SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cafaro Caterina) "

Sökning: WFRF:(Cafaro Caterina)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ajore, Ram, et al. (författare)
  • Functional dissection of inherited non-coding variation influencing multiple myeloma risk
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Thousands of non-coding variants have been associated with increased risk of human diseases, yet the causal variants and their mechanisms-of-action remain obscure. In an integrative study combining massively parallel reporter assays (MPRA), expression analyses (eQTL, meQTL, PCHiC) and chromatin accessibility analyses in primary cells (caQTL), we investigate 1,039 variants associated with multiple myeloma (MM). We demonstrate that MM susceptibility is mediated by gene-regulatory changes in plasma cells and B-cells, and identify putative causal variants at six risk loci (SMARCD3, WAC, ELL2, CDCA7L, CEP120, and PREX1). Notably, three of these variants co-localize with significant plasma cell caQTLs, signaling the presence of causal activity at these precise genomic positions in an endogenous chromosomal context in vivo. Our results provide a systematic functional dissection of risk loci for a hematologic malignancy.
  •  
2.
  • Ambite, Ines, et al. (författare)
  • Molecular Basis of Acute Cystitis Reveals Susceptibility Genes and Immunotherapeutic Targets
  • 2016
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Tissue damage is usually regarded as a necessary price to pay for successful elimination of pathogens by the innate immune defense. Yet, it is possible to distinguish protective from destructive effects of innate immune activation and selectively attenuate molecular nodes that create pathology. Here, we identify acute cystitis as an Interleukin-1 beta (IL-1β)-driven, hyper-inflammatory condition of the infected urinary bladder and IL-1 receptor blockade as a novel therapeutic strategy. Disease severity was controlled by the mechanism of IL-1β processing and mice with intact inflammasome function developed a moderate, self-limiting form of cystitis. The most severe form of acute cystitis was detected in mice lacking the inflammasome constituents ASC or NLRP-3. IL-1β processing was hyperactive in these mice, due to a new, non-canonical mechanism involving the matrix metalloproteinase 7- (MMP-7). ASC and NLRP-3 served as transcriptional repressors of MMP7 and as a result, Mmp7 was markedly overexpressed in the bladder epithelium of Asc-/- and Nlrp3-/- mice. The resulting IL-1β hyper-activation loop included a large number of IL-1β-dependent pro-inflammatory genes and the IL-1 receptor antagonist Anakinra inhibited their expression and rescued susceptible Asc-/- mice from bladder pathology. An MMP inhibitor had a similar therapeutic effect. Finally, elevated levels of IL-1β and MMP-7 were detected in patients with acute cystitis, suggesting a potential role as biomarkers and immunotherapeutic targets. The results reproduce important aspects of human acute cystitis in the murine model and provide a comprehensive molecular framework for the pathogenesis and immunotherapy of acute cystitis, one of the most common infections in man. Trial Registration: The clinical studies were approved by the Human Ethics Committee at Lund University (approval numbers LU106-02, LU236-99 and Clinical Trial Registration RTP-A2003, International Committee of Medical Journal Editors, www.clinicaltrials.gov).
  •  
3.
  • Butler, Daniel S.C., et al. (författare)
  • A bacterial protease depletes c-MYC and increases survival in mouse models of bladder and colon cancer
  • 2021
  • Ingår i: Nature Biotechnology. - : Springer Science and Business Media LLC. - 1087-0156 .- 1546-1696. ; 39:6, s. 754-764
  • Tidskriftsartikel (refereegranskat)abstract
    • Is the oncogene MYC upregulated or hyperactive? In the majority of human cancers, finding agents that target c-MYC has proved difficult. Here we report specific bacterial effector molecules that inhibit cellular MYC (c-MYC) in human cells. We show that uropathogenic Escherichia coli (UPEC) degrade the c-MYC protein and attenuate MYC expression in both human cells and animal tissues. c-MYC protein was rapidly degraded by both cell-free bacterial lysates and the purified bacterial protease Lon. In mice, intravesical or peroral delivery of Lon protease delayed tumor progression and increased survival in MYC-dependent bladder and colon cancer models, respectively. These results suggest that bacteria have evolved strategies to control c-MYC tissue levels in the host and that the Lon protease shows promise for therapeutic targeting of c-MYC in cancer.
  •  
4.
  • Butler, Daniel S.C., et al. (författare)
  • Neuroepithelial control of mucosal inflammation in acute cystitis
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • The nervous system is engaged by infection, indirectly through inflammatory cascades or directly, by bacterial attack on nerve cells. Here we identify a neuro-epithelial activation loop that participates in the control of mucosal inflammation and pain in acute cystitis. We show that infection activates Neurokinin-1 receptor (NK1R) and Substance P (SP) expression in nerve cells and bladder epithelial cells in vitro and in vivo in the urinary bladder mucosa. Specific innate immune response genes regulated this mucosal response, and single gene deletions resulted either in protection (Tlr4−/− and Il1b−/− mice) or in accentuated bladder pathology (Asc−/− and Nlrp3−/− mice), compared to controls. NK1R/SP expression was lower in Tlr4−/− and Il1b−/− mice than in C56BL/6WT controls but in Asc−/− and Nlrp3−/− mice, NK1R over-activation accompanied the exaggerated disease phenotype, due, in part to transcriptional de-repression of Tacr1. Pharmacologic NK1R inhibitors attenuated acute cystitis in susceptible mice, supporting a role in disease pathogenesis. Clinical relevance was suggested by elevated urine SP levels in patients with acute cystitis, compared to patients with asymptomatic bacteriuria identifying NK1R/SP as potential therapeutic targets. We propose that NK1R and SP influence the severity of acute cystitis through a neuro-epithelial activation loop that controls pain and mucosal inflammation.
  •  
5.
  • Duran-Lozano, Laura, et al. (författare)
  • Germline variants at SOHLH2 influence multiple myeloma risk
  • 2021
  • Ingår i: Blood Cancer Journal. - : Springer Science and Business Media LLC. - 2044-5385. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple myeloma (MM) is caused by the uncontrolled, clonal expansion of plasma cells. While there is epidemiological evidence for inherited susceptibility, the molecular basis remains incompletely understood. We report a genome-wide association study totalling 5,320 cases and 422,289 controls from four Nordic populations, and find a novel MM risk variant at SOHLH2 at 13q13.3 (risk allele frequency = 3.5%; odds ratio = 1.38; P = 2.2 × 10-14). This gene encodes a transcription factor involved in gametogenesis that is normally only weakly expressed in plasma cells. The association is represented by 14 variants in linkage disequilibrium. Among these, rs75712673 maps to a genomic region with open chromatin in plasma cells, and upregulates SOHLH2 in this cell type. Moreover, rs75712673 influences transcriptional activity in luciferase assays, and shows a chromatin looping interaction with the SOHLH2 promoter. Our work provides novel insight into MM susceptibility.
  •  
6.
  • Ekdahl, Ludvig, et al. (författare)
  • AliGater : a framework for the development of bioinformatic pipelines for large-scale, high-dimensional cytometry data
  • 2023
  • Ingår i: Bioinformatics Advances. - 2635-0041. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: AliGater is an open-source framework to accelerate the development of bioinformatic pipelines for the analysis of large-scale, high-dimensional flow cytometry data. AliGater provides a Python package for automatic feature extraction workflows, as well as building blocks to construct analysis pipelines. Results: We illustrate the use of AliGater in a high-resolution flow cytometry-based genome-wide association study on 46 immune cell populations in 14 288 individuals.
  •  
7.
  • Lopez de Lapuente Portilla, Aitzkoa, et al. (författare)
  • Genome-wide association study on 13 167 individuals identifies regulators of blood CD34+cell levels
  • 2022
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 139:11, s. 1659-1669
  • Tidskriftsartikel (refereegranskat)abstract
    • Stem cell transplantation is a cornerstone in the treatment of blood malignancies. The most common method to harvest stem cells for transplantation is by leukapheresis, requiring mobilization of CD34+ hematopoietic stem and progenitor cells (HSPCs) from the bone marrow into the blood. Identifying the genetic factors that control blood CD34+ cell levels could reveal new drug targets for HSPC mobilization. Here we report the first large-scale, genome-wide association study on blood CD34+ cell levels. Across 13 167 individuals, we identify 9 significant and 2 suggestive associations, accounted for by 8 loci (PPM1H, CXCR4, ENO1-RERE, ITGA9, ARHGAP45, CEBPA, TERT, and MYC). Notably, 4 of the identified associations map to CXCR4, showing that bona fide regulators of blood CD34+ cell levels can be identified through genetic variation. Further, the most significant association maps to PPM1H, encoding a serine/threonine phosphatase never previously implicated in HSPC biology. PPM1H is expressed in HSPCs, and the allele that confers higher blood CD34+ cell levels downregulates PPM1H. Through functional fine-mapping, we find that this downregulation is caused by the variant rs772557-A, which abrogates an MYB transcription factor–binding site in PPM1H intron 1 that is active in specific HSPC subpopulations, including hematopoietic stem cells, and interacts with the promoter by chromatin looping. Furthermore, PPM1H knockdown increases the proportion of CD34+ and CD34+90+ cells in cord blood assays. Our results provide the first large-scale analysis of the genetic architecture of blood CD34+ cell levels and warrant further investigation of PPM1H as a potential inhibition target for stem cell mobilization.
  •  
8.
  • Lopez de Lapuente Portilla, Aitzkoa, et al. (författare)
  • Genome-wide association study on 13,167 individuals identifies regulators of hematopoietic stem and progenitor cell levels in human blood
  • 2021
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Understanding how hematopoietic stem and progenitor cells (HSPCs) are regulated is of central importance for the development of new therapies for blood disorders and stem cell transplantation. To date, HSPC regulation has been extensively studied in vitro and in animal models, but less is known about the mechanisms in vivo in humans. Here, in a genome-wide association study on 13,167 individuals, we identify 9 significant and 2 suggestive DNA sequence variants that influence HSPC (CD34+) levels in human blood. The identified loci associate with blood disorders, harbor known and novel HSPC genes, and affect gene expression in HSPCs. Interestingly, our strongest association maps to the PPM1H gene, encoding an evolutionarily conserved serine/threonine phosphatase never previously implicated in stem cell biology. PPM1H is expressed in HSPCs, and the allele that confers higher blood CD34+ cell levels downregulates PPM1H. By functional fine-mapping, we find that this downregulation is caused by the variant rs772557-A, which abrogates a MYB transcription factor binding site in PPM1H intron 1 that is active in specific HSPC subpopulations, including hematopoietic stem cells, and interacts with the promoter by chromatin looping. Furthermore, rs772557-A selectively increases HSPC subpopulations in which the MYB site is active, and PPM1H shRNA- knockdown increased CD34+ and CD34+90+ cell proportions in umbilical cord blood cultures. Our findings represent the first large-scale association study on a stem cell trait, illuminating HSPC regulation in vivo in humans, and identifying PPM1H as a novel inhibition target that can potentially be utilized clinically to facilitate stem cell harvesting for transplantation.
  •  
9.
  • Lopez de Lapuente Portilla, Aitzkoa, et al. (författare)
  • Identification of regulators of hematopoietic stem and progenitor cells in vivo in humans using population genetics
  • 2020
  • Konferensbidrag (refereegranskat)abstract
    • Introduction: Understanding how hematopoietic stem- and progenitor cells (HSPCs) are regulated is of central importance for the development of new therapies for blood disorders and for regenerative medicine. Traditionally, however, HSPC regulation has been studied in model systems, and little is known about the situation in vivo in humans. Methods: To learn how HSPCs are regulated under native conditions in humans, we carried out a first large-scale genome-wide association study on CD34+ cells, representing HSPCs in blood. We used circulating CD34+ levels as a proxy trait to expose regulators of key phenomena like HSPC pool size, migration, and early differentiation. We created a unique phenotyping platform based on high-throughput, high-resolution flow-cytometry and machine learning-based algorithms for automated flow data analysis, and quantified CD34+ cells in 9,936 adults.Results: We identified 8 genome-wide (P<5x10-8) and 20 suggestive loci (P<5x10-6) associated with CD34+ levels. The two strongest were the HSPC migration receptor CXCR4 and a novel protein phosphatase never previously implicated in stem cell biology. Using eQTL, ATAC-seq, and promoter capture Hi-C analysis in isolated HSPCs, we pinpoint likely causal variants, including variants in distant regulatory elements selectively active in specific HSPC subpopulations. Furthermore, shRNA knockdown in primary CD34+ cells supports that some of the identified genes affect CD34+ proliferation and differentiation.Conclusions: We report the first large-scale analysis of the genetic architecture of HSPC regulation, with potential implications for stem cell transplantation and the treatment of hematologic malignancies.Grant information: European Research Council, Swedish Research Council, Swedish Cancer Society.
  •  
10.
  • Puthia, Manoj, et al. (författare)
  • IRF7 inhibition prevents destructive innate immunity-A target for nonantibiotic therapy of bacterial infections
  • 2016
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 8:336
  • Tidskriftsartikel (refereegranskat)abstract
    • Boosting innate immunity represents an important therapeutic alternative to antibiotics. However, the molecular selectivity of this approach is a major concern because innate immune responses often cause collateral tissue damage. We identify the transcription factor interferon regulatory factor 7 (IRF-7), a heterodimer partner of IRF-3, as a target for non-antibiotics-based therapy of bacterial infections. We found that the efficient and self-limiting innate immune response to bacterial infection relies on a tight balance between IRF-3 and IRF-7. Deletion of Irf3 resulted in overexpression of Irf7 and led to an IRF-7-driven hyperinflammatory phenotype, which was entirely prevented if Irf7 was deleted. We then identified a network of strongly up-regulated, IRF-7-dependent genes in Irf3-/- mice with kidney pathology, which was absent in Irf7-/- mice. IRF-3 and IRF-7 from infected kidney cell nuclear extracts were shown to bind OAS1, CCL5, andIFNB1 promoter oligonucleotides. These data are consistent in children with lowIRF7 expression in the blood: attenuating IRF7 promoter polymorphisms (rs3758650-T and rs10902179-G) negatively associated with recurrent pyelonephritis. Finally, we identified IRF-7 as a target for immunomodulatory therapy. Administering liposomal Irf7 siRNA to Irf3-/- mice suppressed mucosal IRF-7 expression, and the mice were protected against infection and renal tissue damage. These findings offer a response to the classical but unresolved question of "good versus bad inflammation" and identify IRF7 as a therapeutic target for protection against bacterial infection.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy