SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cacialli Franco) "

Sökning: WFRF:(Cacialli Franco)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liscio, Andrea, et al. (författare)
  • Local Surface Potential of pi-Conjugated Nanostructures by Kelvin Probe Force Microscopy: Effect of the Sampling Depth
  • 2011
  • Ingår i: SMALL. - : John Wiley and Sons, Ltd. - 1613-6810. ; 7:5, s. 634-639
  • Tidskriftsartikel (refereegranskat)abstract
    • Kelvin probe force microscopy (KPFM) is usually applied to map the local surface potential of nanostructured materials at surfaces and interfaces. KPFM is commonly defined as a surface technique, even if this assumption is not fully justified. However, a quantification of the surface sensitivity of this technique is crucial to explore electrical properties at the nanoscale. Here a versatile 3D model is presented which provides a quantitative explanation of KPFM results, taking into account the vertical structure of the sample. The model is tested on nanostructured films obtained from two relevant semiconducting systems for field-effect transistor and solar cell applications showing different interfacial properties, i.e., poly(3-hexylthiophene) (P3HT) and perylene-bis-dicarboximide (PDI). These findings are especially important since they enable quantitative determination of the local surface potential of conjugated nanostructures, and thereby pave the way towards optimization of the electronic properties of nanoscale architectures for organic electronic applications.
  •  
2.
  • Minotto, Alessandro, et al. (författare)
  • Efficient Near-Infrared Electroluminescence at 840 nm with “Metal-Free” Small-Molecule:Polymer Blends
  • 2018
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 30:34
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the so-called energy-gap law and aggregation quenching, the efficiency of organic light-emitting diodes (OLEDs) emitting above 800 nm is significantly lower than that of visible ones. Successful exploitation of triplet emission in phosphorescent materials containing heavy metals has been reported, with OLEDs achieving remarkable external quantum efficiencies (EQEs) up to 3.8% (peak wavelength > 800 nm). For OLEDs incorporating fluorescent materials free from heavy or toxic metals, however, we are not aware of any report of EQEs over 1% (again for emission peaking at wavelengths > 800 nm), even for devices leveraging thermally activated delayed fluorescence (TADF). Here, the development of polymer light-emitting diodes (PLEDs) peaking at 840 nm and exhibiting unprecedented EQEs (in excess of 1.15%) and turn-on voltages as low as 1.7 V is reported. These incorporate a novel triazolobenzothiadiazole-based emitter and a novel indacenodithiophene-based transport polymer matrix, affording excellent spectral and transport properties. To the best of knowledge, such values are the best ever reported for electroluminescence at 840 nm with a purely organic and solution-processed active layer, not leveraging triplet-assisted emission.
  •  
3.
  • Tejerina, Lara, et al. (författare)
  • A porphyrin pentamer as a bright emitter for NIR OLEDs
  • 2022
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7534 .- 2050-7526. ; 10:15, s. 5929-5933
  • Tidskriftsartikel (refereegranskat)abstract
    • The Luminescence and electroluminescence of an ethyne-Linked zinc(II) porphyrin pentamer have been investigated, by testing blends in two different conjugated polymer matrices, at a range of concentrations. The best results were obtained for blends with the conjugated polymer PIDT-2TPD, at a porphyrin loading of 1 wt%. This host matrix was selected because the excellent overlap between its emission spectrum and the low-energy region of the absorption spectrum of the porphyrin oligomer leads to efficient energy transfer. Thin films of this blend exhibit intense fluorescence in the near-infrared (NIR), with a peak emission wavelength of 886 nm and a photoluminescent quantum yield (PLQY) of 27% in the solid state. Light-emitting diodes (LEDs) fabricated with this blend as the emissive layer achieve average external quantum efficiencies (EQE) of 2.0% with peak emission at 830 nm and a turn-on voltage of 1.6 V. This performance is remarkable for a singlet NIR-emitter; 93% of the photons are emitted in the NIR (lambda > 700 nm), indicating that conjugated porphyrin oligomers are promising emitters for non-toxic NIR OLEDs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy