SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Canadell J.) "

Sökning: WFRF:(Canadell J.)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Librado, P., et al. (författare)
  • The origins and spread of domestic horses from the Western Eurasian steppes
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 598, s. 634-640
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of 273 ancient horse genomes reveals that modern domestic horses originated in the Western Eurasian steppes, especially the lower Volga-Don region. Domestication of horses fundamentally transformed long-range mobility and warfare(1). However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling(2-4) at Botai, Central Asia around 3500 bc(3). Other longstanding candidate regions for horse domestication, such as Iberia(5) and Anatolia(6), have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 bc, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association(7) between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 bc(8,9) driving the spread of Indo-European languages(10). This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium bc Sintashta culture(11,12).
  •  
2.
  • Schuur, E. A. G., et al. (författare)
  • Expert assessment of vulnerability of permafrost carbon to climate change
  • 2013
  • Ingår i: Climatic Change. - : Springer Science and Business Media LLC. - 0165-0009 .- 1573-1480. ; 119:2, s. 359-374
  • Tidskriftsartikel (refereegranskat)abstract
    • Approximately 1700 Pg of soil carbon (C) are stored in the northern circumpolar permafrost zone, more than twice as much C than in the atmosphere. The overall amount, rate, and form of C released to the atmosphere in a warmer world will influence the strength of the permafrost C feedback to climate change. We used a survey to quantify variability in the perception of the vulnerability of permafrost C to climate change. Experts were asked to provide quantitative estimates of permafrost change in response to four scenarios of warming. For the highest warming scenario (RCP 8.5), experts hypothesized that C release from permafrost zone soils could be 19-45 Pg C by 2040, 162-288 Pg C by 2100, and 381-616 Pg C by 2300 in CO2 equivalent using 100-year CH4 global warming potential (GWP). These values become 50 % larger using 20-year CH4 GWP, with a third to a half of expected climate forcing coming from CH4 even though CH4 was only 2.3 % of the expected C release. Experts projected that two-thirds of this release could be avoided under the lowest warming scenario (RCP 2.6). These results highlight the potential risk from permafrost thaw and serve to frame a hypothesis about the magnitude of this feedback to climate change. However, the level of emissions proposed here are unlikely to overshadow the impact of fossil fuel burning, which will continue to be the main source of C emissions and climate forcing.
  •  
3.
  • Saunois, M., et al. (författare)
  • The global methane budget 2000–2012
  • 2016
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 8:2, s. 697-751
  • Tidskriftsartikel (refereegranskat)abstract
    • The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (∼ biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003–2012 decade, global methane emissions are estimated by top-down inversions at 558 Tg CH4 yr−1, range 540–568. About 60 % of global emissions are anthropogenic (range 50–65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scenarios. Bottom-up approaches suggest larger global emissions (736 Tg CH4 yr−1, range 596–884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions (∼ 64 % of the global budget, < 30° N) as compared to mid (∼ 32 %, 30–60° N) and high northern latitudes (∼ 4 %, 60–90° N). Top-down inversions consistently infer lower emissions in China (∼ 58 Tg CH4 yr−1, range 51–72, −14 %) and higher emissions in Africa (86 Tg CH4 yr−1, range 73–108, +19 %) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models. The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30–40 % on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (http://doi.org/10.3334/CDIAC/GLOBAL_METHANE_BUDGET_2016_V1.1) and the Global Carbon Project.
  •  
4.
  • Saunois, M., et al. (författare)
  • Variability and quasi-decadal changes in the methane budget over the period 2000–2012
  • 2017
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:18, s. 11135-11161
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4) budget over 2000–2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches. The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000–2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000–2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008–2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16–32] Tg CH4 yr−1 higher methane emissions over the period 2008–2012 compared to 2002–2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002–2006 and 2008–2012 differs from one atmospheric inversion study to another. However, all top-down studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.
  •  
5.
  • Saunois, Marielle, et al. (författare)
  • The Global Methane Budget 2000–2017
  • 2020
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516 .- 1866-3508. ; 12:3, s. 1561-1623
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations).For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters.Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.
  •  
6.
  • Walker, Anthony P., et al. (författare)
  • Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2
  • 2021
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 229:5, s. 2413-2445
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2]‐driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre‐industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
  •  
7.
  • Barquinero, J-F., et al. (författare)
  • RENEB Inter-Laboratory Comparison 2021 : The FISH-Based Translocation Assay
  • 2023
  • Ingår i: Radiation Research. - 0033-7587 .- 1938-5404. ; 199:6, s. 583-590
  • Tidskriftsartikel (refereegranskat)abstract
    • Translocation analysis using fluorescence in situ hybridization (FISH) is the method of choice for dose assessment in case of chronic or past exposures to ionizing radiation. Although it is a widespread technique, unlike dicentrics, the number of FISH-based inter-laboratory comparisons is small. For this reason, although the current Running the European Network of Biological and Physical retrospective Dosimetry (RENEB) inter-laboratory comparison 2021 was designed as a fast response to a real emergency scenario, it was considered a good opportunity to perform an inter-laboratory comparison using the FISH technique to gain further experience. The Bundeswehr Institute of Radiobiology provided peripheral blood samples from one healthy human volunteer. Three test samples were irradiated with blinded doses of 0, 1.2, and 3.5 Gy, respectively. Samples were then sent to the seven participating laboratories. The FISH technique was applied according to the standard procedure of each laboratory. Both, the frequency of translocations and the estimated dose for each sample were sent to the coordinator using a special scoring sheet for FISH. All participants sent their results in due time. However, although it was initially requested to send the results based on the full analysis, evaluating 500 equivalent cells, most laboratories only sent the results based on triage, with a smaller number of analyzed cells. In the triage analysis, there was great heterogeneity in the number of equivalent cells scored. On the contrary, for the full analysis, this number was more homogeneous. For all three samples, one laboratory showed outlier yields compared to the other laboratories. Excluding these results, in the triage analysis, the frequency of translocations in sample no. 1 ranged from 0 to 0.013 translocations per cell, and for samples no. 2 and no. 3 the genomic mean frequency were 0.27 +/- 0.03 and 1.47 +/- 0.14, with a coefficient of variation of 0.29 and 0.23 respectively. Considering only results obtained in the triage analysis for sample no. 1, all laboratories, except one, classified this sample as the non-irradiated one. For sample no. 2, excluding the outlier value, the mean reported dose was 1.74 +/- 0.16 Gy indicating a mean deviation of about 0.5 Gy to the delivered dose of 1.2 Gy. For sample no. 3 the mean dose estimated was 4.21 +/- 0.21 Gy indicating a mean deviation of about 0.7 Gy to the delivered dose of 3.5 Gy. In the frame of RENEB, this is the second FISH-based inter-laboratory comparison. The whole exercise was planned as a response to an emergency, therefore, a triage analysis was requested for all the biomarkers except for FISH. Although a full analysis was initially requested for FISH, most of the laboratories reported only a triage-based result. The main reason is that it was not clearly stated what was required before starting the exercise. Results show that most of the laboratories successfully discriminated unexposed and irradiated samples from each other without any overlap. A good agreement in the observed frequencies of translocations was observed but there was a tendency to overestimate the delivered doses. Efforts to improve the harmonization of this technique and subsequent exercises to elucidate the reason for this trend should be promoted. 
  •  
8.
  • Jackson, R B, et al. (författare)
  • Belowground consequences of vegetation change and their treatment in models
  • 2000
  • Ingår i: Ecological Applications. - 1051-0761. ; 10:2, s. 470-483
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent and consequences of global land-cover and land-use change are increasingly apparent. One consequence not so apparent is the altered structure of plants belowground. This paper examines such belowground changes, emphasizing the interaction of altered root distributions with other factors and their treatment in models. Shifts of woody and herbaceous vegetation with deforestation, afforestation, and woody plant encroachment typically alter the depth and distribution of plant rests, influencing soil nutrients, the water balance, and net primary productivity (NPP). For example, our analysis of global soil data sets shows that the major plant nutrients C, N, P, and K are more shallowly distributed than are Ca, Mg, and Na, but patterns for each element vary with the dominant vegetation type. After controlling for climate, soil C and N are distributed more deeply in arid shrublands than in arid grasslands, and subhumid forests have shallower nutrient distributions than do subhumid grasslands. Consequently, changes in vegetation may influence the distribution of soil carbon and nutrients over time (perhaps decades to centuries). Shifts in the water balance are typically much more rapid. Catchment studies indicate that the water yield decreases 25-40 mm for each 10% increase in tree cover, and increases in transpiration of water taken up by deep roots may account for as much as 50% of observed responses. Because models are increasingly important for predicting the consequences of vegetation change, we discuss the treatment of belowground processes and how different treatments affect model outputs. Whether models are parameterized by biome or plant life form (or neither), use single or multiple soil layers, or include N and water limitation will all affect predicted outcomes. Acknowledging and understanding such differences should help constrain predictions of vegetation change.
  •  
9.
  • Limpens, J., et al. (författare)
  • Peatlands and the carbon cycle : from local processes to global implications – a synthesis
  • 2008
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 5:5, s. 1475-1491
  • Forskningsöversikt (refereegranskat)abstract
    • Peatlands cover only 3% of the Earth's land surface but boreal and subarctic peatlands store about 15-30% of the world's soil carbon ( C) as peat. Despite their potential for large positive feedbacks to the climate system through sequestration and emission of greenhouse gases, peatlands are not explicitly included in global climate models and therefore in predictions of future climate change. In April 2007 a symposium was held in Wageningen, the Netherlands, to advance our understanding of peatland C cycling. This paper synthesizes the main findings of the symposium, focusing on (i) small-scale processes, (ii) C fluxes at the landscape scale, and (iii) peatlands in the context of climate change. The main drivers controlling most are related to some aspects of hydrology. Despite high spatial and annual variability in Net Ecosystem Exchange ( NEE), the differences in cumulative annual NEE are more a function of broad scale geographic location and physical setting than internal factors, suggesting the existence of strong feedbacks. In contrast, trace gas emissions seem mainly controlled by local factors. Key uncertainties remain concerning the existence of perturbation thresholds, the relative strengths of the CO2 and CH4 feedback, the links among peatland surface climate, hydrology, ecosystem structure and function, and trace gas biogeochemistry as well as the similarity of process rates across peatland types and climatic zones. Progress on these research areas can only be realized by stronger co-operation between disciplines that address different spatial and temporal scales.
  •  
10.
  •  
11.
  •  
12.
  • Bustamante, Mercedes, et al. (författare)
  • Ten new insights in climate science 2023
  • 2023
  • Ingår i: Global Sustainability. - : CAMBRIDGE UNIV PRESS. - 2059-4798. ; 7
  • Forskningsöversikt (refereegranskat)abstract
    • Non-technical summary We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5 degrees C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems.Technical summary The Intergovernmental Panel on Climate Change Assessment Reports provides the scientific foundation for international climate negotiations and constitutes an unmatched resource for researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding of climate change across diverse research communities, we have streamlined an annual process to identify and synthesize significant research advances. We collected input from experts on various fields using an online questionnaire and prioritized a set of 10 key research insights with high policy relevance. This year, we focus on: (1) the looming overshoot of the 1.5 degrees C warming limit, (2) the urgency of fossil fuel phase-out, (3) challenges to scale-up carbon dioxide removal, (4) uncertainties regarding future natural carbon sinks, (5) the need for joint governance of biodiversity loss and climate change, (6) advances in understanding compound events, (7) accelerated mountain glacier loss, (8) human immobility amidst climate risks, (9) adaptation justice, and (10) just transitions in food systems. We present a succinct account of these insights, reflect on their policy implications, and offer an integrated set of policy-relevant messages. This science synthesis and science communication effort is also the basis for a policy report contributing to elevate climate science every year in time for the United Nations Climate Change Conference.Social media summary We highlight recent and policy-relevant advances in climate change research - with input from more than 200 experts.
  •  
13.
  • Euskirchen, Eugénie S., et al. (författare)
  • Current knowledge and uncertainties associated with the Arctic greenhouse gas budget
  • 2022
  • Ingår i: Balancing Greenhouse Gas Budgets : Accounting for Natural and Anthropogenic Flows of CO2 and other Trace Gases - Accounting for Natural and Anthropogenic Flows of CO2 and other Trace Gases. - 9780128149522 - 9780128149539 ; , s. 159-201
  • Bokkapitel (refereegranskat)abstract
    • • The Arctic is continuing to warm faster than any other region on Earth, but key uncertainties remain in our knowledge of the Arctic carbon cycle. • We review the most current knowledge pertaining to estimates of arctic greenhouse gas components and discuss uncertainties associated with these measurements and models. • While the Arctic Ocean is consistently estimated as a carbon sink, we have yet to reach an agreement on either the magnitude or the sign of the arctic terrestrial carbon budget. • Much of the uncertainty in the arctic carbon budget is related to the extent of the amount of carbon released as permafrost thaws, the magnitude of shoulder season and winter ecosystem respiration, and the impact of rising temperature and atmospheric [CO2] on plant growth. • We cannot count on the Arctic to store as much carbon as it has in the past, and evidence indicates it will likely store much less.
  •  
14.
  • Knox, Sara H., et al. (författare)
  • FLUXNET-CH4 Synthesis Activity : Objectives, Observations, and Future Directions
  • 2019
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 100:12, s. 2607-2632
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH4) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH4 flux measurements globally, initial results comparing CH4 fluxes across the sites, and future research directions and needs. Annual estimates of net CH4 fluxes across sites ranged from -0.2 +/- 0.02 g C m(-2) yr(-1) for an upland forest site to 114.9 +/- 13.4 g C m(-2) yr(-1) for an estuarine freshwater marsh, with fluxes exceeding 40 g C m(-2) yr(-1) at multiple sites. Average annual soil and air temperatures were found to be the strongest predictor of annual CH4 flux across wetland sites globally. Water table position was positively correlated with annual CH4 emissions, although only for wetland sites that were not consistently inundated throughout the year. The ratio of annual CH4 fluxes to ecosystem respiration increased significantly with mean site temperature. Uncertainties in annual CH4 estimates due to gap-filling and random errors were on average +/- 1.6 g C m(-2) yr(-1) at 95% confidence, with the relative error decreasing exponentially with increasing flux magnitude across sites. Through the analysis and synthesis of a growing EC CH4 flux database, the controls on ecosystem CH4 fluxes can be better understood, used to inform and validate Earth system models, and reconcile differences between land surface model- and atmospheric-based estimates of CH4 emissions.
  •  
15.
  • Medjanik, Katerina, et al. (författare)
  • Donor-anion interactions at the charge localization and charge ordering transitions of (TMTTF)(2)AsF6 probed by NEXAFS
  • 2015
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 17:29, s. 19202-19214
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution near-edge X-ray absorption fine structure (NEXAFS) measurements at the As M-edge, F K-edge and S L-edge of the Fabre salt (TMTTF)(2)AsF6 were performed from room temperature (RT) to 90 K, allowing to reach the charge localization regime below T-rho approximate to 230 K and to cross the charge ordering (CO) transition at T-CO approximate to 102 K. The F K-edge and S L-edge spectra exhibit several transitions which have been indexed on the basis of first-principles DFT calculations. Upon cooling from RT significant energy shifts up to +0.8 eV and -0.4 eV were observed in transitions exhibited by the F 1s and S 2p spectra respectively, while the As 3p doublet does not show a significant shift. Opposite energy shifts found in the F 1s and S 2p spectra reflect substantial thermal changes in the electronic environment of F atoms of the anion and S atoms of TMTTF. The changes found around the charge localization crossover suggest an increase of the participation of the S d orbitals in the empty states of TMTTF as well as an increase of the strength of donor...anion interactions. A new F 1s pre-edge signal detected upon entry into the CO phase is a clear fingerprint of the symmetry breaking occurring at TCO. We propose that this new transition is caused by a substantial mixing between the HOMO of the AsF6- anion and the unoccupied part of the TMTTF HOMO conduction band. Analysis of the whole spectra also suggests that the loss of the inversion symmetry associated with the CO is due to an anion displacement increasing the strength of S...F interactions. Our data show unambiguously that anions are not, as previously assumed, innocent spectators during the electronic modifications experienced by the Fabre salts upon cooling. In particular the interpretation of the spectra pointing out a thermally dependent mixing of anion wave functions with those of the TMTTF chains demonstrates for the first time the importance of anion-donor interactions.
  •  
16.
  • Medjanik, K., et al. (författare)
  • Near-Edge x‑ray absorption fine structure investigation of the quasi-One-Dimensional organic conductor (TMTSF)2PF6
  • 2016
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 120:43, s. 8574-8583
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high-resolution near-edge X-ray absorption fine structure (NEXAFS) measurements at the P L2/3 edges, F K edge, C K edge, and Se M2/3 edges of the quasi-one-dimensional (1D) conductor and superconductor (TMTSF)2PF6. NEXAFS allows probing the donor and acceptor moieties separately; spectra were recorded between room temperature (RT) and 30 K at normal incidence. Spectra taken around RT were also studied as a function of the angle (θ) between the electric field of the X-ray beam and the 1D conducting direction. In contrast with a previous study of the S L2/3-edges spectra in (TMTTF)2AsF6, the Se M2/3 edges of (TMTSF)2PF6 do not exhibit a well-resolved spectrum. Surprisingly, the C K-edge spectra contain three well-defined peaks exhibiting strong and nontrivial θ and temperature dependence. The nature of these peaks as well as those of the F K-edge spectra could be rationalized on the basis of first-principles DFT calculations. Despite the structural similarity, the NEXAFS spectra of (TMTSF)2PF6 and (TMTTF)2AsF6 exhibit important differences. In contrast with the case of (TMTTF)2AsF6, the F K-edge spectra of (TMTSF)2PF6 do not change with temperature despite stronger donor−anion interactions. All these features reveal subtle differences in the electronic structure of the TMTSF and TMTTF families of salts.
  •  
17.
  • Sitch, S., et al. (författare)
  • Recent trends and drivers of regional sources and sinks of carbon dioxide
  • 2015
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 12:3, s. 653-679
  • Tidskriftsartikel (refereegranskat)abstract
    • The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990-2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990-2009, the DGVMs simulate a mean global land carbon sink of -2.4 +/- 0.7 PgC yr(-1) with a small significant trend of -0.06 +/- 0.03 PgC yr(-2) (increasing sink). Over the more limited period 1990-2004, the ocean models simulate a mean ocean sink of -2.2 +/- 0.2 PgC yr(-1) with a trend in the net C uptake that is indistinguishable from zero (-0.01 +/- 0.02 PgC yr(-2)). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of 0.02 +/- 0.01 PgC yr(-2). Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 +/- 0.08 PgC yr(-2) exceeds a significant trend in heterotrophic respiration of 0.16 +/- 0.05 PgC yr(-2) - primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (0.04 +/- 0.01 PgC yr(-2)), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 and changes in growing season length on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counteract the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, as well as regarding the influence of land use and land cover changes on regional trends.
  •  
18.
  • Sitch, S., et al. (författare)
  • Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades
  • 2013
  • Ingår i: Biogeosciences Discussions. - : Copernicus GmbH. - 1810-6277. ; 10, s. 20113-20177
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Abstract. The land and ocean absorb on average over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine Dynamic Global Vegetation Models (DGVMs) and four Ocean Biogeochemical General Circulation Models (OBGCMs) to quantify the global and regional climate and atmospheric CO2 – driven trends in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, attribute these trends to underlying processes, and quantify the uncertainty and level of model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; Land Use and Land Cover Changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of –2.2 ± 0.2 Pg C yr–1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP) whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of wide-spread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counteract the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, and on the influence of land use and land cover changes on regional trends.
  •  
19.
  • Stavert, Ann R., et al. (författare)
  • Regional trends and drivers of the global methane budget
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:1, s. 182-200
  • Tidskriftsartikel (refereegranskat)abstract
    • The ongoing development of the Global Carbon Project (GCP) global methane (CH4) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000–2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions—China, Southeast Asia, USA, South Asia, and Brazil—account for >40% of the global total emissions (their anthropogenic and natural sources together totaling >270 Tg CH4 yr−1 in 2008–2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (>75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by >20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.
  •  
20.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy