SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Caminha Gabriel B.) "

Search: WFRF:(Caminha Gabriel B.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Welch, Brian, et al. (author)
  • JWST Imaging of Earendel, the Extremely Magnified Star at Redshift z=6.2
  • 2022
  • In: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 940
  • Journal article (peer-reviewed)abstract
    • The gravitationally lensed star WHL 0137-LS, nicknamed Earendel, was identified with a photometric redshift z (phot) = 6.2 +/- 0.1 based on images taken with the Hubble Space Telescope. Here we present James Webb Space Telescope (JWST) Near Infrared Camera images of Earendel in eight filters spanning 0.8-5.0 mu m. In these higher-resolution images, Earendel remains a single unresolved point source on the lensing critical curve, increasing the lower limit on the lensing magnification to mu > 4000 and restricting the source plane radius further to r < 0.02 pc, or similar to 4000 au. These new observations strengthen the conclusion that Earendel is best explained by an individual star or multiple star system and support the previous photometric redshift estimate. Fitting grids of stellar spectra to our photometry yields a stellar temperature of T (eff) similar to 13,000-16,000 K, assuming the light is dominated by a single star. The delensed bolometric luminosity in this case ranges from log(L)=5.8 L-theta, which is in the range where one expects luminous blue variable stars. Follow-up observations, including JWST NIRSpec scheduled for late 2022, are needed to further unravel the nature of this object, which presents a unique opportunity to study massive stars in the first billion years of the universe.
  •  
2.
  • Fujimoto, Seiji, et al. (author)
  • ALMA Lensing Cluster Survey: Bright [C ii] 158 mu m Lines from a Multiply Imaged Sub-L* Galaxy at z=6.0719
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 911:2
  • Research review (peer-reviewed)abstract
    • We present bright [C ii] 158 mu m line detections from a strongly magnified and multiply imaged (mu similar to 20-160) sub-L* (MUV=-19.75-0.44+0.55) Lyman-break galaxy (LBG) at z = 6.0719 +/- 0.0004, drawn from the ALMA Lensing Cluster Survey (ALCS). Emission lines are identified at 268.7 GHz at >= 8 sigma exactly at the positions of two multiple images of the LBG, behind the massive galaxy cluster RXCJ0600-2007. Our lens models, updated with the latest spectroscopy from VLT/MUSE, indicate that a sub region of the LBG crosses the caustic, and is lensed into a long (similar to 6 '') arc with a local magnification of mu similar to 160, for which the [C ii] line is also significantly detected. The source plane reconstruction resolves the interstellar medium (ISM) structure, showing that the [C ii] line is co-spatial with the rest-frame UV continuum at a scale of similar to 300 pc. The [C ii] line properties suggest that the LBG is a rotation-dominated system, whose velocity gradient explains a slight difference in redshifts between the whole LBG and its sub-region. The star formation rate (SFR)-L-[CII] relations, for whole and sub-regions of the LBG, are consistent with those of local galaxies. We evaluate the lower limit of the faint-end of the [C ii] luminosity function at z = 6, finding it to be consistent with predictions from semi-analytical models and from the local SFR-L-[CII] relation with a SFR function at z = 6. These results imply that the local SFR-L-[CII] relation is universal for a wide range of scales, including the spatially resolved ISM, the whole region of the galaxy, and the cosmic scale, even in the epoch of reionization.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view