated electron distribution functions, f(e), parallel power fluxes, electron-ion thermoforces, Debye sheath potential drops and electron sheath transmission factors at divertor targets. For heat fluxes in the main SOL, KIPP results showed deviations from classical (e.g. Braginskii) fluxes by factors typically of similar to 1.5, sometimes up to 2, with the flux limiting for more upstream positions and flux enhancement near entrances to the divertor. In the divertor, at the same time, for radial positions closer to the separatrix, very large heat flux enhancement factors of up to ten or even higher, indicative of a strong nonlocal heat transport, were found at the outer target, with heat power flux density exhibiting bump-on-tail features at high energies. Under such extreme conditions, however, contributions of conductive power fluxes to total power fluxes were strongly reduced, with convective power fluxes becoming comparable, or sometimes exceeding, conductive power fluxes. Electron-ion thermoforce, on the other hand, which is known to be determined mostly by thermal and subthermal electrons, was found to be in good agreement with Braginskii formulas, including the Z(eff) dependence. Overall, KIPP results indicate, at least for the plasma conditions used in this modelling, a sizable, but not dominant, effect of kinetics on parallel electron transport.
  •  
29.
  • Bergsåker, Henric, et al. (författare)
  • First results from the Be-10 marker experiment in JET with ITER-like wall
  • 2014
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 54:8, s. 082004-
  • Tidskriftsartikel (refereegranskat)abstract
    • When the ITER-like wall was installed in JET, one of the 218 Be inner wall guard limiter tiles had been enriched with Be-10 as a bulk isotopic marker. During the shutdown in 2012-2013, a set of tiles were sampled nondestructively to collect material for accelerator mass spectroscopy measurements of Be-10 concentration. The letter shows how the marker experiment was set up, presents first results and compares them to preliminary predictions of marker redistribution, made with the ASCOT numerical code. Finally an outline is shown of what experimental data are likely to become available later and the possibilities for comparison with modelling using the WallDYN, ERO and ASCOT codes are discussed.
  •  
30.
  •  
31.
  • Bergsåker, Henric, et al. (författare)
  • Microanalysis of deposited layers in the divertor of JET following operations with carbon wall
  • 2013
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 438:Suppl., s. S668-S672
  • Tidskriftsartikel (refereegranskat)abstract
    • Elemental mapping of cross sections of deposited layers on inboard tiles in the JET divertor after exposure to plasma operations with carbon wall are presented. The study was made using microbeam ion beam analysis methods in combination with optical microscopy and SEM. The surfaces had been exposed to plasma through different periods of operation (1998-2007, 2007-2009 and 1998-2009). The texture and composition of the layers are non-uniform. The physical structures include columnar, lamellar and disordered globular appearances. The distribution of trapped deuterium was frequently found to be lamellar, with well-defined sub layers with higher deuterium concentration. However, 3D regions with dimensions of about 100 μm with enhanced deuterium content were also found, both at the layer surfaces and in the layer cross sections. The distributions of beryllium and Inconel components were lamellar but did not otherwise show large non-uniformity on the same scale length as the deuterium.
  •  
32.
  • Bergsåker, Henrik, et al. (författare)
  • Microscopically nonuniform deposition and deuterium retention in the divertor in JET with ITER-like wall
  • 2015
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 463, s. 956-960
  • Tidskriftsartikel (refereegranskat)abstract
    • The divertor surfaces in JET with ITER-like wall (ILW) have been studied using micro ion beam analysis (mu-IBA) methods and scanning electron microscopy (SEM). Deposited layers with beryllium as main constituent had been formed during plasma operations through 2011-2012. The deuterium trapping and impurity deposition were non-uniform, frequently enhanced within pits, cracks and valleys, regions reaching in size from 10 mu m to 200 mu m. The impurity deposition and fuel retention were correlated with the surface slope with respect to the direction of ion incidence. Typically more than 70% of the total measured areal density of trapped D was found in less than 30% of the surface area. This is of consequence for the interpretation of other surface analyses and in extrapolation from fuel retention in JET with ITER-like wall and rough divertor surfaces to ITER with smoother surfaces.
  •  
33.
  • Bergsåker, Henric, et al. (författare)
  • Microstructure and inhomogeneous fuel trapping at divertor surfaces in the JET tokamak
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier BV. - 0168-583X .- 1872-9584. ; 332, s. 266-270
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma deposited layers at divertor surfaces in the JET tokamak with carbon wall have been studied post mortem, using micro ion beam analysis (mu-IBA) methods, optical microscopy and scanning electron microscopy (SEM). The layers were formed during plasma operations over different periods through 1998-2009. They frequently have a columnar structure. For mu-IBA a 3 MeV He-3 beam was used, focused to about 5-15 mu m size. Nuclear reaction analysis was used to measure D, Be and C. Elemental mapping was carried out both at the original surface and on polished layer cross sections. Trapped deuterium is predominantly found in remote areas on the horizontal bottom divertor tiles and in regions with locally enhanced deuterium concentration on the vertical tiles. Pockets with enhanced deuterium concentration are found in the carbon fibre composite (CFC) substrate. Areas with dimensions of about 100 mu m with enhanced deuterium concentration are also found inside the deposited layers. The inhomogeneous fuel trapping is tentatively explained with co-deposition in partly protected pits in the substrate and by incorporation of dust particles in the growing layers.
  •  
34.
  • Bernardo, J., et al. (författare)
  • Ion temperature and toroidal rotation in JET's low torque plasmas
  • 2016
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 87:11
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports on the procedure developed as the best method to provide an accurate and reliable estimation of the ion temperature T-i and the toroidal velocity v(phi) from Charge-eXchange Recombination Spectroscopy (CXRS) data from intrinsic rotation experiments at the Joint European Torus with the carbon wall. The low impurity content observed in such plasmas, resulting in low active CXRS signal, alongside low Doppler shifts makes the determination of Ti and v(phi) particularly difficult. The beam modulation method will be discussed along with the measures taken to increase photon statistics and minimise errors from the absolute calibration and magneto-hydro-dynamics effects that may impact the CXRS passive emission.
  •  
35.
  • Bernert, M., et al. (författare)
  • Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET
  • 2017
  • Ingår i: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 12, s. 111-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Future fusion reactors require a safe, steady state divertor operation. A possible solution for the power exhaust challenge is the detached divertor operation in scenarios with high radiated power fractions. The radiation can be increased by seeding impurities, such as N for dominant scrape-off-layer radiation, Ne or Ar for SOL and pedestal radiation and Kr for dominant core radiation. Recent experiments on two of the all-metal tokamaks, ASDEX Upgrade (AUG) and JET, demonstrate operation with high radiated power fractions and a fully-detached divertor by N, Ne or Kr seeding with a conventional divertor in a vertical target geometry. For both devices similar observations can be made. In the scenarios with the highest radiated power fraction, the dominant radiation originates from the confined region, in the case of N and Ne seeding concentrated in a region close to the X-point. Applying these seed impurities for highly radiative scenarios impacts local plasma parameters and alters the impurity transport in the pedestal region. Thus, plasma confinement and stability can be affected. A proper understanding of the effects by these impurities is required in order to predict the applicability of such scenarios for future devices.
  •  
36.
  •  
37.
  • Binda, Federico, 1987-, et al. (författare)
  • Calculation of the profile-dependent neutron backscatter matrix for the JET neutron camera system
  • 2017
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 123, s. 865-868
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the dependence of the backscatter component of the neutron spectrum on the emissivity profile. We did so for the JET neutron camera system, by calculating a profile-dependent backscatter matrix for each of the 19 camera channels using a MCNP model of the JET tokamak. We found that, when using a low minimum energy for the summation of the counts in the neutron pulse height spectrum, the backscatter contribution can depend significantly on the emissivity profile. The maximum variation in the backscatter level was 24% (8.0% when compared to the total emission). This effect needs to be considered when a correction for the backscatter contribution is applied to the measured profile. (C) 2017 The Authors. Published by Elsevier B.V.
  •  
38.
  • Binda, Federico, 1987-, et al. (författare)
  • Generation of the neutron response function of an NE213 scintillator for fusion applications
  • 2017
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : ELSEVIER. - 0168-9002 .- 1872-9576. ; 866, s. 222-229
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we present a method to evaluate the neutron response function of an NE213 liquid scintillator. This method is particularly useful when the proton light yield function of the detector has not been measured, since it is based on a proton light yield function taken from literature, MCNPX simulations, measurements of gammarays from a calibration source and measurements of neutrons from fusion experiments with ohmic plasmas. The inclusion of the latter improves the description of the proton light yield function in the energy range of interest (around 2.46 MeV). We apply this method to an NE213 detector installed at JET, inside the radiation shielding of the magnetic proton recoil (MPRu) spectrometer, and present the results from the calibration along with some examples of application of the response function to perform neutron emission spectroscopy (NES) of fusion plasmas. We also investigate how the choice of the proton light yield function affects the NES analysis, finding that the result does not change significantly. This points to the fact that the method for the evaluation of the neutron response function is robust and gives reliable results. (C) 2017 Published by Elsevier B.V.
  •  
39.
  • Bisoffi, Andrea, et al. (författare)
  • Hybrid cancellation of ripple disturbances arising in AC/DC converters
  • 2017
  • Ingår i: Automatica. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0005-1098 .- 1873-2836. ; 77, s. 344-352
  • Tidskriftsartikel (refereegranskat)abstract
    • In AC/DC converters, a peculiar periodic nonsmooth waveform arises, the so-called ripple. In this paper we propose a novel model that captures this nonsmoothness by means of a hybrid dynamical system performing state jumps at certain switching instants, and we illustrate its properties with reference to a three phase diode bridge rectifier. As the ripple corrupts an underlying desirable signal, we propound two observer schemes ensuring asymptotic estimation of the ripple, the first with and the second without knowledge of the switching instants. Our theoretical developments are well placed in the context of recent techniques for hybrid regulation and constitute a contribution especially for our second observer, where the switching instants are estimated. Once asymptotic estimation of the ripple is achieved, the ripple can be conveniently canceled from the desirable signal, and thanks to the inherent robustness properties of the proposed hybrid formulation, the two observer schemes require only that the desirable signal is slowly time varying compared to the ripple. Exploiting this fact, we illustrate the effectiveness of our second hybrid observation law on experimental data collected from the Joint European Torus tokamak.
  •  
40.
  • Bobkov, V, et al. (författare)
  • Impact of ICRF on the scrape-off layer and on plasma wall interactions : From present experiments to fusion reactor
  • 2019
  • Ingår i: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 18, s. 131-140
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent achievements in studies of the effects of ICRF (Ion Cyclotron Range of Frequencies) power on the SOL (Scrape-Off Layer) and PWI (Plasma Wall Interactions) in ASDEX Upgrade (AUG), Alcator C-Mod, and JET-ILW are reviewed. Capabilities to diagnose and model the effect of DC biasing and associated impurity production at active antennas and on magnetic field connections to antennas are described. The experiments show that ICRF near-fields can lead not only to E x B convection, but also to modifications of the SOL density, which for Alcator C-Mod are limited to a narrow region near antenna. On the other hand, the SOL density distribution along with impurity sources can be tailored using local gas injection in AUG and JET-ILW with a positive effect on reduction of impurity sources. The technique of RF image current cancellation at antenna limiters was successfully applied in AUG using the 3-strap AUG antenna and extended to the 4-strap Alcator C-Mod field-aligned antenna. Multiple observations confirmed the reduction of the impact of ICRF on the SOL and on total impurity production when the ratio of the power of the central straps to the total antenna power is in the range 0.6 < P-cen / P-total < 0.8. Near-field calculations indicate that this fairly robust technique can be applied to the ITER ICRF antenna, enabling the mode of operation with reduced PWI. On the contrary, for the A2 antenna in JET-ILW the technique is hindered by RF sheaths excited at the antenna septum. Thus, in order to reduce the effect of ICRF power on PWI in a future fusion reactor, the antenna design has to be optimized along with design of plasmafacing components.
  •  
41.
  • Bobkov, V., et al. (författare)
  • Progress in reducing ICRF-specific impurity release in ASDEX upgrade and JET
  • 2017
  • Ingår i: Nuclear Materials and Energy. - : ELSEVIER. - 2352-1791. ; 12, s. 1194-1198
  • Tidskriftsartikel (refereegranskat)abstract
    • Use of new 3-strap ICRF antennas with all-tungsten (W) limiters in ASDEX Upgrade results in a reduction of the W sources at the antenna limiters and of the W content in the confined plasma by at least a factor of 2 compared to the W-limiter 2-strap antennas used in the past. The reduction is observed with a broad range of plasma shapes. In multiple locations of antenna frame, the limiter W source has a minimum when RF image currents are decreased by cancellation of the RF current contributions of the central and the outer straps. In JET with ITER-like wall, ITER-like antenna produces about 20% less of main chamber radiation and of W content compared to the old A2 antennas. However the effect of the A2 antennas on W content is scattered depending on which antennas are powered. Experiments in JET with trace nitrogen (N-2) injection show that a presence of active ICRF antenna close to the midplane injection valve has little effect on the core N content, both in dipole and in -90 degrees phasing. This indicates that the effect of ICRF on impurity transport across the scape-off-layer is small in JET compared to the dominant effect on impurity sources leading to increased impurity levels during ICRF operation.
  •  
42.
  • Bolshakova, I., et al. (författare)
  • Experimental evaluation of stable long term operation of semiconductor magnetic sensors at ITER relevant environment
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper deals with radiation resistant sensors and their associated measuring instrumentation developed in the course of R and D activities carried out in the framework of an international collaboration. The first trial tests of three-dimensional (3D) probes with Hall sensors have been performed in European tokamaks TORE SUPRA (2004) and JET (2005). Later in 2009 six sets of 3D probes were installed in JET and now continue to operate. The statistical analysis performed in 2014 on the basis of the JET database have demonstrated stable long term operation of all 18 sensors of 3D probes. The results of measurements conducted at the neutron fluxes of nuclear reactors have demonstrated the operability of the sensors up to high neutron fluences of F > 10(18)n , cm(-2) that exceeds the maximum one for the locations of steady state sensors in ITER over its total lifetime.
  •  
43.
  • Boltruczyk, G., et al. (författare)
  • Development of MPPC-based detectors for high count rate DT campaigns at JET
  • 2017
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 123, s. 940-944
  • Tidskriftsartikel (refereegranskat)abstract
    • The products of fusion reactions at JET are measured using different diagnostic techniques. One of the methods is based on measurements of gamma-rays, originating from reactions between fast ions and plasma impurities. During the forthcoming deuterium-tritium (DT) campaign a particular attention will be paid to 4.44 MeV gamma-rays emitted in the Be-9(alpha,n gamma)C-12 reaction. Gamma-ray detectors foreseen for measurements in DT campaigns have to be able to register spectra at high count rates, up to approximately 500 kHz. For the Gamma-ray Camera at JET a new setup will be based on scintillators with a short decay time, e.g., CeBr3, and a multi-pixel photon counter (MPPC). We present two methods of output signal shortening in modules based on MPPC. A short detector output signal is necessary in order to minimize the number of pile up events at high count rates. One method uses a passive RC circuit with a pole zero cancellation, whereas an active transimpedance amplifier is used in the other one. Due to the strong dependence of MPPC properties on temperature variation, a special device MTCD@NCBJ was designed and produced to stabilize the gain in MPPC-based scintillation detectors. We show that this device guarantees stable working conditions.
  •  
44.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
45.
  •  
46.
  • Bonanomi, N., et al. (författare)
  • Impact of electron-scale turbulence and multi-scale interactions in the JET tokamak
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental observations in JET tokamak plasmas and gyrokinetic simulations point to an important role, for electron heat transport, of electron-scale instabilities and of their interaction with ion-scale instabilities. Since these effects are maximized for strong electron heating and ion-scale modes close to marginal stability, these findings are of high relevance for ITER plasmas, featuring both conditions. Gyrokinetic and quasi-linear transport models accounting for multi-scale effects are assessed against JET experimental results.
  •  
47.
  •  
48.
  • Bonanomi, N., et al. (författare)
  • Role of fast ion pressure in the isotope effect in JET L-mode plasmas
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:9
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents results of JET ITER-like wall L-mode experiments in hydrogen and deuterium (D) plasmas, dedicated to the study of the isotope dependence of ion heat transport by determination of the ion critical gradient and stiffness by varying the ion cyclotron resonance heating power deposition. When no strong role of fast ions in the plasma core is expected, the main difference between the two isotope plasmas is determined by the plasma edge and the core behavior is consistent with a gyro-Bohm scaling. When the heating power (and the fast ion pressure) is increased, in addition to the difference in the edge region, also the plasma core shows substantial changes. The stabilization of ion heat transport by fast ions, clearly visible in D plasmas, appears to be weaker in H plasmas, resulting in a higher ion heat flux in H with apparent anti-gyro-Bohm mass scaling. The difference is found to be caused by the different fast ion pressure between H and D plasmas, related to the heating power settings and to the different fast ion slowing down time, and is completely accounted for in non-linear gyrokinetic simulations. The application of the TGLF quasi-linear model to this set of data is also discussed.
  •  
49.
  • Bonanomi, N., et al. (författare)
  • Trapped electron mode driven electron heat transport in JET : experimental investigation and gyro-kinetic theory validation
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The main purpose of this work is to study the dependence of trapped electron modes (TEM) threshold and of electron stiffness on the most relevant plasma parameters. Dedicated transport experiments based on heat flux scans and T-e modulation have been performed in JET in TEM dominated plasmas with pure ICRH electron heating and a numerical study using gyrokinetic simulations has been performed with the code GKW. Using multilinear regressions on the experimental data, the stabilizing effect of magnetic shear predicted by theory for our plasma parameters is confirmed while no significant effect of safety factor was found. Good quantitative agreement is found between the TEM thresholds found in the experiments and calculated with linear GKW simulations. Non-linear simulations have given further confirmation of the threshold values and allowed comparison with the values of stiffness found experimentally. Perturbative studies using RF power modulation indicate the existence of an inward convective term for the electron heat flux. Adding NBI power, ion temperature gradient (ITG) modes become dominant and a reduction of vertical bar del T-e vertical bar/T-e with respect to pure ICRH, TEM dominant discharges has been experimentally observed, in spite of increased total electron power. Possible explanations are discussed.
  •  
50.
  • Bonelli, F., et al. (författare)
  • Self-consistent coupling of DSMC method and SOLPS code for modeling tokamak particle exhaust
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, an investigation of the neutral gas flow in the JET sub-divertor area is presented, with respect to the interaction between the plasma side and the pumping side. The edge plasma side is simulated with the SOLPS code, while the sub-divertor area is modeled by means of the direct simulation Monte Carlo (DSMC) method, which in the last few years has proved well able to describe rarefied, collisional flows in tokamak sub-divertor structures. Four different plasma scenarios have been selected, and for each of them a user-defined, iterative procedure between SOLPS and DSMC has been established, using the neutral flux as the key communication term between the two codes. The goal is to understand and quantify the mutual influence between the two regions in a self-consistent manner, that is to say, how the particle exhaust pumping system controls the upstream plasma conditions. Parametric studies of the flow conditions in the sub-divertor, including additional flow outlets and variations of the cryopump capture coefficient, have been performed as well, in order to understand their overall impact on the flow field. The DSMC analyses resulted in the calculation of both the macroscopic quantities-i.e. temperature, number density and pressure-and the recirculation fluxes towards the plasma chamber. The consistent values for the recirculation rates were found to be smaller than those according to the initial standard assumption made by SOLPS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 369
Typ av publikation
tidskriftsartikel (360)
forskningsöversikt (6)
annan publikation (1)
konferensbidrag (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (367)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Bykov, Igor (347)
Zychor, I (318)
Rubel, Marek (317)
Frassinetti, Lorenzo (317)
Hellsten, Torbjörn (317)
Ström, Petter (316)
visa fler...
Weckmann, Armin (316)
Petersson, Per (315)
Menmuir, Sheena (306)
Conroy, Sean (306)
Bergsåker, Henric (297)
Eriksson, Jacob, Dr, ... (294)
Ericsson, Göran (289)
Andersson Sundén, Er ... (288)
Hjalmarsson, Anders (288)
Possnert, Göran, 195 ... (285)
Cecconello, Marco (284)
Rachlew, Elisabeth, ... (283)
Sjöstrand, Henrik, 1 ... (282)
Weiszflog, Matthias (282)
Hellesen, Carl, 1980 ... (252)
Binda, Federico, 198 ... (248)
Skiba, Mateusz, 1985 ... (245)
Dzysiuk, Nataliia (215)
Johnson, Thomas (214)
Tholerus, Emmi (202)
Garcia-Carrasco, Alv ... (165)
Stefanikova, Estera (164)
Garcia Carrasco, Alv ... (151)
Elevant, Thomas (150)
Ivanova, Darya (150)
Ratynskaia, Svetlana (149)
Tolias, Panagiotis (142)
Olivares, Pablo Vall ... (138)
Asp, E (111)
Tholerus, Simon, 198 ... (105)
Zhou, Yushun (104)
Jonsson, Thomas, 197 ... (88)
Zhou, Yushan (65)
Dzysiuk, N. (54)
Skiba, M. (42)
Binda, F. (41)
Hellesen, C (39)
Rachlew, Elisabeth (34)
Bergsåker, Henrik (34)
Likonen, J (31)
Nocente, M (28)
Batistoni, P (27)
Heinola, K (27)
Zoletnik, S (27)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (346)
Uppsala universitet (332)
Chalmers tekniska högskola (27)
Linköpings universitet (19)
Göteborgs universitet (2)
Språk
Engelska (369)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (364)
Teknik (17)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy