SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cahill Jonathan) "

Sökning: WFRF:(Cahill Jonathan)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kappos, Ludwig, et al. (författare)
  • Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study
  • 2018
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 391, s. 1263-1273
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 Elsevier Ltd Background: No treatment has consistently shown efficacy in slowing disability progression in patients with secondary progressive multiple sclerosis (SPMS). We assessed the effect of siponimod, a selective sphingosine 1-phosphate (S1P) receptor 1,5 modulator, on disability progression in patients with SPMS. Methods: This event-driven and exposure-driven, double-blind, phase 3 trial was done at 292 hospital clinics and specialised multiple sclerosis centres in 31 countries. Using interactive response technology to assign numbers linked to treatme nt arms, patients (age 18–60 years) with SPMS and an Expanded Disability Status Scale score of 3·0–6·5 were randomly assigned (2:1) to once daily oral siponimod 2 mg or placebo for up to 3 years or until the occurrence of a prespecified number of confirmed disability progression (CDP) events. The primary endpoint was time to 3-month CDP. Efficacy was assessed for the full analysis set (ie, all randomly assigned and treated patients); safety was assessed for the safety set. This trial is registered with ClinicalTrials.gov, number NCT01665144. Findings: 1651 patients were randomly assigned between Feb 5, 2013, and June 2, 2015 (1105 to the siponimod group, and 546 to the placebo group). One patient did not sign the consent form, and five patients did not receive study drug, all of whom were in the siponimod group. 1645 patients were included in the analyses (1099 in the siponimod group and 546 in the placebo). At baseline, the mean time since first multiple sclerosis symptoms was 16·8 years (SD 8·3), and the mean time since conversion to SPMS was 3·8 years (SD 3·5); 1055 (64%) patients had not relapsed in the previous 2 years, and 918 (56%) of 1651 needed walking assistance. 903 (82%) patients receiving siponimod and 424 (78%) patients receiving placebo completed the study. 288 (26%) of 1096 patients receiving siponimod and 173 (32%) of 545 patients receiving placebo had 3-month CDP (hazard ratio 0·79, 95% CI 0·65–0·95; relative risk reduction 21%; p=0·013). Adverse events occurred in 975 (89%) of 1099 patients receiving siponimod versus 445 (82%) of 546 patients receiving placebo; serious adverse events were reported for 197 (18%) patients in the siponimod group versus 83 (15%) patients in the placebo group. Lymphopenia, increased liver transaminase concentration, bradycardia and bradyarrhythmia at treatment initiation, macular oedema, hypertension, varicella zoster reactivation, and convulsions occurred more frequently with siponimod than with placebo. Initial dose titration mitigated cardiac first-dose effects. Frequencies of infections, malignancies, and fatalities did not differ between groups. Interpretation: Siponimod reduced the risk of disability progression with a safety profile similar to that of other S1P modulators and is likely to be a useful treatment for SPMS. Funding: Novartis Pharma AG.
  •  
2.
  • Clark, Andrew G., et al. (författare)
  • Evolution of genes and genomes on the Drosophila phylogeny
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 450:7167, s. 203-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
  •  
3.
  • Komatsu, Kimberly J., et al. (författare)
  • Global change effects on plant communities are magnified by time and the number of global change factors imposed
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:36, s. 17867-17873
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate prediction of community responses to global change drivers (GCDs) is critical given the effects of biodiversity on ecosystem services. There is consensus that human activities are driving species extinctions at the global scale, but debate remains over whether GCDs are systematically altering local communities worldwide. Across 105 experiments that included over 400 experimental manipulations, we found evidence for a lagged response of herbaceous plant communities to GCDs caused by shifts in the identities and relative abundances of species, often without a corresponding difference in species richness. These results provide evidence that community responses are pervasive across a wide variety of GCDs on long-term temporal scales and that these responses increase in strength when multiple GCDs are simultaneously imposed.Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.
  •  
4.
  • Lindblad-Toh, Kerstin, et al. (författare)
  • Genome sequence, comparative analysis and haplotype structure of the domestic dog.
  • 2005
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 438:7069, s. 803-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health.
  •  
5.
  • Roth, Gregory A, et al. (författare)
  • Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019 : Update From the GBD 2019 Study
  • 2020
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097 .- 1558-3597. ; 76:25, s. 2982-3021
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiovascular diseases (CVDs), principally ischemic heart disease (IHD) and stroke, are the leading cause of global mortality and a major contributor to disability. This paper reviews the magnitude of total CVD burden, including 13 underlying causes of cardiovascular death and 9 related risk factors, using estimates from the Global Burden of Disease (GBD) Study 2019. GBD, an ongoing multinational collaboration to provide comparable and consistent estimates of population health over time, used all available population-level data sources on incidence, prevalence, case fatality, mortality, and health risks to produce estimates for 204 countries and territories from 1990 to 2019. Prevalent cases of total CVD nearly doubled from 271 million (95% uncertainty interval [UI]: 257 to 285 million) in 1990 to 523 million (95% UI: 497 to 550 million) in 2019, and the number of CVD deaths steadily increased from 12.1 million (95% UI:11.4 to 12.6 million) in 1990, reaching 18.6 million (95% UI: 17.1 to 19.7 million) in 2019. The global trends for disability-adjusted life years (DALYs) and years of life lost also increased significantly, and years lived with disability doubled from 17.7 million (95% UI: 12.9 to 22.5 million) to 34.4 million (95% UI:24.9 to 43.6 million) over that period. The total number of DALYs due to IHD has risen steadily since 1990, reaching 182 million (95% UI: 170 to 194 million) DALYs, 9.14 million (95% UI: 8.40 to 9.74 million) deaths in the year 2019, and 197 million (95% UI: 178 to 220 million) prevalent cases of IHD in 2019. The total number of DALYs due to stroke has risen steadily since 1990, reaching 143 million (95% UI: 133 to 153 million) DALYs, 6.55 million (95% UI: 6.00 to 7.02 million) deaths in the year 2019, and 101 million (95% UI: 93.2 to 111 million) prevalent cases of stroke in 2019. Cardiovascular diseases remain the leading cause of disease burden in the world. CVD burden continues its decades-long rise for almost all countries outside high-income countries, and alarmingly, the age-standardized rate of CVD has begun to rise in some locations where it was previously declining in high-income countries. There is an urgent need to focus on implementing existing cost-effective policies and interventions if the world is to meet the targets for Sustainable Development Goal 3 and achieve a 30% reduction in premature mortality due to noncommunicable diseases.
  •  
6.
  • Santangelo, James S., et al. (författare)
  • Global urban environmental change drives adaptation in white clover
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 375
  • Tidskriftsartikel (refereegranskat)abstract
    • Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural dines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy