SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cai Pengli) "

Sökning: WFRF:(Cai Pengli)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheng, Jian, et al. (författare)
  • Parallel Evolution of Chromatin Structure Underlying Metabolic Adaptation
  • 2017
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 34:11, s. 2870-2878
  • Tidskriftsartikel (refereegranskat)abstract
    • Parallel evolution occurs when a similar trait emerges in independent evolutionary lineages. Although changes in protein coding and gene transcription have been investigated as underlying mechanisms for parallel evolution, parallel changes in chromatin structure have never been reported. Here, Saccharomyces cerevisiae and a distantly related yeast species, Dekkera bruxellensis, are investigated because both species have independently evolved the capacity of aerobic fermentation. By profiling and comparing genome sequences, transcriptomic landscapes, and chromatin structures, we revealed that parallel changes in nucleosome occupancy in the promoter regions of mitochondria-localized genes led to concerted suppression of mitochondrial functions by glucose, which can explain the metabolic convergence in these two independent yeast species. Further investigation indicated that similar mutational processes in the promoter regions of these genes in the two independent evolutionary lineages underlay the parallel changes in chromatin structure. Our results indicate that, despite several hundred million years of separation, parallel changes in chromatin structure, can be an important adaptation mechanism for different organisms. Due to the important role of chromatin structure changes in regulating gene expression and organism phenotypes, the novel mechanism revealed in this study could be a general phenomenon contributing to parallel adaptation in nature.
  •  
2.
  • Ding, Shaozhen, et al. (författare)
  • novoPathFinder: a webserver of designing novel-pathway with integrating GEM-model
  • 2020
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 48:W1, s. W477-W487
  • Tidskriftsartikel (refereegranskat)abstract
    • To increase the number of value-added chemicals that can be produced by metabolic engineering and synthetic biology, constructing metabolic space with novel reactions/pathways is crucial. However, with the large number of reactions that existed in the metabolic space and complicated metabolisms within hosts, identifying novel pathways linking two molecules or heterologous pathways when engineering a host to produce a target molecule is an arduous task. Hence, we built a user-friendly web server, novoPathFinder, which has several features: (i) enumerate novel pathways between two specified molecules without considering hosts; (ii) construct heterologous pathways with known or putative reactions for producing target molecule within Escherichia coli or yeast without giving precursor; (iii) estimate novel pathways with considering several categories, including enzyme promiscuity, Synthetic Complex Score (SCScore) and LD50 of intermediates, overall stoichiometric conversions, pathway length, theoretical yields and thermodynamic feasibility. According to the results, novoPathFinder is more capable to recover experimentally validated pathways when comparing other rule-based web server tools. Besides, more efficient pathways with novel reactions could also be retrieved for further experimental exploration. novoPathFinder is available at http://design.rxnfinder.org/novopathfinder/.
  •  
3.
  • Han, Mengying, et al. (författare)
  • ChemHub: a knowledgebase of functional chemicals for synthetic biology studies
  • 2021
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811 .- 1460-2059. ; 37:22, s. 4275-4276
  • Tidskriftsartikel (refereegranskat)abstract
    • The field of synthetic biology lacks a comprehensive knowledgebase for selecting synthetic target molecules according to their functions, economic applications and known biosynthetic pathways. We implemented ChemHub, a knowledgebase containing >90 000 chemicals and their functions, along with related biosynthesis information for these chemicals that was manually extracted from >600 000 published studies by more than 100 people over the past 10 years.
  •  
4.
  • Zhang, Dachuan, et al. (författare)
  • FRCD: A comprehensive food risk component database with molecular scaffold, chemical diversity, toxicity, and biodegradability analysis
  • 2020
  • Ingår i: Food Chemistry. - : Elsevier BV. - 0308-8146 .- 1873-7072. ; 318
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of natural toxins, pesticide residues, and illegal additives in food products has been associated with a range of potential health hazards. However, no systematic database exists that comprehensively includes and integrates all research information on these compounds, and valuable information remains scattered across numerous databases and extensive literature reports. Thus, using natural language processing technology, we curated 12,018 food risk components from 152,737 literature reports, 12 authoritative databases, and numerous related regulatory documents. Data on molecular structures, physicochemical properties, chemical taxonomy, absorption, distribution, metabolism, excretion, toxicity properties, and physiological targets within the human body were integrated to afford the comprehensive food risk component database (FRCD, http://www.rxnfinder.org/frcd/). We also analyzed the molecular scaffold and chemical diversity, in addition to evaluating the toxicity and biodegradability of the food risk components. The FRCD could be considered a highly promising tool for future food safety studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy